太阳能板蓄电池容量的计算

太阳能板蓄电池容量的计算
太阳能板蓄电池容量的计算

太阳能电板、蓄电池的容量计算方法

蓄电池组

采用上述电池浮充供电方式时,蓄电池的性能是关键。在各种蓄电池中,性能最优者属碱性蓄电池,它的低温特性和过量充电性能较好,自动放电小,但价格较高,容量不大,一般的非密封酸性蓄电池电解液容易挥发,不宜在水情自动测报系统中使用。免维护密封酸

性蓄电池具有良好的性能价格比,故目前使用较多。

根据我们长期从事水情遥测系统设计的经验,通过经费核算及考虑防雷要求,遥测站使用太阳能电池和蓄电池组合的浮充供电系统。铅酸全密封酸性蓄电池具有良好的低温特性

和充电特性,而且免维护,因而遥测设备用它供电是理想的,为保证最长连续无日照期间也

能供电,必须选择蓄电池的容量。在广东地区一般定为满足30天的需要。

在本系统中采用胶状电解质全密封免维护铅酸蓄电池作为系统的直流电源。可选的品牌很多,如进口产品汤浅、大力神等。

超短波测站太阳能浮充供电的蓄电池容量的计算

工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒

月发送时间:以月发送1200次计算,合计发送20分,则可计算出日耗电量Q L日发送时间耗电量静态电流24小时=0.1Ah

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量最大的连续无日照时间/容量修正系数

=0.1Ah 30 0.8

\

=3.75Ah

考虑到蓄电池要能提供6A的电流,应采用容量大于10Ah的蓄电池。

因此,本系统雨量遥测站(25W电台)需采用12Ah的蓄电池。

超短波水位雨量测站太阳能浮充供电的蓄电池容量的计算

工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒/

24 小时发送时间:以发送300次计算,合计发送5分钟时间,则可计算出日耗电量

Q L日发送时间>耗电量+静态电流>24小时=0.61Ah /

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时

间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量X最大的连续无日照时间/容量修正系数

=0.61Ah 30 七.8

=23Ah

因此,本系统遥测站(25W电台)需用24Ah的蓄电池。

超短波双水位测站太阳能浮充供电的蓄电池容量的计算

工作电压:12.5V

静态电流:2mA

发射电流:6A(25W电台),发射时间t=1秒\

24 小时发送时间:以发送600次计算,合计发送10分钟时间,则可计算出日耗电量

Q L日发送时间>耗电量+静态电流>24小时=1.048Ah

最大的连续无日照时间:在广东地区为能确保负载正常运转,常假定最大连续无日照时

间为30天。

容量修正系数:考虑蓄电池容量周期性的降落和它的老化,通常选为0.8。

因此蓄电池容量

C =日耗电量X最大的连续无日照时间/容量修正系数

=1.048Ah 30^0.8

=39.3Ah

因此,本系统遥测站(25W电台)需用38Ah的蓄电池。

太阳能电池板

硅太阳能电池是将光能直接转换成电能的半导体器件。具有体积小、可靠性高、寿命

长、无环境污染、使用维护方便等特点。它可以单独使用,也可以多个连接起来组成在方阵使用,与蓄电池配合可作为直流电源供昼夜、阴雨天连续使用。水文遥测系统中使用极为广

泛。

硅太阳能电池按制造工艺的不同主要分为单晶硅和非晶硅太阳能电池

非晶硅太阳能电池组合板是应用克罗拉标准工艺在玻璃基板上沉积制成的非晶薄膜器件。其外部采用玻璃密封保护。由于其生产技术和工艺特点,成本较低。深圳宇康太阳能有

限公司生产的非晶硅太阳能电池虽然价格低,但结构不牢固,无安装支架,使用很不方便。

而且使用寿命短也比单晶硅太阳能电池短。

单晶硅太阳能电池是利用P-N结的光生伏特效应将太阳能直接转换成电能的一种半导

体器件。根据工作电压和工作电流的需要可将单晶硅太阳能电池串联或并联成组合板并加以封装。这种太阳能电池结构牢固,其使用寿命长达二十年以上。是一种理想的永久性可再生

能源,非常适合在水文遥测系统中使用。

目前,在遥测系统中使用最广泛的是宁波太阳能电源厂生产的日地牌单晶硅太阳能电池,其主要技术指标:

使用温度:-45 90 C

光谱响应范围与峰值波长:0.40 1.10 m 0.80 0.95 m

伏安特性:见图3.6

V OC

图3.6硅太阳能电池伏安特性曲线

对单晶硅太阳能电池而言,常用的充12V电池的太阳能电池的最大功率 (P m)点的电压V OC为16.8V,因此1W的太阳能电池的I sc为60mA由于12V蓄电池的工作电压12.5V,太阳能电池充电电流一般为70mA左右。

/ 太阳能供电系统主要由硅太阳能电池方阵、充电控制器、蓄电池组以及防反充二极管

组成,如图3.7所示:

图3.7太阳能充电系统方框图

按照使用要求,将太阳能电池组件串联或并联组成太阳能电池方阵。蓄电池是太阳能电池方阵的储能装置。充电控制器通常由电子线路和电子开关组成。其作用如下:

