气体的等容变化和等压变化(答案)

气体的等容变化和等压变化(答案)
气体的等容变化和等压变化(答案)

第8讲 气体的等容变化和等压变化

一、气体的等容变化

1.等容变化:一定质量的某种气体,在体积不变时,压强随温度的变化叫做等容变化. 2.查理定律

(1)查理定律的两种表达:

①一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比. ②一定质量的某种气体,在体积不变的情况下,温度每升高(或降低)10C ,增加(或减少)的压强等于它在00C 时压强的

15.2731(通常取值为273

1

)。

如果用P 0表示该气体在00C 时的压强,可得)(15

.273115.2730

0t

P T P P +=?

= (2)表达式:p =CT 或p 1T 1=p 2T 2.推论式:p T =Δp

ΔT =C (C 不是一个普适常量,它与气体的体积有

关,体积越大,常数越小。T 必须用热力学单位,否则公式不成立)

(3)适用条件:气体的质量和体积不变.压强不太大(相当于大气压几倍)温度不太低(零下几十摄氏度。温度太低物态发生变化) (4)图象:如图1所示.

图1

①p -T 图象中的等容线是一条过原点的倾斜直线.

②压强p 与摄氏温度t 是一次函数关系,不是简单的正比例关系,如图乙所示,等容线是一条延长线通过横轴上- ℃的倾斜直线,且斜率越大,体积越小.图象纵轴的截距p 0是气体在0 ℃时的压强.

③无论是p -T 图象还是p -t 图象,其斜率都能判断气体体积的大小,斜率越大,体积越小.

④特别提醒:一定质量的某种气体在体积不变的情况下,压强p 跟热力学温度T 成正比,而不是与摄氏温度成正比.

【例1】容积为2 L 的烧瓶,在压强为×105 Pa 时,用塞子塞住,此时温度为27 ℃,当把它加热到127 ℃时,塞子被打开了,稍过一会儿,重新把盖子塞好,停止加热并使它逐渐降温到27 ℃,求:

(1)塞子打开前的最大压强; (2)降温至27 ℃时剩余空气的压强. 答案 (1)×105 Pa (2)×104 Pa

解析 (1)塞子打开前,选瓶中气体为研究对象 初态:p 1=×105 Pa ,T 1=300 K 末态:T 2=400 K ,压强为p 2

由查理定律可得p 2=T 2T 1

×p 1=400

300××105 Pa≈×105 Pa

(2)塞子重新塞紧后,选瓶中剩余气体为研究对象 初态:p 1′=×105 Pa ,T 1′=400 K 末态:T 2′=300 K ,压强为p 2′

由查理定律可得p 2′=T 2′T 1

′×p 1′=300

400××105 Pa =×104 Pa

变式

1气体温度计结构如图4所示,玻璃测温泡A内充有气体,通过细玻璃管B和水银压强计相连.开始时A处于冰水混合物中,左管C 中水银面在O点处,右管D中水银面高出O点h1=14 cm,后将A放入待测恒温槽中,上下移动D,使C中水银面仍在O点处,测得D中水银面高出O点h2=44 cm.求恒温槽的温度(已知外界大气压为1个标准大气压,1个标准大气压相当于76 cmHg).

图4

答案 364 K(或91 ℃)

解析 设恒温槽的温度为T 2,由题意知T 1=273 K A 内气体发生等容变化,根据查理定律得p 1T 1

=p 2

T 2

p 1=p 0+p h 1② p 2=p 0+p h 2③

联立①②③式,代入数据得 T 2=364 K(或91 ℃).

二、气体的等压变化

1.等压变化:一定质量的某种气体,在压强不变时,体积随温度的变化叫做等压变化. 2.盖—吕萨克定律 (1)盖—吕萨克定律

①盖—吕萨克定律的热力学温度表述:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比.

盖—吕萨克定律的摄氏温度表述:一定质量的某种气体,在压强不变的情况下,温度每升

高(或降低)10C ,增加(或减少)的体积等于它在00C 时体积的

15.2731(通常取值为273

1

)。

如果用V 0表示该气体在00C 时的体积,可得)(15

.273115.2730

0t

V T V V +=?

= (2)表达式:V =CT 或V 1T 1

=V 2T 2

.推论式:V T =ΔV

ΔT =C (C 是一个与气体质量和压强有关的常量)

(3)适用条件:气体的质量和压强不变.压强不太大,温度不太低 (4)图象:如图2所示.

图2

①V -T 图象中的等压线是一条过原点的倾斜直线.

②V -t 图象:一定质量的某种气体,在等压变化过程中,体积V 与摄氏温度t 是一次函数关系,不是简单的正比例关系,如图乙所示,等压线是一条延长线通过横轴上- ℃的倾斜直线,且斜率越大,压强越小,图象纵轴的截距V 0是气体在0 ℃时的体积.

③无论是V -T 图还是V -t 图,其斜率都能判断气体压强的大小,斜率越大,压强越小. ④特别提醒:一定质量的气体,在压强不变时,其体积与热力学温度成正比,而不是与摄氏温度成正比.

2如图7所示,绝热的汽缸内封有一定质量的气体,缸体质量M=200 kg,厚度不计的活塞质量m=10 kg,活塞横截面积S=100 cm2.活塞与汽缸壁无摩擦且不漏气.此时,缸内气体的温度为27 ℃,活塞位于汽缸正中间,整个装置都静止.已知大气压恒为p0=×105 Pa,重力加速度为g=10 m/s2.求:

图7

(1)缸内气体的压强 p 1;

(2)缸内气体的温度升高到多少℃时,活塞恰好会静止在汽缸缸口AB 处. 答案 (1)×105 Pa (2)327 ℃

解析 (1)以汽缸为研究对象(不包括活塞),由汽缸受力平衡得:p 1S =Mg +p 0S 解得:p 1=×105 Pa.

(2)设当活塞恰好静止在汽缸缸口AB 处时,缸内气体温度为T 2,压强为p 2,此时仍有p 2S =Mg +p 0S ,即缸内气体做等压变化.对这一过程研究缸内气体,由盖—吕萨克定律得:S ×T 1

=S ×l

T 2

所以T 2=2T 1=600 K

故t 2=(600-273) ℃=327 ℃.

【变式2】(等温变化及等压变化的综合应用)如图4所示,带有刻度的注射器竖直固定在铁架台上,其下部放入盛水的烧杯中.注射器活塞的横截面积S =5×10-

5 m 2,活塞及框架的总质量m 0=5×10-

2 kg ,大气压强p 0=×105 Pa.当水温为t 0=1

3 ℃时,注射器内气体的体积为 mL.求:(g 取10 m/s 2)

图4

(1)向烧杯中加入热水,稳定后测得t 1=65 ℃时,气体的体积为多大

(2)保持水温t 1=65 ℃不变,为使气体的体积恢复到 mL ,则要在框架上挂质量多大的钩码 答案 (1) mL (2) kg

解析 (1)由盖—吕萨克定律得V 0T 0

=V 1

T 1

解得V 1= mL

(2)由玻意耳定律得????p 0+m 0g S V 1=????p 0+m +m 0g S V 0,解得m = kg.

