一般周期函数的傅里叶级数
傅里叶级数原理

傅里叶级数原理1. 简介傅里叶级数原理是分析不规则周期信号最重要的工具之一。
在数学、物理、工程等领域中广泛应用。
它的核心思想是:任何周期信号都可以表示为一系列基频为整数倍的正弦和余弦函数叠加而成。
这些正弦和余弦函数在傅里叶级数中被称为谐波分量。
2. 傅里叶级数的定义设周期为T的函数f(t)在一个周期内满足可积且连续,则它可以表示为以下形式的级数:f(t)=a0/2+ Σ [an*cos(nωt)+bn*sin(nωt)]其中,ω=2π/T,an和bn是傅里叶系数,a0/2是等于f(t)在一个周期内的平均值。
可以看出,f(t)的傅里叶级数展开式是一组带有不同频率的正弦和余弦函数的和。
3. 傅里叶级数的意义通过傅里叶级数展开式,我们可以得到一个正弦和余弦函数的频域图像。
从这个频域图像中,我们可以得到一些信息,比如信号中哪些频率成分占比较高,哪些成分占比较低。
甚至可以根据这些信息对原始信号进行重建或修正。
具体地说,如果从一个连续不依赖于时间的物理现象中获得一段周期数据,那么可以通过法力级数的计算来确定信号包含的基本频率,并且据此对信号进行频谱分析。
频谱分析可以帮助我们更好地理解和利用信号,比如音频和视频信号的处理。
4. 傅里叶级数的应用在数学中,可以用傅里叶级数来解决微分方程的边界条件问题、傅里叶级数的离散化应用——快速傅里叶变换在信号处理中大量应用,还可以用于数值匹配。
在物理学中,傅里叶级数主要应用于波的传播和放大中,可以确定波的频率,方法是通过光谱来确定。
在光学领域中,傅里叶级数被广泛应用于计算机成像,用于抵消扰动、组合图像等。
在工程实践中,傅里叶级数也具有重要的应用价值。
特别是对于电子和通信工程师来说,傅里叶级数和傅里叶变换是必不可少的工具。
它们可用于信号处理、控制、数据分析和通信等领域。
傅里叶级数的应用不仅局限于上述领域,在音乐节拍分析、图像处理、机器学习等领域中都得到广泛应用。
5. 总结无论是在理论研究还是在工程实践中,傅里叶级数都是一个非常重要的工具。
傅里叶级数公式总结

傅里叶级数公式总结傅里叶级数是一种电磁波、声波等周期性信号的频谱分析方法,通过将一个周期性函数展开成无穷多个正弦和余弦函数的和来描述这个函数。
傅里叶级数公式是傅里叶级数的数学表达式,也是傅里叶分析的核心工具之一。
傅里叶级数公式可以表示为:\[f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}(a_{n}\cos(\fra c{2\pi n}{T}x)+b_{n}\sin(\frac{2\pi n}{T}x))\]其中,\(f(x)\)是一个周期为\(T\)的函数,\(a_0\)、\(a_n\)、\(b_n\)是系数,可以通过傅里叶级数的积分公式计算得到。
在这个公式中,\(a_0\)表示函数的直流分量,即函数在一个周期内的平均值。
而\(a_n\)和\(b_n\)则表示函数在一个周期内的振幅和相位信息。
傅里叶级数公式的意义在于它将一个周期函数分解成许多不同频率的正弦和余弦函数的和。
通过傅里叶级数分析,我们可以得到函数在不同频率上的能量分布情况,从而揭示了周期性信号的频谱特性。
通过傅里叶级数公式,我们可以深入理解周期函数的谐波分量以及它们在函数中的作用。
具体来说,\(a_n\)和\(b_n\)分别对应了频率为\(n/T\)的正弦和余弦波的振幅,而相位则决定了每个谐波分量在函数中的位置。
傅里叶级数公式的应用十分广泛。
在信号处理中,它可以用于滤波、降噪、频谱分析等方面。
在图像处理中,傅里叶级数可以用于图像的频域分析和图像的压缩。
在通信领域,傅里叶级数也被广泛应用于调制解调和信号检测等方面。
总之,傅里叶级数公式是一种重要的数学工具,它能够将周期函数分解成不同频率的正弦和余弦波的和,揭示了周期性信号的频谱特性。
通过傅里叶级数的分析,我们可以更好地理解周期性信号的谐波分量和它们在函数中的作用。
傅里叶级数公式的应用广泛,可以用于信号处理、图像处理、通信等领域,对于这些领域的研究和实际应用具有重要的指导意义。
§3.1 周期信号的傅里叶级数展开

F0 a0
Fn
1 2
(an
jbn )
F
n
1 2
(an
jbn )
n 1, 2,3, n 1, 2,3,
信号与系统
一、周期信号的傅立叶级数
例: 将图示周期矩形脉冲信号展成指数形式傅立叶级数
f t
A
解: 直接代入公式有
T
T
22
t
Fn
1 T
T 2
T
f (t)e-jn0tdt
1 T
2
Ae - jn0t dt
信号与系统
一、周期信号的傅立叶级数
例:将图示的对称方波信号展成三角形式傅立叶级数
f t
1
0 T/2 T
t
1
解:直接代入公式有
a0
1 T
T 0
f
(t)dt
0
信号与系统
一、周期信号的傅立叶级数
直接代入公式有
T
T
an
2 T
2 T
f
(t) cosn0tdt
