高二数学-直线和圆的方程-单元测试(含答案)

高二数学-直线和圆的方程-单元测试(含答案)
高二数学-直线和圆的方程-单元测试(含答案)

高二直线和圆的方程单元测试卷

班级: 姓名:

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是

A .),0[π

B .),4

3

[]4,0[πππ? C .]4,0[π D .),2(]4,0[ππ

π? 2. 如果直线(2a +5)x +(a -2)y+4=0与直线(2-a )x +(a +3)y -1=0互相垂直,则a 的值等于 A . 2 B .-2 C .2,-2 D .2,0,-2 3.已知圆O 的方程为x 2+y 2=r 2,点P (a ,b )(ab ≠0)是圆O 内一点,以P 为中点的弦所在的直线为m ,直线n 的方程为ax +by =r 2,则

A .m ∥n ,且n 与圆O 相交

B .m ∥n ,且n 与圆O 相离

C .m 与n 重合,且n 与圆O 相离

D .m ⊥n ,且n 与圆O 相离 4. 若直线220(,0)ax by a b +-=>始终平分圆22

4280x y x y +---=的周长,则12a b

+

的最小值为

A .1

B .5 C

D

.3+5. 00(,)M x y 为圆222

(0)x y a a +=>内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系为

A .相切

B .相交

C .相离

D .相切或

相交

6. 已知两点M (2,-3),N (-3,-2),直线L 过点P (1,1)且与线段

MN 相交,则直线L 的斜率k 的取值范围是

A .3

4-≤k ≤4 B .k ≥43或k ≤-4 C .43≤k ≤4 D .-

4≤k ≤4

3

7. 过直线y x =上的一点作圆22

(5)(1)2x y -+-=的两条切线12l l ,,当直

线12l l ,关于y x =对称时,它们之间的夹角为 A .

30

B .

45

C .

60

D .

90

8.如果实数x y 、满足条件10

1010

x y y x y -+≥??+≥??++≤? ,那么14()2x

y ?的最大值为

A .2

B .1

C .

12 D .14

9.设直线过点(0,),a 其斜率为1,且与圆22

2x y +=相切,则a 的值为

A.4±

B.± C.2±

D.10.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则⊿ABC 的边长是

A. B.36

4

C.4

D.3

一、

二、 11.已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则

θ= .

12.有下列命题:

①若两条直线平行,则其斜率必相等;

②若两条直线的斜率乘积为-1, 则其必互相垂直;

③过点(-1,1),且斜率为2的直线方程是

21

1

=+-x y ; ④同垂直于x 轴的两条直线一定都和y 轴平行; ⑤若直线的倾斜角为α,则πα≤≤0.

其中为真命题的有_____________(填写序号).

13.直线Ax +By +C =0与圆x 2+y 2=4相交于两点M 、N ,若满足C 2=A 2+B 2,则OM ·ON (O 为坐标原点)等于 _ .

14.已知函数32)(2

-+=x x x f ,集合(){}

0)()(,≤+=y f x f y x M ,

集合(){}

)()(,≥-=y f x f y x N ,则集合N M 的面积

是 ;

15.集合{05|),(≤-+=y x y x P ,∈x N* ,∈y N*},

{-=x y x Q 2|),(}0≤+m y ,

{y x z y x M -==|),,})(),(Q P y x ?∈,若z 取最大值时,{})1,3(=M ,则实数m 的取值范围是 ;

三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或

演算步骤. 16.(本小题满分12分) 已知ABC ?的顶点A 为(3,-1),AB 边上的中线所在直线方程为

610590x y +-=,B ∠的平分线所在直线方程为4100x y -+=,求

BC 边所在直线的方程.

17.(本小题满分12分)

某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千

元。甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 上加工一件甲产品所需工时分别为1时、2时,加工一件乙产品所需工时分别为2时、1时,A ,B 两种设备每月有效使用台时数分别为400和500。如何

安排生产可使月收入最大?