三、p -T 图象与V -T 图象

3(多选)一定质量的气体的状态经历了如图9所示的ab、bc、cd、da四个过程,其中bc的延长线通过原点,cd垂直于ab且与水平轴平行,da与bc平行,则气体体积在()

图9

A.ab过程中不断增加B.bc过程中保持不变

C.cd过程中不断增加D.da过程中保持不变

答案AB

解析首先,因为bc的延长线通过原点,所以bc是等容线,即气体体积在bc过程中保持不变,B正确;ab是等温线,压强减小则体积增大,A正确;cd是等压线,温度降低则体积减小,C错误;如图所示,连接aO交cd于e,则ae是等容线,即V a=V e,因为V d

【例4】(多选)一定质量的某种气体自状态A经状态C变化到状态B,这一过程在V-T图上

的表示如图12所示,则()

图12

A.在AC过程中,气体的压强不断变大

B.在CB过程中,气体的压强不断变小

C.在状态A时,气体的压强最大

D.在状态B时,气体的压强最大

答案AD

解析气体由A→C的变化过程是等温变化,由pV=C(C是常数)可知,体积减小,压强增大,

故A正确.由C→B的变化过程中,气体的体积不发生变化,即为等容变化,由p

T=C(C是常

数)可知,温度升高,压强增大,故B错误.综上所述,由A→C→B的过程中气体的压强始终增大,所以气体在状态B时的压强最大,故C错误,D正确.

【课堂训练】

一、选择题

考点一 查理定律的应用

1.民间常用“拔火罐”来治疗某些疾病,方法是将点燃的纸片放入一个小罐内,当纸片燃烧完时,迅速将火罐开口端紧压在皮肤上,火罐就会紧紧地“吸”在皮肤上.其原因是,当火罐内的气体( )

A .温度不变时,体积减小,压强增大

B .体积不变时,温度降低,压强减小

C .压强不变时,温度降低,体积减小

D .质量不变时,压强增大,体积减小

答案 B

解析 纸片燃烧时,罐内气体的温度升高,将罐压在皮肤上后,封闭气体的体积不再改变,温度降低时,由查理定律知封闭气体压强减小,罐紧紧“吸”在皮肤上,B 选项正确. 2.某同学家一台新电冰箱能显示冷藏室内的温度,存放食物之前该同学进行试通电,该同学将打开的冰箱密封门关闭并给冰箱通电.若大气压为×105 Pa ,刚通电时显示温度为27 ℃,通电一段时间后显示温度为7 ℃,则此时密封的冷藏室中气体的压强是( ) A .×105 Pa B .×105 Pa C .×105 Pa D .×105 Pa

答案 B

解析 冷藏室气体的初状态:T 1=(273+27) K =300 K ,p 1=1×105 Pa 末状态:T 2=(273+7) K =280 K ,压强为p 2 气体体积不变,根据查理定律得:p 1T 1=p 2T 2

代入数据得:p 2≈×105 Pa.

3.一定质量的气体,在体积不变的条件下,温度由0 ℃升高到10 ℃时,其压强的增量为Δp 1,当它由100 ℃升高到110 ℃时,其压强的增量为Δp 2,则Δp 1与Δp 2之比是( ) A .10∶1 B .373∶273 C .1∶1 D .383∶283 答案 C

解析 由查理定律得Δp =p T ΔT ,一定质量的气体在体积不变的条件下p

T =恒量,温度由0 ℃

升高到10 ℃和由100 ℃升高到110 ℃,ΔT =10 K 相同,故压强的增量Δp 1=Δp 2,C 项正确. 考点二 盖—吕萨克定律的应用

4.一定质量的气体在等压变化中体积增大了12,若气体原来温度为27 ℃,则温度的变化是( ) A .升高了450 K B .升高了150 ℃ C .降低了150 ℃ D .降低了450 ℃

答案 B

解析 由盖—吕萨克定律可得V 1V 2

=T 1T 2

,代入数据可知,132

=300 K

T 2

,得T 2=450 K .所以升高的

温度Δt =150 K =150 ℃.

5.房间里气温升高3 ℃时,房间内的空气有1%逸出到房间外,由此可计算出房间内原来的温度是( )

A .-7 ℃

B .7 ℃

C .17 ℃

D .27 ℃ 答案 D

解析 以升温前房间里的气体为研究对象,由盖—吕萨克定律得:T +3 K T =V 1+1%

V ,解得:T =300 K ,t =27 ℃,所以答案选D.

6.一定质量的理想气体,在压强不变的情况下,温度由5 ℃升高到10 ℃,体积的增量为ΔV 1;温度由10 ℃升高到15 ℃,体积的增量为ΔV 2,则( ) A .ΔV 1=ΔV 2 B .ΔV 1>ΔV 2 C .ΔV 1<ΔV 2 D .无法确定

答案 A

解析 由盖—吕萨克定律V 1T 1

=V 2T 2

可得V 1T 1

=ΔV ΔT ,即ΔV =ΔT T 1

V 1,所以ΔV 1=5278V 1,ΔV 2=5283V 2(V 1、

V 2分别是气体在5 ℃和10 ℃时的体积),而V 1278=V 2

283,所以ΔV 1=ΔV 2,A 正确. 考点三 p -T 图象和V -T 图象

7.(多选)如图1所示是一定质量的气体从状态A经状态B到状态C的p-T图象,则下列判断正确的是()

图1

A.V A=V B B.V B=V C

C.V BV C

答案AC

解析由题图和查理定律可知V A=V B,故A正确;由状态B到状态C,气体温度不变,压强减小,由玻意耳定律知气体体积增大,故C正确.

8.如图2所示是一定质量的气体从状态A经状态B到状态C的V-T图象,由图象可知()

图2

A.p A>p B B.p C

C.V A

答案D

解析由V-T图象可以看出由A→B是等容过程,T B>T A,故p B>p A,A、C项错误,D项正确;由B→C为等压过程,p B=p C,故B项错误.

9.(多选)如图3所示为一定质量气体的等容线,下面说法中正确的是()

图3

A.直线AB的斜率是p0

273

B.0 ℃时气体的压强为p0

C.温度在接近0 K时气体的压强为零

D.BA延长线与横轴交点为-273 ℃

E.压强p与温度t成正比

答案ABD

解析在p-t图象上,等容线的延长线与t轴的交点坐标为(-273 ℃,0),从图中可以看出,

0 ℃时气体压强为p0,因此直线AB的斜率为p0

273,A、B、D正确;在接近0 K时,气体已液化,因此不满足查理定律,压强不为零,C错误;压强p与温度t的关系是线性关系而不是成正比,E错误.