2 T
0
(1) cosn0tdt
T
2 T
T
an
4 T
2 0
f (t) cos(n0t)dt
n为奇数时
T
bn
4 T
2 0
f
(t) sin(n0t)dt
n为奇数时
奇半对称信号的第二个半周 波形为第一个半周波的负值。 进行傅立叶级数展开时只含 有奇次谐波项,所以奇半波 对称信号有时称为奇谐信号。
信号与系统
二、周期信号的对称性与傅立叶系数
满足狄里赫利条件的不连续函数,在所有不连续点上,级数的总和等于左
右极限和的平均值。
第11章第6节傅里叶级数2015-03-2405311.2MB

例2.设函数
数展式为
2
3
(93 考研)
解:
的傅里叶级 则其中系数
利用“偶倍奇零”
例1. 设 f (x) 是周期为 2 的周期函数 ,它在
上的表达式为
f (x)
1
,
x0
将
f
(x)
展成傅里叶级数.
1, 0 x
y
解: 先求傅里叶系数
1
o
x
1
它的傅里叶级数在 x 处收敛于 (n 1, 2, 3,...)
f1n(2fx1()0(n1010)4ss2ci([inocns,ffsion在nn((nsx0xnxdx0x)x)xd213nxsf1210in(n20[11310处1x,)s收0ixn(n1敛10nn0141xc0于)c2ond,2os]0ks1xn1nxx0d1,00sx0in2(nn.2n1,k
第十一章
11.6 傅里叶级数
一、函数展开成傅里叶级数 二、正弦级数和余弦级数
一、函数展开成傅里叶级数
设 f (x) 是周期为 2 的周期函数, 若 f (x) 并满足狄利克雷 ( Dirichlet ) 条件:
1) 在一个周期内连续 或只有有限个第一类间断点;
2) 在一个周期内只有有限个极值点,
则 f (x) 的傅里叶级数 收敛,且
a0 2
n1
(an
cos nx
bn
sin nx)
f (x) 的傅里叶系数
f (x) ,
f (x) 2
x 为连续点
f ( x ) , x 为间断点
例1. 设周期函数 在一个周期内 的表达式为
傅里叶级数展开

傅里叶级数展开傅里叶级数展开是一种将周期函数表示为无穷级数的方法,由法国数学家傅里叶在19世纪初提出。
傅里叶级数展开在信号处理、图像处理、物理学等领域中有广泛应用,并且被认为是研究周期现象的基础工具之一。
1. 傅里叶级数展开的基本原理傅里叶级数展开的基本思想是将一个周期函数分解为正弦函数和余弦函数的叠加。
根据傅里叶级数的表达式,一个周期函数可以表示为无限多个正弦和余弦函数的和,即:f(x) = a0 + Σ(An * cos(nωx) + Bn * sin(nωx))其中,a0表示直流分量,An和Bn表示函数f(x)中的谐波系数,ω为频率,n为谐波阶数。
由此可知,通过傅里叶级数展开,一个周期函数可以分解为不同频率的谐波信号的叠加。
2. 傅里叶级数的计算公式根据给定周期函数的表达式,我们可以通过一系列复杂的积分计算,求得傅里叶级数展开的各个系数。
对于奇函数和偶函数,傅里叶级数的计算公式有所不同。
- 对于奇函数f(x),即满足 f(-x) = -f(x) 的函数,傅里叶级数展开的计算公式为:fn = (1/π) * ∫[0, π] f(x) * sin(nωx) d x- 对于偶函数f(x),即满足 f(-x) = f(x) 的函数,傅里叶级数展开的计算公式为:fn = (2/π) * ∫[0, π] f(x) * cos(nωx) dx在实际计算中,为了减小计算量,通常只考虑有限个谐波分量,而不是无限个。
通过计算傅里叶级数展开的前几个系数,就可以对周期函数进行较好的逼近。
3. 傅里叶级数的应用傅里叶级数展开在信号处理中有重要的应用。
通过傅里叶级数展开,可以将任意信号分解为基本频率的叠加,从而分析信号的频谱特性。
这对于音频信号的处理、图像处理、振动分析等方面非常重要。
此外,傅里叶级数展开还广泛应用于物理学领域,特别是波动现象的研究中。
通过将波动的形态分解为不同频率的谐波信号的叠加,可以更好地理解和描述波动现象。
(完整版)周期信号傅里叶级数

C e dt T0 n0
j(nk )0t
n =
由{en (t)}的正交性得:
T0
0
e
dt j(nk )0t
T0
[n k]
T0 n=k 0 n不等于k
Ck
1 T
T
2 T
fT (t)e jk 0t dt
2
2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t)
bn
2 T
T
2 T
2
f (t)sin n0tdt
(n = 1,2 )
纯余弦形式傅立叶级数
其中
f(t)
a0 2
n1
An
co( s n0t
)
n
An an2 bn2
n
arctg
bn an
a0 2
称为信号的直流分量,
An cos(n0+ n)称为信号的n次谐波分量。
例题1 试计算图示周期矩形脉冲信号的傅立叶级数展 开式。
Cn e jn0t
jn 2 t