1. 当蓄电池过充电或过放电时,可以报警或自动切断线路,保护蓄电池

2. 按需要给出高精度的恒电压或恒电流

3. 当负载短路时,可以自动断开

4. 当蓄电池有故障时可以自动切换,接通备用蓄电池,以保证负载正常用电

5. 防反冲二极管的作用是避免太阳能电池方阵欠压时,蓄电池通过太阳能电池放电。要求

能承受足够大的电流,且正向压降小,反向饱和电流也小。

新一代的遥测数传仪已经具备了以上大部分的功能,对于采用这种数传仪的遥测站,可以不再选用充电控制器。

遥测站太阳能电源系统的设计,由于无人值守,且要求连续不间断供电,需要考虑因素

多而且复杂。

首先计算负载的日用电量\ Q L( Ah) /

Q L=负载电压(值守电流>24+发射电流发射次数X每次发射时间) 然后计算太阳能电池容量。

太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标

准辐照度下当地的年平均日照时数H (h)

H_ 年辐射总量 (kcal/cm2)>.63 (Wh/kcal) __________________

365X5.1 (W/cm2)

式中0.1W/cm2是25C,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。

各类地区的年辐射总量见表 3.1

表3.1我国各类地区太阳能年辐射量

为了接收较强的太阳辐射,各类地区的太阳能电池的安装角度有所不同。一般情况下,安装角度等于当地的纬度。

在标准状态下,每瓦的太阳能电池输出电流为70mA则太阳能电池的功率P由下式决疋:

日用电量(Ah)x工作电压(V X太阳能电池修正系数

P= —

0.07 (A/W X H( h)X 12.5 (V X蓄电池放电深度

太阳能电池修正系数是考虑灰尘、气候、蓄电池特性等方面的影响,一般取1.2 ,蓄电池放电深度为80%

超短波测站(水位雨量站)太阳能电池的功率

对广东地区可以计算出

H = 4.46h。

Q L= 0.61Ah

因此,采用25W电台的水位雨量站所需的太阳能电池的功率为

P= 2.9W。

由于太阳能电池具有负电功率温度系数,对高温地区的使用量还应增加一些,一般可采用5W的太阳能电池板。

\ /

超短波测站(双水位站)太阳能电池的功率

对广东地区可以计算出

H = 4.46h o

Q L= 1.048Ah

因此,采用25W电台的水位雨量站所需的太阳能电池的功率为

P= 5.1W o

由于太阳能电池具有负电功率温度系数,对高温地区的使用量还应增加一些,一般可采用10W的太阳能电池板。

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“mAh”,中文名称是毫安时(在衡量大容量电池如铅蓄电池时,为了方便起见,一般用“Ah”来表示,中文名是安时,1Ah=1000mAh)。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h);如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别)。这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA(俗称5号)和AAA(俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery)、镍氢可充电电池(Ni-Mh Battery)、锂离子电池(Li-lon Battery)三种。 镍镉可充电电池 镍镉可充电电池采用1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的“记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的“记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、更加环保,同时镍氢电池基本消除了“记忆效应”。它的充电效率高,能在2小时内充足90%电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500~2600mAH时,主流AAA镍氢电池容量达650~800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池 我们俗称的锂电池一般将多颗电芯串连起来,电压范围在3.0~4.0V之间(公称电压3.6V)。以前还有一种金属锂电池,但锂离子电池比金属锂电子更安全,原因就在于是采用锂离子状态,锂离子电池没有可流动的液态电解质,而是改为聚合物电解质导电。锂离子电池与相同

太阳能电池方阵及蓄电池容量计算的一般方法

太阳能电池供电系统设计步骤 ⑴列出基本数据 ①确定所有负载功率及连续工作时间 ②确定地理位置:经、纬度及海拔高度 ③确定安装地点的气象资料: ★年(或月)太阳辐射总量或年(或月)平均日照时数 ★年平均气温和极端气温 ★最长连续阴雨天数 ★最大风速及冰雹等特殊气候资料 ⑵确定负载功耗:Q=ΣI2H 其中:I-负载电流,H-负载工作时间(小时) ⑶确定蓄电池容量:C = Q X d X 1.3 式中:d-连续阴雨天数 C-蓄电池标称容量(10小时放电率) C = (10~20)3Cr /(1-d) ⑷确定方阵倾角:推荐方阵的倾角与纬度的关系 ⑸计算方阵β倾角下的辐射量: Sβ= S3sin(α+β)/sinα 式中:Sβ—β倾角方阵太阳直接辐射分量 α—中午时太阳高度角 S 其它:α=90°-Φ±δ 式中:Φ—纬度 δ—太阳赤纬度(北半球取+号)地面即:α=90°-Φ+δ δ=23.45°sin[(284+n)3360/365] 式中:n—从一年开头算起第n天的纬度 那么 Rβ=S3sin(α+β)/sinα+D 式中 Rβ—β角方阵面上的太阳总辐射量 D—散射辐射量(查阅气象资料) ⑹计算方阵电流: Tm = (Rβ3mwH/cm2)/(100mw/cm2) 式中:Tm—为平均峰值日照时数 Imin = Q/(Tm3η13η2) 式中:Imin—方阵最小输出电流η1—蓄电池充电效率 η2—方阵表面灰尘遮散损失 Imax = Q/(Tmin3η13η2) ⑺确定方阵电压: V = Vf+Vd 式中:Vf—蓄电池浮充电压(25‵)Vd—线路电压损耗 ⑻确定方阵功率: F=Im3V/(1-α(Tmax-25)) 式中:α—一般取α=0.5% Tmax—太阳电池最高工作温度 ⑼根据蓄电池容量、充电电压、环境极限温度、太阳电池方阵电压及功率要求,选取适