二、非选择题

10.(等容变化及等压变化的综合应用)如图5所示,上端开口的光滑圆柱形汽缸竖直放置,横截面积为40 cm2的活塞将一定质量的气体和一形状不规则的固体A封闭在汽缸内.在汽缸内距缸底60 cm处设有a、b两限制装置,使活塞只能向上滑动.开始时活塞搁在a、b 上,缸内气体的压强为p0(p0=×105 Pa为大气压强),温度为300 K.现缓慢加热汽缸内气体,当温度为330 K时,活塞恰好离开a、b;当温度为360 K时,活塞上升了4 取10 m/s2,求:

图5

(1)活塞的质量; (2)物体A 的体积. 答案 (1)4 kg (2)640 cm 3 解析 (1)设物体A 的体积为ΔV .

T 1=300 K ,p 1=×105 Pa ,V 1=(60×40-ΔV ) cm 3 T 2=330 K ,p 2=错误! Pa ,V 2=V 1 T 3=360 K ,p 3=p 2,V 3=(64×40-ΔV ) cm 3

由状态1到状态2为等容过程,由查理定律有p 1T 1

=p 2

T 2

代入数据得m =4 kg

(2)由状态2到状态3为等压过程,由盖—吕萨克定律有V 2T 2

=V 3

T 3

代入数据得ΔV =640 cm 3.

11.(查理定律的应用)扣在水平桌面上的热杯盖有时会发生被顶起的现象.如图6所示,横截面积为S 的热杯盖扣在水平桌面上,开始时内部封闭气体的温度为300 K ,压强为大气压强p 0.当封闭气体温度上升至303 K 时,杯盖恰好被整体顶起,放出少许气体后又落回桌面,其内部气体压强立刻减为p 0,温度仍为303 K .再经过一段时间,内部气体温度恢复到300 K .求:

图6

(1)当温度上升到303 K 且尚未放气时,封闭气体的压强; (2)当温度恢复到300 K 时,竖直向上提起杯盖所需的最小力. 答案 (1)101100p 0 (2)201

10 100p 0S

解析 (1)以开始封闭的气体为研究对象,由题意可知,初状态温度T 0=300 K ,压强为p 0;末状态温度T 1=303 K ,压强设为p 1,由查理定律得p 0T 0

=p 1

T 1

代入数据得p 1=101

100p 0②

(2)设杯盖的质量为m ,刚好被顶起时,由平衡条件得 p 1S =p 0S +mg ③

放出少许气体后,以杯盖内的剩余气体为研究对象,由题意可知,初状态温度T 2=303 K ,压强p 2=p 0,末状态温度T 3=300 K ,压强设为p 3,由查理定律得 p 2T 2=p 3

T 3④

设提起杯盖所需的最小力为F ,由平衡条件得 F +p 3S =p 0S +mg ⑤

联立②③④⑤式,代入数据得F =201

10 100p 0S .

多余的题目

2.(盖—吕萨克定律的应用)如图10所示,质量M =10 kg 的透热汽缸内用面积S =100 cm 2的活塞封有一定质量的理想气体,活塞与汽缸壁无摩擦且不漏气.现将弹簧一端固定在天花板上,另一端与活塞相连将汽缸悬起,当活塞位于汽缸正中间时,整个装置都处于静止状态,此时缸内气体的温度为27 ℃.已知大气压恒为p 0=×105 Pa ,重力加速度为g =10 m/s 2,忽略汽缸和活塞的厚度.求:

图10

(1)缸内气体的压强p 1;

(2)若外界温度缓慢升高,活塞恰好静止在汽缸缸口处时,缸内气体的摄氏温度. 答案 (1)9×104 Pa (2)327 ℃

解析 (1)以汽缸为研究对象(不包括活塞),列受力平衡方程p 1S +Mg =p 0S 解得:p 1=9×104 Pa

(2)外界温度缓慢升高的过程中,缸内气体为等压变化. 在这一过程中对缸内气体由盖—吕萨克定律得S ×T 1

=S ×l T 2

所以T 2=2T 1=600 K

故t 2=(600-273) ℃=327 ℃.

3.(p-T图象)(多选)如图11所示为一定质量的气体的三种变化过程,则下列说法正确的是()

图11

A.a→d过程气体体积增加

B.b→d过程气体体积不变

C.c→d过程气体体积增加

D.a→d过程气体体积减小

答案AB

解析在p-T图象中等容线是延长线过原点的倾斜直线,且气体体积越大,直线的斜率越小.因此,a状态对应的体积最小,c状态对应的体积最大,b、d状态对应的体积相等,故A、B正确.

[即学即用]

1.判断下列说法的正误.

(1)一定质量的某种气体,在压强不变时,若温度升高,则体积减小.(×)

(2)“拔火罐”时,火罐冷却,罐内气体的压强小于大气的压强,火罐就被“吸”在皮肤上.(√)

气体的等容变化和等压变化教学设计

第二节 气体的等容变化和等压变化 教学目标: (一)知识与技能 1、知道什么是气体的等容变化过程;掌握查理定律的内容、数学表达式;理解p-T 图象的物理意义;知道查理定律的适用条件。 2、知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T 图象的物理意义。 (二)过程与方法 根据查理定律和盖-吕萨克定律的内容理解p-T 图象和V-T 图象的物理意义。 (三)情感、态度与价值观 1、培养运用图象这种数学语言表达物理规律的能力。 2、领悟物理探索的基本思路,培养科学的价值观。 教学重点: 1、查理定律的内容、数学表达式及适用条件。 2、盖-吕萨克定律的内容、数学表达式及适用条件。 教学难点: 对p-T 图象和V-T 图象的物理意义的理解。 教学方法: 讲授法、电教法 教学过程: (一)引入新课 提问:玻意耳定律的内容和公式是什么? 一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比。 即 =pV 常量 或 2211V p V p = 提问:应用玻意耳定律求解问题的基本思路是什么? 首先确定研究对象(一定质量的气体,温度不变),然后确定气体在两个不同状态下的压强和体积1p 、1V ,2p 、2V ,最后根据定律列式求解。 提问:那么,当气体的体积保持不变时,气体的压强与温度的关系是怎样的呢?若气体的压强保持不变时,气体的体积与温度的关系又是怎样的呢?这节课我们学习气体的等容变化和等压变化。 (二)新课教学 1、气体的等容变化 演示实验:滴液瓶中装有干燥的空气,用涂有少量润滑油的橡皮塞盖住瓶口,把瓶子放入热水中,会看到塞子飞出;把瓶子放在冰水混合物中,拔掉塞子时会比平时费力。 提问:实验说明了怎样的道理? 这个实验告诉我们:一定质量的气体,保持体积不变,当温度升高时,气体的压强