18.(本小题满分12分) 设平面直角坐标系xoy 中,设二次函数()()22f x x x b x R =++∈的图

象与两坐标轴有三个交点,经过这三个交点的圆记为C .求:

(Ⅰ)求实数b 的取值范围; (Ⅱ)求圆C 的方程;

(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.

19.(本小题满分12分)

如图,矩形ABCD

的两条对角线相交于点(20)M ,

,AB 边所在直线的方程为360x y --=, 点(11)

T -,在AD 边所在直线上.

(I )求AD 边所在直线的方程;

(II )求矩形ABCD 外接圆的方程; (III )若动圆P 过点(20)N -,

,且与矩形ABCD 的外接圆外切,求动圆P 的圆心的方程.

20.(本小题满分13分)

设等差数列{a n }的首项为a(a ≠0),公差为2a ,前n 项和为S n .记A={(x ,y )| x =n ,y =

n

S n

,n ∈N *},B={(x ,y ) | (x -2)2+y 2=1,x 、y ∈R

}. (1)若A ∩B ≠φ,求a 的取值集合;

(2)设点P ∈A ,点Q ∈B ,当a=3时,求|PQ|的最小值. 21.(本小题满分14分)

已知,a b 都是正数,△ABC 在平面直角坐标系x O y 内, 以两点A (a ,0 )和B (0,b )为顶点的正三角形,且它的第三个顶点C 在第一象限内. (1)若△ABC 能含于正方形D = { ( x , y ) | 0 ≤ x ≤ 1, 0≤ y ≤ 1}内, 试求变量 ,a b 的约束条件,并在直角坐标系a Ob 内画出这个约束条件表示的平面区域;

(2)当(,)a b 在(1)所得的约束条件内移动时,求△ABC 面积S 的最

大值,并求此时(,)a b 的值.

荆门市龙泉中学高二直线和圆的方程单元测试卷参考答案

一、选择题:1.D2.C

3

.B4.D5.C6.B7.C8.A9.C10.D

二、填空题:11.()

4

k k Z

π

π±∈.解:sin0

θ=时不合题意;

sin0

θ≠时由2

11

2sin sin sin

sin24

k

π

θθθθπ

θ

-=-?=?==±,这时

1

1

sinθ

≠-.

12.②

13.-2

14.π4解:集合M即为:8

)1

(

)1

(2

2≤

+

+

+y

x,集合N即为:0

)

)(

2

(≥

-

+

+y

x

y

x,

其面积等于半圆面积。

15. 5

7-

<

-m解:如图Q

P?所表示区域为阴影部分的所有整点(横坐标,纵

坐标均为整数),对于直线t:y

x

z-

=,即1

=

-

+

z

y

z

x

,z

直线t的纵截距的相反数,当直线t位于阴影部分

最右端的整点时,纵截距最小,z最大,当3

=

x,

1

=

y时z取最大值,q

)1,3(,0

1

3

2≤

+

-

?m

∴5

-

m,又(4 ,1)P

∈,

但(4 ,1)q

?,即0

1

8>

+

-m

∴7

-

>

m即5

7-

<

-m

三、解答题:

16.设

11

(410,)

B y y

-,由AB中点在610590

x y

+-=上,

可得:0

59

2

1

10

2

7

4

61

1=

-

-

?

+

-

?

y

y

,y1 = 5,所以(10,5)

B.

设A点关于4100

x y

-+=的对称点为'(',')

A x y,

则有

)7,1(

1

4

1

3

1

10

2

4

4

2

3

A

x

y

y

x

'

?

?

?

?

??

?

?

-

=

?

-'

+'

=

+

-'

?

-

+'

. 故:29650

BC x y

+-=.

17.解:设甲、乙两种产品的产量分别为x,y

2400

2500

0,0,

x y

x y

x y

+≤

?

?

+≤

?

?≥≥

?