薄膜太阳能电池的优缺点

薄膜型太阳能电池的优缺点 3.4 薄膜型太阳能电池 薄膜型太阳能电池由于使用材料较少,就每一模块的成本而言比起堆积型太阳能电池有着明显的减少,制造程序上所需的能量也较堆积型太阳能电池来的小,它同时也拥有整合型式的连接模块,如此一来便可省下了独立模块所需在固定和内部连接的成本。未来薄膜型太阳能电池将可能会取代现今一般常用硅太阳能电池,而成为市场主流。 非晶硅太阳能电池与单晶硅太阳能电池或多晶硅太阳能电池的最主要差异是材料的不同,单晶硅太阳能电池或多晶硅太阳能电池的材料都疏,而非晶硅太阳能电池的材料则是SiH4,因为材料的不同而使非晶硅太阳能电池的构造与晶硅太阳能电池稍有不同。 SiH4 最大的优点为吸光效果及光导效果都很好,但其电气特性类似绝缘体,与硅的半导体特性相差甚远,因此最初认为SiH4 是不适合的材料。但在1970年代科学家克服了这个问题,不久后美国的RCA制造出第一个非晶硅太阳能电池。虽然SiH4 吸光效果及光导效果都很好,但由于其结晶构造比多晶硅太阳能电池差,所以悬浮键的问题比多晶硅太阳能电池还严重,自由电子与电洞复合的速率非常快;此外SiH4 的结晶构造不规则会阻碍电子与电洞的移动使得扩散范围变短。基于以上两个因素,因此当光照射在SiH4上产生电子电洞对后,必须尽快将电子与电洞分离,才能有效产生光电效应。所以非晶硅太阳能电池大多做得很薄,以减少自由电子与电洞复合。由于SiH4的吸光效果很好,虽然非晶硅太阳能电池做得很薄,仍然可以吸收大部分的光。 非晶硅薄膜型太阳能电池的结构不同于一般硅太阳能电池,如图9 所示,其主要可分为三层,上层为非常薄(约为0.008微米)且具有高掺杂浓度的P+;中间一层则是较厚(0.5~1 微米)的纯质层(Intrinsic layer),但纯质层一般而言通常都不会是完全的纯质(Intrinsic),而是掺杂浓度较低的n 型材料;最下面一层则是较薄(0.02 微米)的n。而这种p+-i-n的结构较传统p-n结构有较大的电场,使得纯质层中生成电子电洞对后能迅速被电场分离。而在P+上一层薄的氧化物膜为透明导电膜(Transparent Conducting Oxide :TCO),它可防止太阳光反射,以有效吸收太阳光,通常是使用二氧化硅(SnO2)。非晶硅太阳能电池最大的优点为成本低,而缺点则是效率低及光电转换效率随使用时间衰退的问题。因此非晶硅太阳能电池在小电力市场上被广泛使用,但在发电市场上则较不具竞争力。 图9 非晶硅薄膜型太阳能电池的结构图

电池容量测试方法

容量是指电池存储电量的大小。电池容量的单位是“ mA”中文名称是毫安时(在衡量大容 量电池如铅蓄电池时,为了方便起见,一般用“Ah”表示,中文名是安时,1Ah=1000mAh )。若电池的额定容量是1300mAh,如果以0.1C(C为电池容量)即130mA的电流给电池放电,那么该电池可以持续工作10小时(1300mAh/130mA=10h );如果放电电流为1300mA,那供电时间就只有1小时左右(实际工作时间因电池的实际容量的个别差异而有一些差别) 。 这是理想状态下的分析,数码设备实际工作时的电流不可能始终恒定在某一数值(以数码相机为例,工作电流会因为LCD显示屏、闪光灯等部件的开启或关闭而发生较大的变化),因而电池能对某个设备的供电时间只能是个大约值,而这个值也只有通过实际操作经验来估 计。 附:充电电池的分类 首先容我向大家介绍与充电电池种类以及相关术语。目前数码产品中使用最多的就是AA (俗称5号)和AAA (俗称7号)标准电池,还有一部份使用专用电池。不管它们的外形如何,从它里面的电芯可以分为镍镉可充电电池(Ni-Cd Battery )、镍氢可充电电池(Ni-Mh Battery )、锂离子电池(Li-lon Battery )三种。 镍镉可充电电池 镍镉可充电电池采用 1.6倍电压充电,通常充电次数为300~800次。在充放电达500次后 电容量会下降,只能达到约80%。镍镉电池的缺点是在充放电时,阴极会长出镉的针状结 晶,有时会穿透分隔物而引起内部枝状晶体式的短路。 这里我顺带提一提大名鼎鼎的记忆效应”,相信不少朋友都知道这个词,但它倒底是怎么一 回事儿呢?针对镍镉电池而言,由于传统工艺中电池负极为烧结式,镉晶粒较粗,如果镍镉 电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点。尽管电池本身的容量可 以使电池放电到更低的平台上,但在以后的放电过程中电池将只记得这一低容量。也就是说电池容量变小了,这就是所谓的记忆效应”。 镍氢可充电电池 镍氢可充电电池主要是为了取代镍镉电池而设计的。镍氢电池是使用氧化镍作为阳极,以及吸收了氢的金属合金作为阴极,氢氧化钾碱性水溶液为电解液。镍氢电池的能量密度比镍镉 电池大,相同体积的镍氢电池容量可以达到镍镉电池的2倍左右。同时它不含有害金属、 更加环保,同时镍氢电池基本消除了记忆效应”。它的充电效率高,能在2小时内充足90% 电量。但是不耐过充和过度放电,因此这种电池的充电器必须可自动断电,否则易造成电池 损坏。 基于以上优点,镍氢电池几乎已经完全取代了镍镉电池。目前销售数码相机、MP3的电脑 市场上出售的标准AA、AAA电池绝大多数是镍氢电池,主流AA镍氢电池容量达到了1500?2600mAH 时,主流AAA镍氢电池容量达650?800mAH。而容量仅几百mAH的镍镉电池仅在一些百货商场可以见到,但与镍氢电池相同明显没有性价比,不建议贪图价格上的便宜 而选用镍镉电池。关于容量方面的选择,目前DC、MP3等产品的液晶屏越来越大,应该尽量选择大容量的产品。 锂离子电池