气体的等容变化和等压变化

气体的等容变化和等压变化 在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。 一、气体的等容变化: 1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。 2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273. 或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比. 3、公式: 常量==1 122T p T p 4、查理定律的微观解释: 一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。这与查理定律的结论一致。 二、气体的等压变化: 1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系. 2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273. 或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比. 3、公式: 常量==1 1 22T V T V 4、盖·吕萨克定律的微观解释:

(℃) t 0 一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度(T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小 三、气态方程 一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。 nR T V p T V p ==1 1 1222 n 为气体的摩尔数,R 为普适气体恒量 063.上海市南汇区2008年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。把这个结论进行合理外推,便可得出图中t 0= ℃;如果温度能降低到t 0,那么气体的压强将减小到 P a 。 答:-273、0 025.上海黄浦区08年1月期终测评15.一定质量的理想气体在等容变化过程中测得,气体在0℃时的压强为P O , 10℃时的压强为P 10,则气体在21℃时的压强在下述各表达式中正确的是 ( A D ) A .27301011P P P + = B .273100 11P P P += C .273101011P P P += D .1011283 284 P P = 033.上海嘉定区2007学年上学期高三调研5、如图所示,A 端封闭有气体的U 形玻璃管倒插入水银槽中,当温度为T 1时,管中水银面处在M 处,温度为T 2时,管中水银

气体的等容变化和等压变化

(℃) 气体的等容变化和等压变化 在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。 【气体的等容变化】 1.等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。 2.查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273. 或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比. 3.公式: 常量==1 122T p T p 4.查理定律的微观解释: 一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。这与查理定律的结论一致。 【气体的等压变化】 1.等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系. 2.盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273. 或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比. 3.公式: 常量==1 1 22T V T V 4.盖·吕萨克定律的微观解释: 一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度(T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小 1.由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。把这个结论进行合

气体的等容变化和等压变化

气体的等容变化和等压变化 [要点导学] 1.这堂课学习教材第二节的内容。主要要求如下:了解气体的等容变化和等压变化过程,理解气体p-T、v-T图象的物理意义,会用查理定律和盖·吕萨克定律解决相关问题。知道气体实验定律的适用范围。 2.查理定律的内容是:一定质量的某种气体在体积保持不变的情况下,压强p与热力学温 度T成正比,即p T =恒量。若一定质量的气体在体积v保持不变的情况下,热力学温度由 T1变化到T2,压强由p1变化到p2,则查理定律又可以表达为:____________。 3.气体的等容变化过程可以用如图所示的图象来描述。气体 从状态A变化到状态B过程中,压强p与摄氏温度t成线性 关系,压强p与热力学温度T成正比。摄氏温度0℃相当于热 力学温度273.15K,计算时通常取273K,p0为0℃时气体的压 强。 4.盖·吕萨克定律的内容是:一定质量的某种气体在压强保 持不变的情况下,体积v与热力学温度T成正比,即 v T =恒量。若一定质量的气体在体积p保持不变的情况下,热力学温度由T1变化到T2,体积由v1变化到v2,则盖·吕萨克定律又可以表达为:____________。 5.气体的等压变化过程可以用如图所示的图象来描述。气体 从状态A变化到状态B过程中,体积v与摄氏温度t成线性 关系,体积v与热力学温度T成正比。v0为0℃时气体的体 积。 6.查理定律和盖·吕萨克定律以及上节学习的玻意耳定律都 是实验定律,在压强不太大、温度不太低的情况下由实验总结得到。对于压强很大、温度很低的情况,这三个实验定律不适用。在通常的计算中几个大气压下、零下几十摄氏度都可以算作压强不太大、温度不太低。 7.应用气体定律解决有关气体状态变化的问题时,和波意耳定律的应用一样,首先要确定哪一部分气体作为研究对象,然后分析这部分气体状态变化的过程,确定变化过程的初、末状态参量,再根据气体状态变化选择适当的定律建立各参量间的关系,解得所要求的参量。 [范例精析] 例1某个汽缸中有活塞封闭了一定质量的空气,它从状态A变化到状态B,其压 强p和温度T的关系如图所示,则它的体积() A.增大 B.减小 C.保持不变 D.无法判断 解析:由图可知,气体从A变化到B的过程中,AB连线过坐标原点,即压强p与热力学温度T成正比,所以是等容变化,体积一定保持不变。 本题正确选项是:C。 拓展:物理学中可以用图象来分析研究物理过程中物理量的 变化关系,也可以用图象来描述物理量的变化关系,也就是说图象 可以作为一种表达方式,本题中的图象给了我们信息,要学会从图

气体的等容变化和等压变化习题

气体的等容变化和等压变化 习题 基础夯实 一、选择题(1~3题为单选题,4、5题为多选题) 1.(张店2013~2014学年高二下学期检测)在冬季,剩有半瓶热水的暖水瓶经过一个夜晚后,第二天拔瓶口的软木塞时觉得很紧,不易拔出来,这种现象的主要原因是( ) A .软木塞受潮膨胀 B .瓶口因温度降低而收缩变小 C .白天气温升高,大气压强变大 D .瓶内气体因温度降低而压强减小 答案:D 解析:冬季气温较低,瓶中的气体在V 不变时,因T 减小而使p 减小,这样瓶外的大气压力将瓶塞位置下推,使瓶塞盖得紧紧的,所以拔起来就感到很吃力,故正确答案为D 。 2.对于一定质量的气体,在压强不变时,体积增大到原来的两倍,则下列正确说法的是( ) A .气体的摄氏温度升高到原来的两倍 B .气体的热力学温度升高到原来的两倍 C .温度每升高1 K 体积增加原来的1273 D .体积的变化量与温度的变化量成反比 答案:B 解析:由盖·吕萨克定律可知A 错误,B 正确;温度每升高1 ℃即1 K ,体积增加0 ℃体积的1273,C 错误;由盖·吕萨克定律的变形式V T =ΔV ΔT 可知D 错误。 3.一定质量的气体,在体积不变的情况下,温度由0 ℃升高到10 ℃时,其压强的增加量为Δp 1,当它由100 ℃升高到110 ℃时,其压强的增加量为Δp 2,则Δp 1与Δp 2之比是( ) A .1 1 B .110 C .10110 D .11010 答案:A 解析:等容变化,这四个状态在同一条等容线上,因Δt 相同,所以Δp 也相同,故A 正确。 4.如图所示,一小段水银封闭了一段空气,玻璃管竖直静放在室内。下列说法正确的是( ) A .现发现水银柱缓慢上升了一小段距离,这表明气温一定上升了