目标函数是32

f x y

=+,要求出适当的x,y,使32

f x y

=+

取得最大值。

作出可行域,如图。设32,

x y a a

+=是参数,

将它变形为

3

22

a

y x

=-+,

这是斜率为

3

2

-,随a变化的一族直线。

当直线与可行域相交且截距

2

a

最大时,

目标函数f取得最大值。由

2400

2500

x y

x y

+=

?

?

+=

?

200

100

x

y

=

?

?

=

?

因此,甲、乙两种产品的每月产品分别为200,100件时,可得最大收入800千元。

18.解:(Ⅰ)令x=0,得抛物线与y轴交点是(0,b);

令()220

f x x x b

=++=,由题意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)设所求圆的一般方程为2

x20

y Dx Ey F

++++=

令y=0 得20

x Dx F

++=这与22

x x b

++=0 是同一个方程,故D=2,F=b.

令x=0 得2y Ey

+=0,此方程有一个根为b,代入得出E=―b―1.

所以圆C 的方程为222(1)0

x y x b y b

++-++=.

(Ⅲ)圆C 必过定点(0,1)和(-2,1).

证明如下:将(0,1)代入圆C 的方程,得左边=02+12+2×0-(b+1)+b=0,右

边=0,

所以圆C 必过定点(0,1).

同理可证圆C 必过定点(-2,1).

19. 解:(I)因为AB边所在直线的方程为360

x y

--=,且AD与AB垂直,

所以直线AD的斜率为3

-.又因为点(11)

T-,在直线AD上,

所以AD边所在直线的方程为13(1)

y x

-=-+.320

x y

++=.

(II)由

360

32=0

x y

x y

--=

?

?

++

?

解得点A的坐标为(02)

-

,,

因为矩形ABCD两条对角线的交点为(20)

M,.

所以M为矩形ABCD外接圆的圆心.又AM=

从而矩形ABCD外接圆的方程为22

(2)8

x y

-+=.

(III)因为动圆P过点N,所以PN是该圆的半径,又因为动圆P与圆M外切,

所以PM PN

=+PM PN

-=

故点P的轨迹是以M N

,为焦点,实轴长为

因为实半轴长a=2

c=.所以虚半轴长b==

从而动圆P的圆心的轨迹方程为

22

1(

22

x y

x

-=≤.

20.解: (1)由已知得S n=na+

2

)1

(-

n

n

·2a=an2,

n

S

n=an.…… 2分

∴A={(x,y)|y=ax,x∈N*}.(a≠0)…… 3分

由B={(x,y)|(x-2)2+y2=1,x,y∈R}知|x-2|≤1 ∴1≤x≤3.

由A∩B≠φ,知集合B中x只能取1,2,3,又y≠0,∴x=2.…… 5分

此时y=±1,由y=ax可求得a=±

2

1

.故a的取值集合为{

2

1

,-

2

1

}.…… 7分

(2)由(1)知点P可设为(n,3n),圆(x-2)2+y2=1的圆心M(2,0),半径r=1.先求|PM|最

小值. |PM|2=(n-2)2+3n2=4n2-4n+4=4(n-

2

1

)2+3.…… 11分

,∴|PM|最小值为2 (n=1).

min

-r=2-1=1.…… 13分

: (1)由题意知:顶点C是分别以A、B为圆心,以|AB|为半径的两圆在第一

A: ( x–a)2 + y2 = a2 + b2 , 圆B: x2 + ( y – b )2 = a2 + b2 .

x y=∴C(

2

3b

a+

2

3b

a+)

含于正方形D内,即三顶点A,B,C含于区域D内时,

?

?

?

?

?

?

+

+

.1

2

3

,1

2

3

,1

,1

b

a

b

a

b

a

这就是( a , b )的约束条件. 其图形为右图

的六边形,∵a > 0 , b > 0 , ∴图中坐标轴上的点除外.

(2)∵△ABC是边长为2

2b

a+的正三角形,

∴S = 3( a2 + b2 )在(1)的条件下, 当S取最大值等价于六边形图形中的点( a, b )

OP、OQ、OR的计算.