蓄电池容量计算方法

蓄电池容量计算部分 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中Cc—事故放电容量; Kcc—蓄电池容量系数; Krel—可靠系数,一般取1.40 对于阶梯型负荷,可采用分段计算法计算。以东直门车站为例,各阶段负荷分布如下图所示: 图中: I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 80 .1 108 220 885 .0 = ? = Ud cc s rel c K C K C=

在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 mi i mi t I C =n a a i mi sa C C ...2,11 |==∑=n a Kcca KrelCsa Cca ...2,1|== Cca n a Cc max 1 =≥10 tC KrelCs K =

!!!太阳能电池制程工艺-培训资料

员 工 培 训 资 料 2008年09月04日初订 目录 第一章太阳能概况 (2) 第二章太阳能电池的发明和未来前景 (3) 1.太阳能电池发明 (3)

2.太阳能电池前景 (4) 第三章太阳能光伏技术 (5) 1.光伏效应 (5) 2.光伏电池分类 (5) 3.晶体硅生产一般工艺流程 (5) 第四章硅太阳能电池的工作原理及其结构 (12) 第五章太阳能电池基本参数 (16) 1.标准测试条件 (16) 2.太阳电池等效电路 (16) 3.伏安(I-V)特性曲线 (17) 4.开路电压 (18) 5.短路电流 (18) 6.最大功率点 (18) 7.最佳工作电压 (18) 8.最佳工作电流 (18) 9.转换效率 (18) 10.填充因子(曲线因子) (19) 12.电压温度系数 (19) 第一章太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射

能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 第二章太阳能电池的发明和未来前景 1.太阳能电池发明 1839年法国物理学家A·E·贝克勒尔意外的发现,两片金属进入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下光电

汽车蓄电池容量的检测方法详解

汽车蓄电池容量的检测方法详解 汽车蓄电池是汽车启动时的唯一电源,在汽车发电机不工作时,它可以在一段时间内向汽车的用电设备供电(1~2h);在发电机正常发电时,它将发电机供给用电器后多余的电能转化成化学能储存起来,供下次启动或其它用电。 蓄电池的工作能力随其规格型号不同而不同,也随其生产的年代、厂家牌号有较大区别。同一个蓄电池,由于不同的使用维护水平,其剩余的工作力也不同。加上蓄电池自身的自行放电,极板硫化等不可避免的因素作用,也会使蓄电池的工作能力逐渐削弱以至报废。因此,在必要时对蓄电池的工作能力进行检测就成为汽车维护与保养的重要工作之一。 一、蓄电池的容量指标及其测定 蓄电池的工作能力用“容量”来衡量,它是在规定的端电压范围内,蓄电池对负载供给一定电流所能持续的时间(t),即衡量蓄电池电能做功的能力A=UIt(瓦秒)。在实际运用中,蓄电池的容量指标Q常用安培小时(Ah)来表示: Q=I·t(A·h) I—放电电流(A);t—放电时间(h) 由于电流单位安培(A)=库伦/秒,所以容量的单位安培小时(Ah)=库伦/秒×3600秒=3600库伦(3.6kC)。 库伦是电荷量单位,1库伦=6.24×1018(624亿亿)个电子所带的电量,所以容量与电池的物质量(正负极板数、总面积、电解液密度)有关。对于标准正、负极板组而言,每片正极板的额定容量为15Ah,每个单格电池中负极板数总是比正极板多1片,因此可以算出一定容量的单格电池中正负极板的准确片数,如3-QA-60Ah蓄电池,其额定容量为60Ah,正极板数=60(Ah)/15(Ah)=4;负极板数=4+1=5。如果蓄电池的额定容量不是15Ah 的整数倍数,则极板的尺寸、厚度及材料就会有所区别。 蓄电池的常用容量指标有“额定容量”、“储备容量”和“启动容量”三种。 1. 额定容量 根据GB5008-91规定,额定容量是:将充足电的新蓄电池在电解液温度为25±5℃条件下以20h率的放电电流(即0.05Q20)连续放电至单格电池平均电压降到1.75V时输出的电量。