《气体的等容变化和等压变化》教案

《气体的等容变化和等压变化》教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二节气体的等容变化和等压变化 授课时间:2016.5.27 授课班级:高二(12)班授课教师:杨晶【教学目标】 (一)知识与技能 1.知道什么是气体的等容变化过程;掌握查理定律的内容、数学表达式;理解p-T图象的物理意义;知道查理定律的适用条件。 2.知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T图象的物理意义。 (二)过程与方法 根据查理定律和盖-吕萨克定律的内容理解p-T图象和V-T图象的物理意义。(三)情感、态度与价值观 1.培养运用图象这种数学语言表达物理规律的能力。 2.领悟物理探索的基本思路,培养科学的价值观。 【教学重点】 1.查理定律的内容、数学表达式及适用条件。 2.盖-吕萨克定律的内容、数学表达式及适用条件。 【教学难点】 对p-T图象和V-T图象的物理意义的理解。 【教学过程】 (一)引入新课 打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么

(二)新课教学 1.气体的等容变化 一定质量的气体在体积不变时,压强随温度的变化叫做等容变化。在等容变化过程中,压强和温度有何定量关系呢? 法国科学家查理通过实验发现,当气体的体积一定时,各种气体的压强与温度之间都有线性关系。我们把它叫做查理定律。 (1)内容:一定质量的某种气体,在体积不变的情况下,压强P 与热力学温度T 成正比-----查理定律。 (2)公式:CT p 设一定质量的某种气体,由压强P 1、温度T 1的状态,保持体积不变的变化,变到压强P 2、温度T 2的另一种状态,则有 21P P =21T T 或者 11T P =2 2T P 。 (3)P-T 图像 P-T 图中的等容线是一条延长线通过原点的倾斜直线。 (4)适用条件: ①气体的质量一定 ②气体的体积不变 ③压强不太大,温度不太低 探究一:当气体发生等容变化时,它的压强与摄氏温度成正比吗?写出关系式,并画出等容过程的p -t 图象。 探究二:如图为一定质量的某种气体在不同体积下的两条等容线,试判断两条等容线所代表的体积的大小。

8-2 等压变化和等容变化(实验)

---------------------------------装订线--------------------------------- 庆云第一中学课堂导学案(实验) (设计者:马福禄审核者:刘金梅) 年级:二学科:物理编号:X3.3-19 日期:2014 年4月12日班级:姓名: 课题:8-2 气体的等容变化和等压变化 【学习目标】 (1)知道什么是气体的等容变化和等压变化; (2)掌握查理定律和盖-吕萨克定律的内容、数学表达式; (3)理解p-T图象、V-T图象的物理意义; 【自学指导】请同学们根据以下问题阅读课本21到22页内容,8分钟后检测 1.什么是等温变化? 2.玻意耳定律的内容是什么 3.画出等温变化的图象 【检测】请同学们用13分钟的时间完成以下题目 1.一定质量的气体在保持密度不变的情况下,把它的温度由原来的27℃升到127℃,这时该气体的压强是原来的() A. 3倍 B. 4倍 C. 4/3倍 D. 3/4倍 2.一定质量的气体,在体积不变时,温度每升高1℃,它的压强增加量( ) A. 相同 B. 逐渐增大 C. 逐渐减小 D. 成正比例增大 3.将质量相同的同种气体A、B分别密封在体积不同的两容器中,保持两部分气体体积不变,A、B两部分气体压强温度的变化曲线如图8.2—6所示,下列说法正确的是 ( ) A. A部分气体的体积比B部分小 B. A、B直线延长线将相交于t轴上的同一点 C. A、B气体温度改变量相同时,压强改变量也相同 D.A、B气体温度改变量相同时,A部分气体压强改变量较大 4.如右图所示是一定质量的气体的三种升温过程,那么,以下四种解释中正 确的是() A.a→d的过程气体体积增加B.b→d的过程气体体积增加 C.c→d的过程气体体积增加D.a→d的过程气体体积减小 5.查理定律的正确说法是一定质量的气体,在体积保持不变的情况下 ( ) A.气体的压强跟摄氏温度成正比 B.气体温度每升高1℃,增加的压强等于它原来压强的1/273 C.气体温度每降低1℃.减小的压强等于它原来压强的1/273 D.以上说法都不正确 6.一定质量的气体当体积不变而温度由100℃上升到200℃时,其压强 ( ) A. 增大到原来的两倍 B. 比原来增加100/273倍 C. 比原来增加100/373倍 D. 比原来增加1/2倍 7.一定质量的理想气体等容变化中,温度每升高1℃,压强的增加量等于它在17℃时压强的( ) A. 1/273 B. 1/256 C. 1/300 D. 1/290 8.一定质量的理想气体,现要使它的压强经过状态变化后回到初始状态的压强,那么使用下列哪些过程可以实现 ( ) A.先将气体等温膨胀,再将气体等容降温 B.先将气体等温压缩,再将气体等容降温 C.先将气体等容升温,再将气体等温膨胀 D.先将气体等容降温,再将气体等温压缩 9.一密闭钢筒中所装的气体,在温度为20℃时,压强为1个大气压,如温度上升到80℃时,压强为()A.4个大气压B.1/4个大气压C.1.2个大气压D.5/6个大气压 图8.2— 6

气体的等容变化和等压变化 说课稿 教案

气体的等容变化和等压变化 教学目标: (一)知识与技能 1、知道什么是气体的等容变化过程;掌握查理定律的内容、数学表达式;理解p-T图象的物理意义;知道查理定律的适用条件。 2、知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T图象的物理意义。 (二)过程与方法 根据查理定律和盖-吕萨克定律的内容理解p-T图象和V-T图象的物理意义。 (三)情感、态度与价值观 1、培养运用图象这种数学语言表达物理规律的能力。 2、领悟物理探索的基本思路,培养科学的价值观。 教学重点: 1、查理定律的内容、数学表达式及适用条件。 2、盖-吕萨克定律的内容、数学表达式及适用条件。 教学难点: 对p-T图象和V-T图象的物理意义的理解。 教学方法: 讲授法、电教法 教学用具: 投影仪、投影片 教学过程: (一)引入新课 教师:(复习提问)玻意耳定律的内容和公式是什么? 学生:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比。 即 pV常量 或

2211V p V p 教师:应用玻意耳定律求解问题的基本思路是什么? 学生:首先确定研究对象(一定质量的气体,温度不变),然后确定气体在两个不同状态下的压强和体积1p 、1V ,2p 、2V ,最后根据定律列式求解。 教师点出课题:那么,当气体的体积保持不变时,气体的压强与温度的关系是怎样的呢?若气体的压强保持不变时,气体的体积与温度的关系又是怎样的呢?这节课我们学习气体的等容变化和等压变化。 (二)新课教学 1、气体的等容变化 教师:我们先来看一个演示实验:滴液瓶中装有干燥的空气,用涂有少量润滑油的橡皮塞盖住瓶口,把瓶子放入热水中,会看到塞子飞出;把瓶子放在冰水混合物中,拔掉塞子时会比平时费力。 教师:(提问)实验说明了怎样的道理? 学生:这个实验告诉我们:一定质量的气体,保持体积不变,当温度升高时,气体的压强增大;当温度降低时,气体的压强减小。 教师:一定质量的气体在体积不变时,压强随温度的变化叫做等容变化。在等容变化过程中,压强和温度有何定量关系呢? 法国科学家查理通过实验发现,当气体的体积一定时,各种气体的压强与温度之间都有线性关系。我们把它叫做查理定律。 (1)内容:一定质量的某种气体,在体积不变的情况下,压强P 与热力学温度T 成正比-----查理定律 (2)公式:P ∝T 设一定质量的某种气体,由压强P 1、温度T 1的状态,保持体积不变的变化,变到 压强P 2、温度T 2的另一种状态,则有2 1 P P =2 1T T 或者 1 1T P =2 2T P . (3)适用条件: ①气体的质量一定 ②气体的体积不变