Cn e T
n =
n =
物理含义:周期信号f(t)可以分解为不同频率虚指数信号之和。
其中
Cn
1 T
T
2 T
fT (t)e jn0t dt
(傅立叶系数)
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量
n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
若 f (t)为实函数,则有 Cn Cn
利用这个性质可以将指数Fourier级数表示写为
1
f (t) C0
Cne jn0t
傅里叶变换常用公式
傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
傅里叶级数与傅里叶变换
傅里叶级数与傅里叶变换傅里叶级数和傅里叶变换是数学中重要的概念,广泛应用于信号处理、图像处理、通信系统等领域。
它们为我们理解和分析周期信号以及非周期信号提供了有效的数学工具。
本文将分别介绍傅里叶级数和傅里叶变换的基本概念、性质和应用。
一、傅里叶级数傅里叶级数是指将一个周期函数表示成一系列正弦和余弦函数的和。
它的基本思想是利用正弦和余弦函数的基本频率,将一个周期函数分解成多个不同频率的谐波分量,从而得到函数的频谱内容。
在数学上,傅里叶级数表示为:\[f(t) = \sum_{n=-\infty}^{\infty}c_ne^{i \omega_n t}\]其中,$c_n$代表系数,$e^{i \omega_n t}$是正弦和余弦函数的复数形式,$\omega_n$是频率。
将周期函数用傅里叶级数表示的好处是,可以通过调整系数来控制频谱内容,进而实现信号的滤波、合成等操作。
傅里叶级数的性质包括线性性、对称性、频谱零点等。
线性性意味着可以将不同的周期函数的傅里叶级数叠加在一起,得到它们的叠加函数的傅里叶级数。
对称性则表示实函数的傅里叶级数中系数满足一定的对称关系。
频谱零点表示在某些特殊条件下,函数的傅里叶级数中某些频率的系数为零。
傅里叶级数的应用广泛,例如在音频信号处理中,利用它可以进行音乐合成、乐音分析和音频压缩等操作。
此外,在图像处理领域,傅里叶级数被广泛应用于图像滤波、增强、噪声消除等方面。
二、傅里叶变换傅里叶变换是傅里叶级数的推广,用于处理非周期信号。
它将时域的信号转换为频域的信号,从而可以对信号进行频谱分析和处理。
傅里叶变换的定义为:\[F(\omega) = \int_{-\infty}^{\infty}f(t)e^{-i \omega t}dt\]其中,$F(\omega)$表示信号的频域表示,$f(t)$为时域信号,$\omega$为连续的角频率。
傅里叶变换可以将时域的信号分解成不同频率的复指数函数,并用复数表示频谱信息。
什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系
什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。
傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。
具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。
这意味着周期波都可分解为n次谐波之和。
傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。
与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。
傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。
但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。
而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。
简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。
2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。
而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。
3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。
而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。
4. 联系:傅里叶级数可以视作傅里叶变换的特例。
当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。