太阳能电池工艺简介及厂房建设总结1

太阳能电池片工艺简介及厂房建设总结 本文章主要侧重于太阳能电池的生产工艺及厂房及建设探讨,欢迎批评指正。 一、工艺简介及设备环境要求 太阳能电池片生产工艺分为:制绒清洗(扩散前清洗)→扩散→扩散后清洗→刻蚀→PECVD→丝网印刷→烧结→分类检测→封装,以下就各工艺进行详细分析及说明。 扩散前清洗的目的在于制绒,就是把相对光滑的原材料硅片的表面通过强酸和强碱腐蚀,使其凸凹不平,变得粗糙,形成漫反射,减少直射到硅片表面的太阳能的损失。 相关设备有无锡瑞宝,德国RENA,深圳捷佳创。 所使用的介质有HF,HCL,HNO3,NaOH,Na2SiO3和乙醇等。 动力源有自来水,纯水,压缩空气,氮气,工艺冷却水,废水,热排风和酸排风。 制绒的流程:单晶硅绒面的制备是利用硅的各向异性腐蚀,在每平方厘米硅表面形成几百万个四面方锥体也即金字塔结构。由于入射光在表面的多次反射和折射,增加了光的吸收,提高了电池的短路电流和转换效率。硅的各向异性腐蚀液通常用热的碱性溶液,可用的碱有氢氧化钠、氢氧化钾、氢氧化锂和乙二胺等。大多使用廉价的浓度约为1%的氢氧化钠稀溶液来制备绒面硅,腐蚀温度为70-85℃。为了获得均匀的绒面,还应在溶液中酌量添加醇类如乙醇和异丙醇等作为络合剂,以加快硅的腐蚀。制备绒面前,硅片须先进行初步表面腐蚀,用碱性或酸性腐蚀液蚀去约20~25μm,在腐蚀绒面后,进行一般的化学清洗。经过表面准备的硅片都不宜在水中久存,以防沾污,应尽快扩散制结 腐蚀制绒区环境要求:温度要求:23±2℃湿度要求:55±10%;十万级可满足车间要求。 不同设备厂家高度也不同RENA制绒设备的规格为7584*4540*3065,因此一般设计3.5~4米吊顶。 地坪采用>2mm环氧树脂即可,无防静电要求。 腐蚀制绒区排气(18个排气口) 排风量(PP or PVC):普通漂洗排风3000m3/h+酸排4290m3/h+碱排450m3/h /台 有酸/碱废液,排放酸性约19m3/h,碱性液体约8m3/h 压缩空气6Bar,224NM3/h/台管道采用不锈管 纯水:电子级1级,3.6m3/h/台管道采用CL-PVC 自来水流量2.4m3/h,,平均0.06m3/h/台管道采用PPR 冷却循环水:供水压力5Bar,进水温度18℃,接口流量2.4m3/h/台管道不锈管。 RENA清洗机功率:19.5KW 捷佳创功率:90KW

有关太阳能电池板的数据计算(1)

一,太阳能光电产品计算 下面以1kW输出功率,每天使用6个小时为例,介绍一下计算数据: 1.首先应计算出每天消耗的瓦时数(包括逆变器的损耗): 通常逆变器的转换效率为90%(国内企业研制的大功率光伏逆变器最高转换率 已达98.8%),则当输出功率为P 1=1kW时,则实际需要输出功率应为P 2 =1kW/90% =1.11kW;若按每天使用6小时,则耗电量为W 1 =1.11kW*6小时=6.66kWh。 2.蓄电池的选择: 按照蓄电池一次充满后连续放电(非浮充状态下)可供负载一天(6小时)使用 蓄电池采用规格: 2400WH/12V。 蓄电池容量:2400WH/12V=200AH,蓄电池每日放电量 6.66kw/12v=555Ah,即每天(6小时使用时间)的用电量为12V555Ah。蓄电池的最大放电深度最好保持在70%以内, 所以输入应为:W 2 =W 1 /0.7=6.66kwh/0.7=9.51kWh。 总共容量的计算:555Ah/0.7=792.85Ah≈800Ah,实际没有800AH的容量,可以用200AH四组就可以了. 3.太阳能电池容量的计算与当地的地理位置、太阳辐射、气侯等因素有关。首先计算标准辐照度下当地的年平均日照时数H(h) H=年辐射总量(kcal/cm2)×1.63(Wh/kcal) 365×0.1(W/cm2) 式中0.1W/cm2是25℃,AM1.5光谱时的辐照度,也是太阳能电池的标准测试条件。 表1 我国各类地区太阳能年辐射量 将年总辐射量代入公式,可得到各地区标准辐照度下当地的年平均日照时数H (h),结果如表1 按每日有效日照时间为H小时计算,再考虑到充电效率和充电过程中的损耗,充电过程中,太阳能电池板的实际使用功率为70%。 太阳能电池板的输出功率应为P 3 =9.51kWh/H/70%=13.585/H(W)。 太阳能峰值功率WP是在标准条件下:辐射强度1000W/m2,大气质量AM15,电池温度25℃条件下,太阳能电池的输出功率。太阳能电池的额定输出功率与转换效率有关,一般来讲,单位面积的电池组件,转换效率越高,其输出功率越大。太阳能电池目前的转换效率一般在14-17%之间,每平方米的太阳能电池组件输出功率约140-170WP. 面积功率*面积=功率 我们按照面积电池(m2)光电转换效率为15%计算,假设此时太阳光的总功率为 1000W/m2组件的功率为P 3 =13.585/H(kW)

光伏发电优缺点分析说明

光伏发电优缺点分析说明 太阳能光伏发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪声、无污染;太阳能资源分布广泛且取之不尽、用之不竭。因此,与风力发电和生物质能发电等新型发电技术相比,光伏发电是一种最具可持续发展理想特征(最丰富的资源和最洁净的发电过程)的可再生能源发电技术,其主要优点有以下几点。 1.太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。 2.太阳能资源随处可得,可就近供电,不必长距离输送,避免了长距离输电线路所造成的电能损失。 3.光伏发电的能量转换过程简单,是直接从光子到电子的转换,没有中间过程(如热能转换为机械能、机械能辖换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。 4.光伏发电本身不使用燃料,不排放包括温室气体和其他废气在内的任何物质,不污染空气,不产生噪声,对环境友好,不会遭受能源危机或燃料市场不稳定而造成的冲击,是真正绿色环保的新型可再生能源。 5.光伏发电过程不需要冷却水,可以安装在没有水的荒漠戈壁上。光伏发电还可以很方便地与建筑物结合,构成光伏建筑一体化发电系统,不需要单独占地,可节省宝贵的土地资源。 6.光伏发电无机械传动部件,操作、维护简单,运行稳定可靠。一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,基本上可实现无人值守,维护成本低。 7.光伏发电系统工作性能稳定可靠,使用寿命长(30年以上)。晶体硅太阳能电池寿命可长达20~35年。在光伏发电系统中,只要设计合理、选型适当,蓄电池的寿命也可长达10~15年。 8.太阳能电池组件结构简单,体积小、重量轻,便于运输和安装。光伏发电系统建设周期短,而且根据用电负荷容量可大可小,方便灵活,极易组合、扩容。 二、光伏发电缺点分析