第八章 2 气体的等容变化和等压变化

2气体的等容变化和等压变化 [学习目标] 1.掌握查理定律和盖—吕萨克定律的内容、表达式及适用条件.2.会用气体变化规律解决实际问题.3.理解p-T图象与V-T图象的物理意义. 一、气体的等容变化 [导学探究](1)为什么拧上盖的水杯(内盛半杯热水)放置一段时间后很难打开杯盖? (2)打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么? 答案(1)放置一段时间后,杯内的空气温度降低,压强减小,外界的大气压强大于杯内空气压强,所以杯盖很难打开. (2)车胎在烈日下曝晒,胎内的气体温度升高,气体的压强增大,把车胎胀破. [知识梳理] 1.等容变化:一定质量的某种气体,在体积不变时,压强随温度的变化叫做等容变化.2.查理定律 (1)内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T成正比(填“正比”或“反比”). (2)表达式:p=CT或p1 T1=p2 T2.推论式:p T= Δp ΔT (3)适用条件:气体的质量和体积不变. (4)图象:如图1所示.

图1 ①p -T 图象中的等容线是一条过原点的倾斜直线. ②p -t 图象中的等容线不过原点,但反向延长线交t 轴于-273.15_℃. ③无论是p -T 图象还是p -t 图象,其斜率都能判断气体体积的大小,斜率越大,体积越小. [即学即用] 关于一定质量的气体,判断下列说法的正误. (1)气体做等容变化时,气体的压强与温度成正比.( × ) (2)气体做等容变化时,气体压强的变化量与热力学温度的变化量成正比.( √ ) (3)气体做等容变化时,温度从13 ℃上升到52 ℃,则气体的压强升高为原来的4倍.( × ) (4)气体做等容变化,温度为200 K 时的压强为0.8 atm ,压强增加到2 atm 时的温度为500 K .( √ ) 二、气体的等压变化 [知识梳理] 1.等压变化:一定质量的某种气体,在压强不变时,体积随温度的变化叫做等压变化. 2.盖—吕萨克定律 (1)内容:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比. (2)表达式:V =CT 或V 1T 1=V 2T 2.推论式:V T =ΔV ΔT (3)适用条件:气体的质量和压强不变. (4)图象:如图2所示.

第8讲 气体的等容变化和等压变化(答案)

第8讲 气体的等容变化和等压变化 一、气体的等容变化 1.等容变化:一定质量的某种气体,在体积不变时,压强随温度的变化叫做等容变化. 2.查理定律 (1)查理定律的两种表达: ①一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比. ②一定质量的某种气体,在体积不变的情况下,温度每升高(或降低)10C ,增加(或减少)的压强等于它在00C 时压强的 15.2731(通常取值为273 1 )。 如果用P 0表示该气体在00C 时的压强,可得)(15 .273115.2730 0t P T P P +=? = (2)表达式:p =CT 或p 1T 1=p 2T 2.推论式:p T =Δp ΔT =C (C 不是一个普适常量,它与气体的体积有 关,体积越大,常数越小。T 必须用热力学单位,否则公式不成立) (3)适用条件:气体的质量和体积不变.压强不太大(相当于大气压几倍)温度不太低(零下几十摄氏度。温度太低物态发生变化) (4)图象:如图1所示. 图1 ①p -T 图象中的等容线是一条过原点的倾斜直线. ②压强p 与摄氏温度t 是一次函数关系,不是简单的正比例关系,如图乙所示,等容线是一条延长线通过横轴上-273.15 ℃的倾斜直线,且斜率越大,体积越小.图象纵轴的截距p 0是气体在0 ℃时的压强. ③无论是p -T 图象还是p -t 图象,其斜率都能判断气体体积的大小,斜率越大,体积越小. ④特别提醒:一定质量的某种气体在体积不变的情况下,压强p 跟热力学温度T 成正比,而不是与摄氏温度成正比. 【例1】容积为2 L 的烧瓶,在压强为1.0×105 Pa 时,用塞子塞住,此时温度为27 ℃,当把它加热到127 ℃时,塞子被打开了,稍过一会儿,重新把盖子塞好,停止加热并使它逐渐降温到27 ℃,求: (1)塞子打开前的最大压强; (2)降温至27 ℃时剩余空气的压强.

《气体的等容变化和等压变化》教案培训资料

《气体的等容变化和等压变化》教案

第二节气体的等容变化和等压变化 授课时间:2016.5.27 授课班级:高二(12)班授课教师:杨晶【教学目标】 (一)知识与技能 1.知道什么是气体的等容变化过程;掌握查理定律的内容、数学表达式;理解p-T图象的物理意义;知道查理定律的适用条件。 2.知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T图象的物理意义。 (二)过程与方法 根据查理定律和盖-吕萨克定律的内容理解p-T图象和V-T图象的物理意义。(三)情感、态度与价值观 1.培养运用图象这种数学语言表达物理规律的能力。 2.领悟物理探索的基本思路,培养科学的价值观。 【教学重点】 1.查理定律的内容、数学表达式及适用条件。 2.盖-吕萨克定律的内容、数学表达式及适用条件。 【教学难点】 对p-T图象和V-T图象的物理意义的理解。 【教学过程】 (一)引入新课 打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么? (二)新课教学

1.气体的等容变化 一定质量的气体在体积不变时,压强随温度的变化叫做等容变化。在等容变化过程中,压强和温度有何定量关系呢? 法国科学家查理通过实验发现,当气体的体积一定时,各种气体的压强与温度之间都有线性关系。我们把它叫做查理定律。 (1)内容:一定质量的某种气体,在体积不变的情况下,压强P 与热力学温度T 成正比-----查理定律。 (2)公式:CT p 设一定质量的某种气体,由压强P 1、温度T 1的状态,保持体积不变的变化,变到压强P 2、温度T 2的另一种状态,则有 21P P =21T T 或者 11T P =2 2T P 。 (3)P-T 图像 P-T 图中的等容线是一条延长线通过原点的倾斜直线。 (4)适用条件: ①气体的质量一定 ②气体的体积不变 ③压强不太大,温度不太低 探究一:当气体发生等容变化时,它的压强与摄氏温度成正比吗?写出关系式,并画出等容过程的p -t 图象。 探究二:如图为一定质量的某种气体在不同体积下的两条等容线,试判断两条等容线所代表的体积的大小。