此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。
傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。
周期信号傅里叶级数
分析公式 (正变换)
连续时间傅里叶级数对:
称为傅里叶系数或频谱系数
综合公式 (反变换)
3.三角形式傅立叶级数
若 f (t)为实函数,则有 利用这个性质可以将指数Fourier级数表示写为 令 由于C0是实的,所以b0=0,故 由此可以推出:
三角形式傅立叶级数
傅里叶系数 连续时间周期信号三角形式傅立叶级数为:
建议同学多看国外电子与通信教材系列 ,先看翻译版,再看英文硬印版
集成电路版图基础(英文影印版) (4小时出库)
Layout Basics:A Practical Guide
作者: CHRISTOPHER SAINT,JUDY SAINT
市场价: ¥45.00
模拟CMOS集成电路设计(英文影印版) (4小时出库) sign of Analog CMOS Integrated Circuits 作者: (美)BEHZAD RAZAVI 市场价: ¥68.00
四、周期信号的功率谱
周期信号属于功率信号,周期信号f(t)在1欧姆电阻上消耗的平均功率为:
单击此处添加小标题
由下面关系可以推导出,帕什瓦尔(Parseval)功率守恒定理:
单击此处添加小标题
01
02
四、周期信号的功率谱
物理意义:任意周期信号的平均功率等于信号所包含的直流、基波以及各次谐波的平均功率之和。
[解] 周期矩形脉冲的傅立叶系数为
将A=1,T=1/4,=1/20,w0=2p/T=8p 代入上式 功率谱
信号的平均功率为 包含在有效带宽(0~2p/t)内的各谐波平均功率为 周期矩形脉冲信号包含在有效带宽内的各谐波平均功率之和占整个信号平均功率的90%。
求f (t)的功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3) 若 f ( x) 只在 [0, l] 上有定义,且满足收敛 定理的条件,可将它展开成正弦级数和余弦
级数。
展开成正弦级数的方法: 首先,将 f ( x)进行奇延拓,将它拓广
为 [l, l] 上的奇函数 F ( x) ;然后,将 F ( x) 展开成傅氏级数(正弦级数);最后,再将 x 限制在 [0, l] 上,就得到 f ( x) 的正弦级数 展开式。 即:
按(1)、(2)式求出 an , bn , 从而得到 f ( x)的
傅氏级数
a0 2
(an
n1
cos
nx
l
bn
sin
nx
l
)
在点 x (l, l) ,
x 是 f ( x)的连续点时,级数收敛于 f ( x);
x 是 f ( x)的间断点时,级数收敛于 f ( x ) f ( x )
2
在端点 x l , 级数收敛于 f (l ) f (l )
O l 可以验证:
F(t)是周期为 2 的周期函数
F(t 2 ) f [ l (t 2 )] f [ l t 2l]
f ( l t) F(t)
F(t)
的傅氏级数
a0 2
(an
n1
cos nt
bn
sinnt)
在 (,) 上收敛,且
a0 2
(an
n1
cos nt
bn
sinnt)
F(t)
首先,将 f ( x)进行偶延拓,将它拓广 为 [l, l] 上的偶函数 F ( x) ;然后,将 F ( x) 展开成傅氏级数(余弦级数);最后,再将 x 限制在 [0, l] 上,就得到 f ( x) 的余弦级数 展开式。 即:
按(4) 式求出 an , 从而得到 f ( x)的余弦级数
a0 2
y F(t) 由 y f ( x)与 x l t 复合而成
x 是 f ( x) 的连续点
t 是 F(t) 的连续点
即:
t 是 F(t) 的连续点
x 是 f ( x)的连续点
将t
l
x
代入 (*)式,得
a0 2
(an
n1
cos
nx
l
bn
sin nx )
l
f (x)
,
其中
f (x) f (x) 2
,
x 是 f ( x)的连续点 x 是 f ( x)的间断点
an
1
t
F (t)cos ntdt
l
x
1 l
l
l
f ( x)cos nxdx
l
bn
1
t
F (t)sinntdt
l
x
1 l
l
l
f ( x)sin nxdx
l
即(1)(2)式。 证毕。
说明 (1) 当 f ( x)在 (l, l) 上是奇函数时,
§8 一般周期函数的傅里叶级数
一、 周期为 2l 的周期函数的傅里叶级数
定理 设 f ( x) 是周期为 2l 的周期函数,
且满足收敛定理的条件, 则它的傅里叶级数
a0 2
(an
n1
cos
nx
l
bn
sin nx )在(,)上收敛,且
l
(1) 当 x 为连续点时,级数收敛于 f ( x)
(2) 当 x 为间断点时,级数收敛于 f ( x ) f ( x )
nxdx
l
,(n
0,1,2,...)