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

光伏电站蓄电池容量的计算方法

光伏电站蓄电池容量的计算方法 在确定蓄电池容量时,并不是容量越大越好,一般以20%为限。因为在日照不足时,蓄电池组可能维持在部分充电状态,这种欠充电状态导致电池硫酸化增加,容量降低,寿命缩短。不合理地加大蓄电池容量,加大蓄电池容量,将增加光伏系统的成本。 在独立光伏发电系统中,对蓄电池的要求主要与当地气候和使用方式有关,因此各有不同。例如,标称容量有5h 率、24h 率、72h 率、100h 率、240h 率以及720h 率。每天的放电深度也不相同,南美的秘鲁用于“阳光计划”的蓄电池要求每天40%~50%的中等深度放电,而我国“光明工程”项目有的户用系统使用的电池只进行20%~30%左右的放电深度,日本用于航标灯的蓄电池则为小电流长时间放电。蓄电池又可分为浅循环和深循环两种类型。因此选择太阳能用蓄电池应既要经济又要可靠,不仅要防止在长期阴雨天气时导致电池的储存容量不够,达不到使用目的;又要防止电池容量选择过小,不利于正常供电,并影响其循环使用寿命,从而也限制了光伏发电系统的使用寿命;又要避免容量过大,增加成本,造成浪费。确定蓄电池容量的公式为: a K U L P F D C ????=0 C -蓄电池容量,kW ·h (Ah );D -最长无日期间用电时数,h ;F —蓄电池放电效率的修正系数,(通常取1.05);PO -平均负荷容量,kW ;L为蓄电池的维修保养率,(通常取0.8);U 为蓄电池的放电深度(通常取0.5);Kα为包括逆变器等交流回路的损耗率(通常取0.7~0.8)。上式可简化为: C =3.75× D ×P0 这是根据平均负荷容量和最长连续无日照时的用电时数算出的蓄电池容量的简便公式。由于蓄电池容量一般以安时数表示,故蓄电池容量应该为: V Wh C Ah C )(1000)(?=' H I Ah C ?=')( C '为蓄电池容量,A ·h;V 为光伏系统的电压等级(系统电压),通常为12V 、24V 、48V 、110V 或220V 。 例如,按宁波太阳能电源有限公司提供的晶体电池组件,对浙江南都电源动力股份有限公司的阀控式密封铅酸蓄电池进行选型。基本要求为:可为400W 的负载连续5天阴雨天的

太阳能电池片生产工艺简介解读

培训资料 前道 一制绒工艺 制绒目的 1?消除表面硅片有机物和金属杂质。 2.去处硅片表面机械损伤层。 3?在硅片表面形成表面组织,增加太阳光的吸收减少反射。 工艺流程 来料,开盒,检查,装片,称重,配液加液,制绒,甩干,制绒后称重,绒面检查,流出。 单晶制绒1号机 2号机 基本原理 1#超声 去除有机物和表面机械损伤层。 目前采用柠檬酸超声,和双氧水与氨水混合超声。

3#4#5#6#制绒 利用NaOH 溶液对单晶硅片进行各向异性腐蚀的特点来制备绒面。当各向异性因子((100) 面与(111)面单晶硅腐蚀速率之比)=10 时,可以得到整齐均匀的金字塔形的角锥体组成的绒面。绒面具有受光面积大,反射率低的特点。可以提高单晶硅太阳能电池的短路电流,从而提高太阳能电池的光转换效率。 化学反应方程式:Si+2NaOH+H 2O=Nasio 3+2H 2 f 影响因素 1.温度 温度过高,首先就是IPA 不好控制,温度一高,IPA 的挥发很快,气泡印就会随之出现,这样就大大减少了PN 结的有效面积,反应加剧,还会出现片子的漂浮,造成碎片率的增加。可控程度:调节机器的设置,可以很好的调节温度。 2.时间金字塔随时间的变化:金字塔逐渐冒出来;表面上基本被小金字塔覆盖,少数开始成长;金字塔密布的绒面已经形成,只是大小不均匀,反射率也降到比较低的情况;金字塔向外扩张兼并,体积逐渐膨胀,尺寸趋于均等,反射率略有下降。可控程度:调节设备参数,可以精确的调节时间。 3.IPA 1.协助氢气的释放。 2.减弱NaOH 溶液对硅片的腐蚀力度,调节各向因子。纯NaOH 溶液在 高温下对原子排列比较稀疏的100 晶面和比较致密的111 晶面破坏比较大,各个晶面被腐蚀而消融,IPA 明显减弱NaOH 的腐蚀强度,增加了腐蚀的各向异性,有利于金字塔的成形。乙醇含量过高,碱溶液对硅溶液腐蚀能力变得很弱,各向异性因子又趋于1。 可控程度:根据首次配液的含量,及每次大约消耗的量,来补充一定量的液体,控制精度不高。 4.NaOH 形成金字塔绒面。NaOH 浓度越高,金字塔体积越小,反应初期,金字塔成核密度近似不受NaOH 浓度影响,碱溶液的腐蚀性随NaOH 浓度变化比较显著,浓度高的NaOH 溶液与硅反映的速度加快,再反应一段时间后,金字塔体积更大。NaOH 浓度超过一定界限时,各向异性因子变小,绒面会越来越差,类似于抛光。 可控程度:与IPA 类似,控制精度不高。 5.Na 2SiO 3 SI 和NaOH 反应生产的Na2SiO3 和加入的Na2SiO3 能起到缓冲剂的作用,使反应不至于很剧烈,变的平缓。Na 2SiO 3使反应有了更多的起点,生长出的金字塔更均匀,更小一点Na2SiO3 多的时候要及时的排掉,Na2SiO3 导热性差,会影响反应,溶液的粘稠度也增加,容易形成水纹、花蓝印和表面斑点。 可控程度:很难控制。 4#酸洗 HCL 去除硅片表面的金属杂质盐酸具有酸和络合剂的双重作用,氯离子能与多种金属离子形成可溶与水的络合物。 6#酸洗 HF 去除硅片表面氧化层,SiO2+6HF=H 2[siF6]+2H 2O。控制点 1.减薄量定义:硅片制绒前后的前后重量差。 控制范围