气体的等容变化和等压变化教案资料

气体的等容变化和等 压变化

收集于网络,如有侵权请联系管理员删除 气体的等容变化和等压变化 在物理学中,当需要研究三个物理量之间的关系时,往往采用“控制变量法”——保持一个量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系。 一、气体的等容变化: 1、等容变化:当体积(V )保持不变时, 压强(p )和温度(T )之间的关系。 2、查理定律:一定质量的气体,在体积不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的压强等于它0℃时压强的1/273. 或一定质量的某种气体,在体积保持不变的情况下, 压强p 与热力学温度T 成正比. 3、公式: 常量==1 122T p T p 4、查理定律的微观解释: 一定质量(m )的气体的总分子数(N )是一定的,体积(V )保持不变时,其单位体积内的分子数(n )也保持不变,当温度(T )升高时,其分子运动的平均速率(v )也增大,则气体压强(p )也增大;反之当温度(T )降低时,气体压强(p )也减小。这与查理定律的结论一致。 二、气体的等压变化: 1、等压变化:当压强(p ) 保持不变时,体积(V )和温度(T )之间的关系. 2、盖·吕萨克定律:一定质量的气体,在压强不变的情况下,温度每升高(或降低) 1℃,增加(或减少)的体积等于它0℃时体积的1/273.

收集于网络,如有侵权请联系管理员删除 (℃) 或一定质量的某种气体,在压强p 保持不变的情况下, 体积V 与热力学温度T 成正比. 3、公式: 常量==1 1 22T V T V 4、盖·吕萨克定律的微观解释: 一定质量(m )的理想气体的总分子数(N )是一定的,要保持压强(p )不变,当温度 (T )升高时,全体分子运动的平均速率v 会增加,那么单位体积内的分子数(n )一定要减小(否则压强不可能不变),因此气体体积(V )一定增大;反之当温度降低时,同理可推出气体体积一定减小 三、气态方程 一定质量的理想气体的压强、体积的乘积与热力学温度的比值是一个常数。 nR T V p T V p ==1 1 1222 n 为气体的摩尔数,R 为普适气体恒量 063.上海市南汇区2008年第二次模拟考试1A .由查理定律可知,一定质量的理想气体在体积不变时,它的压强随温度变化关系如图中实线表示。把这个 结论进行合理外推,便可得出图中t 0= ℃;如果温度能降低到t 0,那么气体的压强将减小到 P a 。 答:-273、0 025.上海黄浦区08年1月期终测评15.一定质量的理想气体在等容变化过程中测得,气体在0℃时的压强为P O , 10℃时的压强为P 10,则气体在21℃时的压强在下述各表达式中正确的是 ( A D ) A .27301011P P P + = B .273 100 11P P P +=

高中物理气体的等容变化和等压变化

高中物理气体的等容变化和等压变化 [要点导学] 1.应用气体定律解决有关气体状态变化的问题时,和波意耳定律的应用一样,首先要确定哪一部分气体作为研究对象,然后分析这部分气体状态变化的过程,确定变化过程的初、末状态参量,再根据气体状态变化选择适当的定律建立各参量间的关系,解得所要求的参量。2.查理定律和盖·吕萨克定律以及上节学习的玻意耳定律都是实验定律,在压强不太大、温度不太低的情况下由实验总结得到。对于压强很大、温度很低的情况,这三个实验定律不适用。在通常的计算中几个大气压下、零下几十摄氏度都可以算作压强不太大、温度不太低。3.气体的等压变化过程可以用如图所示的图象来描述。气体 从状态A变化到状态B过程中,体积v与摄氏温度t成线性 关系,体积v与热力学温度T成正比。v0为0℃时气体的体 积。 4.气体的等容变化过程可以用如图所示的图象来描述。气体 从状态A变化到状态B过程中,压强p与摄氏温度t成线性 关系,压强p与热力学温度T成正比。摄氏温度0℃相当于 热力学温度273.15K,计算时通常取273K,p0为0℃时气体的 压强。 5.查理定律的内容是:一定质量的某种气体在体积保持不变 的情况下,压强p与热力学温度T成正比,即p T =恒量。若 一定质量的气体在体积v保持不变的情况下,热力学温度由T1变化到T2,压强由p1变化到p2,则查理定律又可以表达为:____________。 6.盖·吕萨克定律的内容是:一定质量的某种气体在压强保持不变的情况下,体积v与热 力学温度T成正比,即v T =恒量。若一定质量的气体在体积p保持不变的情况下,热力学 温度由T1变化到T2,体积由v1变化到v2,则盖·吕萨克定律又可以表达为:____________。7.这堂课学习教材第二节的内容。主要要求如下:了解气体的等容变化和等压变化过程,理解气体p-T、v-T图象的物理意义,会用查理定律和盖·吕萨克定律解决相关问题。知道气体实验定律的适用范围。 [范例精析] 例1某个汽缸中有活塞封闭了一定质量的空气,它从状态A变化到状态B,其压 强p和温度T的关系如图所示,则它的体积() A.增大 B.减小 C.保持不变 D.无法判断 解析:由图可知,气体从A变化到B的过程中,AB连线过坐标原点,即压强p与热力学温度T成正比,所以是等容变化,体积一定保持不变。 本题正确选项是:C。 拓展:物理学中可以用图象来分析研究物理过程中物理量的 变化关系,也可以用图象来描述物理量的变化关系,也就是说图象 可以作为一种表达方式,本题中的图象给了我们信息,要学会从图 中寻找已知条件.若p-T图象如图所示,则表明气体做等压变化,

8.2气体的等容变化和等压变化(物理教案)

§8.2 气体的等容变化和等压变化 【教学目标】 1.物理知识要求: (1)知道什么是气体的等容变化过程; (2)掌握查理定律的内容、数学表达式;理解p-t图象的物理意义; (3)知道查理定律的适用条件; (4)会用分子动理论解释查理定律。 2.通过演示实验,培养学生的观察能力、分析能力和实验研究能力。 3.培养学生运用数学方法解决物理问题的能力——由图象总结出查理 定律。 【重点、难点分析】 1.查理定律的内容、数学表达式、图象及适用条件是重点。 .气体压强和摄氏温度不成正比,压强增量和摄氏温度成正比;气体 原来的压强、气体在零摄氏度的压强,这些内容易混淆。 【教具】 .引入新课的演示实验 带有橡皮塞的滴液瓶、加热装置。 .演示一定质量的气体保持体积不变时,压强与温度的关系 查理定律演示器、水银气压计、搅棒、食盐和适量碎冰、温度计、保温套、容器。 【教学课时】2课时 【教学过程】 (一)引入新课 我们先来看一个演示实验: 滴液瓶中装有干燥的空气,用涂有少量润滑油的橡皮塞盖住瓶口,把瓶子放入热水中,会看到塞子飞出;把瓶子放在冰水混合物中,拔掉塞子时会比平时费力。 这个实验告诉我们:一定质量的气体,保持体积不变,当温度升高时,气体的压强增大;当温度降低时,气体的压强减小。 请学生举一些生活中的实例。 下面我们进一步研究一定质量的气体保持体积不变,气体的压强随温度变化的规律。 (二)教学过程设计 一、气体的等容变化 .气体的等容变化 气体在体积不变的情况下,压强随温度的变化,叫做等容变化。 2.查理定律 查理在分析了实验事实后发现,当气体的体积一定时,各种气体的压 强与温度之间都有线性关系,我们把它叫查理定律。 3.气体等容变化的图像