)2 = 8 – 43,OQ2 = 2(3– 1)2 = 8 – 43.

a ,

b ) = ( 1, 2 –3), 或(3– 1, 3– 1), 或( 2 –3, 1 )

—y

高二数学算法初步单元测试题及答案

高二数学算法初步单元 测试题及答案 Last revised by LE LE in 2021

江苏省南通中学高二(上)数学单元测试08。9。25 算法初步(题目) 一 填空题 1.描述算法的方法通常有: (1)自然语言;(2) ▲ ;(3)伪代码. 2.已知流程图符号,写出对应名称. (1) ▲ ;(2) ▲ ;(3) ▲ . 3.下列给出的几个式子中,正确的赋值语句是(填序号) ▲ ①3←A ; ②M ← —M ; ③B ←A ←2 ; ④x+y ←0 4. 用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时的值时,至多需要做乘法和加法的次数分别是 ▲ _和 ▲ 5.简单随机抽样,系统抽样的共同特点是 ▲ 。 6.采用系统抽样从含有8000个个体的总体(编号为0000,0001,…,, 7999)中抽取一个容量为50的样本,已知最后一个入样编号是7900,则最前面2个入样编号是 ▲ 7.某校有老师200人,男学生1200人,女学生1000人,现用分层抽样的方法 从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为80人,则n= ▲ . 8.11.下面是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是 ▲ . 2或6 二 填空题 9下面伪代码运行后的输出的结果是(1) ▲ (2) ▲ (3) ▲ Read x If x≤5 Then y←10x Else y←+5 End If Print y

10.( 1) 下面这段伪代码的功能是 ▲ 。 (2) 下列算法输出的结果是(写式子) ▲ (3)下图为一个求20个数的平均数的程序,在横线上应填充的语句为 ▲ 。 11(1)在如图所示的流程图中,输出的结果是 ▲ . (2) 右边的流程图最后输出的n 的值是 ▲ . (3 )下列流程图中,语句1(语句1与i 无关)将被执行的次数为 ▲ . (4)右图给出的是计算1111 2 4 6 100 +++ + 的值的一个流程图,其中判断 框内应填入的条件是 ▲ 。 第9(2) 第10(1)题 第10(2)题 第10(3)题