光伏发电的工作原理以及优缺点介绍

光伏发电的工作原理以及优缺点介绍 光伏发电定义 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 光伏发电的工作原理 太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,空穴由n区流向p区,电子由p 区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的光伏发电工作原理。 太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1)光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。 (2)光—电直接转换方式该方式是利用光伏效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太

阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。 光伏发电的优缺点 与常用的发电系统相比,太阳能光伏发电的优点主要体现在: 太阳能发电被称为最理想的新能源。 光伏发电优点 ①无枯竭危险; ②安全可靠,无噪声,无污染排放外,绝对干净(无公害); ③不受资源分布地域的限制,可利用建筑屋面的优势; ④无需消耗燃料和架设输电线路即可就地发电供电; ⑤能源质量高; ⑥使用者从感情上容易接受;

电池电量检测方法

锂离子电池是目前最常见的二次锂电池,拥有高能量密度,与高容量镍镉/镍氢电池相比,其能量密度为前者的1.5~2倍。其平均使用电压为3.6V,是镍镉电池、镍氢电池的3倍。它的内阻较大,不能进行大电流充放电,并且需要精确的充放电控制,以防止电池损坏并达到最佳使用性能。锂离子电池广泛使用在各种便携电子产品中,包括手机、笔记本电脑、mp3等。 锂聚合物电池是一种新型的二次锂电池,具有更大的容量;内阻较低,允许10C充放电电流。它和锂离子电池一样需要精确的充放电控制。目前,锂聚合物电池主要用于一些需要大电流充放电的应用中,如动力/模型汽车等。 充电电池容量估算方法 在多数便携应用中,都需要随时了解电池剩余容量以估算电池使用时间。 图1 简化的电池电量计框图 最早应用的方法是通过监视电池开路电压来获得剩余容量。这是因为电池端电压和剩余容量之间有一个确定的关系,测量电池端电压即可估算其剩余容量。这种方法的局限是:1)对于不同厂商生产的电池,其开路电压与容量之间的关系各不相同。2)只有通过测量电池空载时的开路电压才能获得相对准确的结果,但是大多数应用都需要在运行中了解电池的剩余容量,此时负载电流在内阻上产生的压降将会影响开路电压测量精度。而电池内阻的离散性很大,且随着电池老化这种离散性将变得更大,因此要补偿该压降带来的误差将十分困难。综上所述,通过开路电压来实时估算电池剩余容量的方法在实际应用中无法达到足够的精度,只能提供一个大致的参考值。 另一种大量应用的方法是通过测量流入/流出电池的净电荷来估算电池剩余容量。这种方法对流入/流出电池的总电流进行积分,得到的净电荷数即为剩余容量。电池容量可以预置,也可在后续的完整充电周期中进行学习。在补偿电池自放电、不同温度下的容量变化等因素后,这种方法可以获得令人满意的精度,因此广泛运用于笔记本电脑等高端应用中。

蓄电池容量计算方法之令狐文艳创作

蓄电池容量计算部分 令狐文艳 1、常用的蓄电池容量计算方法 (1)容量换算法(电压控制法) 按事故状态下直流负荷消耗的安时值计算容量,并按事故放电末期或其他不利条件下校验直流母线电压水平。 (2)电流换算法(阶梯负荷法) 按事故状态下直流的负荷电流和放电时间来计算容量。该方法相对于电压控制法,考虑了大电流放电后负荷减小的情况下,电池具有恢复容量的特性,该算法不需在对电池容量进行电压校验。 2、采用容量换算法计算容量 2.1 按持续放电负荷计算蓄电池容量,取电压系数Ku=0.885,则计算的单个电池的放电终止电压为: V (4-1) 蓄电池的计算容量: (4-2) 式中 Cc —事故放电容量; Kcc —蓄电池容量系数; Krel —可靠系数,一般取1.40 80.1108 220885.0=?=Ud cc s rel c K C K C =

I1=325.27A I2=293.45A I3=46.36A I4=13.64A m1=0.5h m2=0.5h m3=1h m4=2h 在4个不同阶段,任意一个时期的放电容量为: (4-3) 总的负荷容量为: (4-4) 在计算分段ta 内,所需要的蓄电池容量计算值为: (4-5) 其中,容量系数Kcca 按计算分段的时间ta 决定。 通过查图 (GF 型蓄电池放电容量与放电时间的关系曲线),对应于事故时间4小时和放电终止电压1.80V ,得出容量系数 Kcc=0.77。 分别计算n 个分段的蓄电池计算容量,然后按照其中最大者 mi i mi t I C =n