《气体的等容变化和等压变化》教案

第二节气体的等容变化和等压变化 授课时间:2016.5.27授课班级:高二(12)班授课教师:杨晶【教学目标】 (一)知识与技能 1.知道什么是气体的等容变化过程;掌握查理定律的内容、数学表达式;理解p-T图象的物理意义;知道查理定律的适用条件。 2.知道什么是气体的等压变化过程;掌握盖-吕萨克定律的内容、数学表达式;理解V-T图象的物理意义。 (二)过程与方法 根据查理定律和盖-吕萨克定律的内容理解p-T图象和V-T图象的物理意义。(三)情感、态度与价值观 1.培养运用图象这种数学语言表达物理规律的能力。 2.领悟物理探索的基本思路,培养科学的价值观。 【教学重点】 1.查理定律的内容、数学表达式及适用条件。 2.盖-吕萨克定律的内容、数学表达式及适用条件。 【教学难点】 对p-T图象和V-T图象的物理意义的理解。 【教学过程】 (一)引入新课 打足气的自行车在烈日下曝晒,常常会爆胎,原因是什么? (二)新课教学 1.气体的等容变化 一定质量的气体在体积不变时,压强随温度的变化叫做等容变化。在等容变化过程中,压强和温度有何定量关系呢? 法国科学家查理通过实验发现,当气体的体积一定时,各种气体的压强与温度之间都有线性关系。我们把它叫做查理定律。

(1)内容:一定质量的某种气体,在体积不变的情况下,压强P 与热力学温度T 成正比-----查理定律。 (2)公式:CT p = 设一定质量的某种气体,由压强P 1、温度T 1的状态,保持体积不变的变化,变到压强P 2、温度T 2的另一种状态,则有 21P P =21T T 或者 11T P =2 2T P 。 (3)P-T 图像 P-T 图中的等容线是一条延长线通过原点的倾斜直线。 (4)适用条件: ①气体的质量一定 ②气体的体积不变 ③压强不太大,温度不太低 探究一:当气体发生等容变化时,它的压强与摄氏温度成正比吗?写出关系式,并画出等容过程的p -t 图象。 探究二:如图为一定质量的某种气体在不同体积下的两条等容线,试判断两条等容线所代表的体积的大小。 规律:斜率C T p k == (恒量)与气体体积有关.体积越大,斜率越小。 2.气体的等压变化 一定质量的气体在压强不变时,体积随温度的变化叫做等压变化。在等压变化过程中,体积和温度有何定量关系呢? 法国科学家盖-吕萨克通过实验发现,当气体的压强一定时,各种气体的体积与温度之间都有线性关系。我们把它叫做盖-吕萨克定律。 (1)内容:一定质量的气体,在压强保持不变时,体积和热力学温度成正比

气体的等容变化和等压变化_教学设计

第二节气体的等容变化和等压变化教学设计 一、教学目标 1.物理知识要求: (1)知道什么是气体的等容变化过程; (2)掌握查理定律的内容、数学表达式;理解p-t图象的物理意义; (3)知道查理定律的适用条件; (4)会用分子动理论解释查理定律。 2.过程与方法:通过演示实验,培养学生的观察能力、分析能力和实验研究能力。 3.情感、态度与价值观:培养学生运用数学方法解决物理问题的能力——由图象总结出查理定律。 二、重点、难点分析 1.查理定律的内容、数学表达式、图象及适用条件是重点。 2.气体压强和摄氏温度不成正比,压强增量和摄氏温度成正比;气体原来的压强、气体在零摄氏度的压强,这些内容易混淆。 三、教具 1.引入新课的演示实验 带有橡皮塞的滴液瓶、加热装置。 2.演示一定质量的气体保持体积不变时,压强与温度的关系 查理定律演示器、水银气压计、搅棒、食盐和适量碎冰、温度计、保温套、容器。 四、主要教学过程 (一)引入新课 我们先来看一个演示实验: 滴液瓶中装有干燥的空气,用涂有少量润滑油的橡皮塞盖住瓶口,把瓶子放入热水中,会看到塞子飞出;把瓶子放在冰水混合物中,拔掉塞子时会比平时费力。 这个实验告诉我们:一定质量的气体,保持体积不变,当温度升高时,气体的压强增大;当温度降低时,气体的压强减小。 请学生举一些生活中的实例。 下面我们进一步研究一定质量的气体保持体积不变,气体的压强随温度变化的规律。

(二)教学过程设计 1.气体的等容变化 结合演示实验的分析,引导学生得出: 气体在体积不变的情况下所发生的状态变化叫做等体积变化,也叫做等容变化。 2.一定质量的气体在等容变化过程中,压强随温度变化的实验研究 (1)实验装置——查理定律演示器 请学生观察实物。 请学生结合实物演示,弄明白如下问题: ①研究对象在哪儿? ②当A管向上运动时,B管中的水银面怎样变化? ③当A管向下运动时,B管中的水银面怎样变化? ④怎样保证瓶中气体的体积不变? ⑤瓶中气体的压强怎样表示?(当B管中水银面比A管中水银面低时;当B管中水银面比A管中水银面高时) (2)用气压计测量大气压强p0= mmHg (注意水银气压计的读数方法。) 请两位学生读出当时的大气压强值。 (3)实验条件:一定质量的气体、一定的气体体积 请学生讨论:怎样保证实验条件? ①烧瓶用胶塞塞好,与水银压强计B管连接处密封好。 ②使水银压强计的A管水银面与B管水银面一样高,并将B管水银面的位置记下来。(室温) (4)实验过程 ①将烧瓶置于食盐加碎冰溶化的混合物中,烧瓶要完全没入。(请学生估测发生的现象) 现象:烧瓶中气体体积减小,B管中水银面上升,A管中水银面下降。气体压强减小。 措施:请学生讨论此时怎样移动A管才能使B管中水银面恢复到初始的标记位置。 记下此时A、B管中水银面的高度差。 ②将烧瓶完全置于冰水混合物中。(请学生估测发生的现象) 现象:烧瓶中气体体积仍小于室温时的标记体积,B管中水银面仍高于A管中水银面,但A、B两管中水银面高度差减少。

相关文档
最新文档