(4)
偶函数的傅氏级数是余弦级数
a0 2
an
n1
cos
nx
l
其中,an 按(4)式计算。
(2) 若 f ( x) 只在 [l, l] 上有定义,且满足收敛 定理的条件,也可将它展开为傅氏级数。 方法:首先,将 f ( x) 进行周期延拓,将它 拓广为周期为 2l 的周期函数 F ( x);然后 将 F ( x)展开成傅氏级数;最后,再将 x 限制在 [l, l] 上,就得到 f ( x)的傅氏级数 展开式。即:
an 0 ,(n 0,1,2,...)
bn
2 l
l 0
f
( x)sin
nxdx
l
,(n 1,2,...) (3)
奇函数的傅氏级数是正弦级数
n1
bn
sin
nx
l
其中,bn 按(3)式计算。
当 f ( x)在 (l, l) 上是偶函数时,
bn 0 ,(n 1,2,...)
an
2 l
l 0
f
( x)cos
F
(t
)
F (t
, t连续点 ), t间断点
2
其中
(*)
an
1
F (t)cos ntdt
,(n 0,1,2,...)
bn
1
F (t)sinntdt
,(n 1,2,...)
y f ( x)由 y F(t) 与 t x 复合而成
l
t 是 F(t) 的连续点
x 是 f ( x) 的连续点
其中anຫໍສະໝຸດ 1 ll lf
( x)cos
nxdx
l
2
,(n 0,1,2,...)(1)
bn
1 l
l l
f
( x)sin
nxdx
l
,(n 1,2,...)
(2)
证
l
作换元 t x ,则在此变换下
t
l
区间 l x l 变为
t x
l
区间 t
x
f ( x) f ( l t) F(t)
f
(
x)
0, k,
2 x0 0 x2
将 f ( x) 展开成傅氏级数。
(常数k 0)
解
4 2
y f (x)
k
o
2
x
4
f ( x) 满足收敛定理的条件, 它在点 x 2m (m 0,1,2,...) 处间断, 在其它点处连续。
由收敛定理,得
当 x 2m 时,傅氏级数收敛于
k 0 k f (2m)
an
n1
cos
nx
l
在点 x (0, l) ,
x 是 f ( x)的连续点时,级数收敛于 f ( x) x 是 f ( x)的间断点时,级数收敛于 f ( x ) f ( x )
2
在端点 x 0 ,级数收敛于 f (0 )
x l ,级数收敛于 f (l )
例1 设 f ( x)是周期为 4 的周期函数, 它在 [2,2) 上的表达式为
按(3) 式求出 bn, 从而得到 f ( x)的正弦级数
nx
bn sin
n1
l
在点 x (0, l) ,
x 是 f ( x)的连续点时,级数收敛于 f ( x); x 是 f ( x)的间断点时,级数收敛于 f ( x ) f ( x )
2
在端点 x 0, l ,
级数收敛于 0
展开成余弦级数的方法:
2
2
当 x 2m 时,傅氏级数收敛于 f ( x)
计算 傅氏系数: 2l 4 l 2
an
1 2
22
f
( x)cos
nx
2
dx
1[ 2
02 0 cos
nx
2 dx
02
k
cos
nx
2
dx
]
n0
k 2
2
n
sin
nx
2
|02
0 ,(n 1,2,...)
a0
1 2
22
f
( x)dx
1[ 2
02
0 dx
02 k dx
]
1 2
2k
k