选择蓄电池,则蓄电池的容量为: (4-6) 2.2 放电电压水平的校验 (1)持续放电电压水平的校验。事故放电末期,电压将降到最低,校验是否符合要求的方法如下: 事故放电期间蓄电池的放电系数 (4-7) 式中,Cs —事故放电容量(Ah ),t —事故放电时间 通过计算出来的K 值和对应的事故放电时间,可以通过蓄电池的冲击放电曲线,求出单只电池的电压,再乘以蓄电池只数,得到蓄电池整组电压,该电压值应大于198V 。 (2)冲击放电电压水平的校验。 冲击放电过程中,放电时间极短,放电电流较大。尽管消耗电量较少,但对电压影响较大。所以,按持续放电算出蓄电池容量后,还应校验事故放电初期、末期及其他放电阶段中,在可能的大冲击放电电流作用下蓄电池组的电压水平。 ①事故放电初期,电压水平的校验 事故放电初期的冲击系数为 (4-8) 式中,Krel —可靠性系数,一般取1.1 I ch0—事故放电初期的放电电流,(A) 10 tC KrelCs K

光伏发电系统优缺点分析

光伏发电系统优缺点分析 1光伏发电的优点 太阳能光伏发电发电过程简单,没有机械转动部件,不消耗燃料,不排放包括温室气体在内的任何物质,无噪声、无污染;太阳能资源分布广泛且取之不尽、用之不竭。因此,与风力发电、生物质能发电和核电等新型发电技术相比,光伏发电是一种最具可持续发展理想特征(最丰富的资源和最洁净的发电过程)的可再生能源发电技术,具有以下主要优点。 ①太阳能资源取之不尽,用之不竭,照射到地球上的太阳能要比人类目前消耗的能量大6000倍。而且太阳能在地球上分布广泛,只要有光照的地方就可以使用光伏发电系统,不受地域、海拔等因素的限制。 ②太阳能资源随处可得,可就近供电,不必长距离输送,避免了长距离输电线路所造成的电能损失。 ③光伏发电的能量转换过程简单,是直接从光能到电能的转换,没有中间过程(如热能转换为机械能、机械能转换为电磁能等)和机械运动,不存在机械磨损。根据热力学分析,光伏发电具有很高的理论发电效率,可达80%以上,技术开发潜力巨大。 ④光伏发电本身不使用燃料,不排放包括温室气体和其它废气在内的任何物质,不污染空气,不产生噪声,对环境友好,不会遭受能源危机或燃料市场不稳定而造成的冲击,是真正绿色环保的新型可再生能源。 ⑤光伏发电过程不需要冷却水,可以安装在没有水的荒漠戈壁上。光伏发电还可以很方便地与建筑物结合,构成光伏建筑一体化发电系统,不需要单独占地,可节省宝贵的土地资源。 ⑥光伏发电无机械传动部件,操作、维护简单,运行稳定可靠。一套光伏发电系统只要有太阳能电池组件就能发电,加之自动控制技术的广泛采用,基本上可实现无人值守,维护成本低。 ⑦光伏发电系统工作性能稳定可靠,使用寿命长(30年以上)。晶体硅太阳能电池寿命可长达20~35年。在光伏发电系统中,只要设计合理、选型适当,蓄电池的寿命也可长达10~15年。 ⑧太阳能电池组件结构简单,体积小、重量轻,便于运输和安装。光伏发电系统建设周期短,而且根据用电负荷容量可大可小,方便灵活,极易组合、扩容。 太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点。太阳能光伏发电与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用电

万用表怎么检测电池容量_电池电量

万用表怎么检测电池容量_电池电量 1、怎样测量电池电量检测普通锌锰干电池的电量是否充足,通常有两种方法。第一种方法是通过测量电池瞬时短路电流来估算电池的内阻,进而判断电池电量是否充足;第二种方法是用电流表串联一只阻值适当的电阻,通过测量电池的放电电流计算出电池内阻,从而判断电池电量是否充足。 第一种方法的最大优点是简便,用万用表的大电流档就可直接判断出干电池的电量,缺点是测试电流很大,远远超过干电池允许放电电流的极限值,在一定程度上影响干电池使用寿命。第二种方法的优点是测试电流小,安全性好,一般不会对干电池的使用寿命产生不良影响,缺点是较为麻烦。 用MF47型万用表对一节新2号干电池和一节旧2号干电池分别用上述两种方法进行测试对比。假设ro是干电池内阻,RO是电流表内阻,用第二种测试方法时,RF是附加的串联电阻,阻值3,功率2W。 实测结果如下。新2号电池E=1.58V(用2.5V直流电压档测量),电压表内阻为50k,远大于ro,故可近似认为1.58V是电池的电动势,或称开路电压。用第一种方法时,万用表置5A直流电流档,电表内阻RO=0.06,测得电流为3.3A。所以ro+RO=1.58V3.3A0.48,ro=0.48-0.06=0.42。用第二种方法时,测得电流为0.395A,RF+ro+RO=1.58V0.395A=4,电流500mA档内阻为0.6,所以ro=4-3-0.6=0.4。 旧2号电池用第一种方法测量时,先测得开路电压E=1.2V,电表内阻RO=6,读数为6.5mA,万用表置50mA直流电流档,ro+RO=1.2V0.0065A184.6,ro=184.6-6=178.6。用第二种方法,测得电流为6.3mA,ro+RO+RF=1.2V0.0063A=190.5,ro=190.5-6-3=181.5。 显然两种测试方法的结果基本一致。最终计算结果的微小差别是由于读数误差、电阻RF 的误差以及接触电阻等多方面因素造成的,这种微小误差不致影响对电池电量的判断。如果被测电池的容量小、电压高(例如15V、9V叠层电池),则应将RF的阻值适应增大。 2、数字万用表测量电池的电压用数字万用表测量电池的电压,不但可以方便地判断出电池的正负极,还可以看出电池是否快没电了。如果测量出的电压大于或者等于标注电压,

相关文档
最新文档