高二年级理科数学每周一练测试试卷

新建二中高二年级(理科)数学周练(1) 命题:董向东 9月21日 一.选择题(每小题5分,共60分) 1.下列命题正确的是( ) A .若直线的斜率存在,则必有倾斜角α与它对应 B .若直线的倾斜角存在,则必有斜率与它对应 C .直线的斜率为k ,则这条直线的倾斜角为arctan k D .直线的倾斜角为α,则这条直线的斜率为tan α 2.若),(y x M 在直线上012=++y x 移动,则y x 42+的最小值为…………… ( ) A. 2 2 B.2 C.22 D.24 3.直线()cos 1y x R αα=+∈的倾斜角的取值范围是( ) A .[0, ] B .[0, π] C .[-, ] D .30,44πππ???????????? , 4.过点()2,3P 与()1,5Q 的直线PQ 的倾斜角为( ) A .arctan 2 B .()arctan 2- C . arctan 2- D .arctan 2π- 5.过点()()2,,,4A m B m -的直线的倾斜角为arctan 2+,则实数m 的值为( ) A .2 B .10 C .-8 D .0 6.已知平面上直线l 的方向向量),5 3 ,54(-=点O (0.0) 和A (1,-2) 在l 上的射影分别 是,,A O ''则,e A O λ=''其中=λ ( ) A.511 B. 511 - C.2 D. 2- 7.与直线3x -4y +5=0关于x 轴对称的直线方程为 ( ) A. 3x +4y -5=0 B. -3x +4y -5=0 C. 3x +4y +5=0 D.-3x +4y +5=0 8.点(),P a b ab +在第二象限内,则0bx ay ab +-=直线不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若直线()2360t x y -++=不经过第二象限,则t 的取值范围是( ) A .(, +∞) B .32??-∞ ???, C .[23, +∞] D .32? ?-∞ ?? ?, 10.直线l 过点()1,2P -且与以()()2,3,3,0A B --为端点的线段相交,求直线l 的斜率的取值范围( ) A .1[,5]2- B .12??-∞- ???, C .[)152? ?-∞-+∞ ? ??,, D . [)5+∞, 11.过点()2,1M 的直线l 与x 轴、y 轴的正半轴分别交于P 、Q 两点,且2MQ MP =, 则直线l 的方程为( ) A .240x y +-= B .20x y -= C .10x y --= D .30x y +-= 12.过点)1,1(P 作直线l ,与两坐标相交,所得三角形面积为10,直线l 有………( ) A.1条 B.2条 C.3条 D.4条 二.填空题(每小题4分,共16分) 13.若直线l 的倾斜角是连接()()3,5,0,9P Q --两点的直线的倾斜角的2倍,则直线l 的斜率为 14.已知三点()()2,3,4,3,5,2m A B C ?? - ??? 在同一直线上,则m 的值为 15.一条直线过点()5,4P -,且与两坐标轴围成的三角形的面积为5的直线的方程为 16.已知△ABC 的重心13,26 G ?? ??? ,AB 的中点5 ,14D ??-- ?? ? ,BC 的中点11 ,44 E ??- ?? ? ,则顶点A 的坐标 三.解答题(17~18题每小题10分,19~20题每小题12分,共44分) 17.(本小题10分)直线:24l y x =-与x 轴的交点为M ,把直线l 绕点M 逆时针方向旋转045,求得到的直线方程。 18.(本小题10分)三条直线123,,l l l 过同一点()4,2M --,其倾斜角之比为1:2:4,已知直线2l 的方程是3440x y -+=,求直线13,l l 的方程。 19.(本小题12分)设直线l 的方程为(1)20a x y a +++-=(a R ∈) (1)求直线l 所过的定点坐标; (2)若l 在两坐标轴上的截距相等,求直线l 的方程; 2π4π6π2 π 2 π 23

直线和圆的方程测试题(含答案解析)

直线与圆的方程测试题 (本试卷满分150分,考试时间120分钟) 一、单项选择题(本大题共18小题,每小题4分,共72分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分. 1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( ) A.-9 B.-1 C.-9或-1 D. 12 2. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( ) A.5 B. -5 C. 1 D. -1 3. 直线的倾斜角是3 2π,则斜率是( ) A.3-3 B.3 3 C.3- D.3 4. 以下说法正确的是( ) A.任意一条直线都有倾斜角 B. 任意一条直线都有斜率 C.直线倾斜角的范围是(0,2 π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( ) A. 2x+y+2=0 B.2x-y-5=0 C. 2x+y+5=0 D. 2x+y-5=0 6. 过点(2,0)且与y 轴平行的直线方程是( ) A.x=0 B.y=0 C.x=2 D.y=2 7. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( ) A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=0 8. “B ≠0”是方程“Ax+By+C=0表示直线”的( ) A.充分非必要条件 B.必要非充分条件 C.充分且必要条件 D.非充分非必要条件 9. 直线3x-y+2 1=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直 10.下列命题错误.. 的是( ) A. 斜率互为负倒数的两条直线一定互相垂直 B. 互相垂直的两条直线的斜率一定互为负倒数 C. 两条平行直线的倾斜角相等 D. 倾斜角相等的两条直线平行或重合 11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( ) A. 2x+y+2=0 B. 2x-y-2=0 C. 2x-y+2=0 D.2x+y-2=0 12. 直线ax+y-3=0与直线y=2 1x-1垂直,则a=( ) A.2 B.-2 C. 21 D. 2 1- 13. 直线x=2与直线x-y+2=0的夹角是( )

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学选修2-1《常用逻辑用语》单元测试题 时间:90分钟满分:120分 第Ⅰ卷(选择题,共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 1.命题“存在x0∈R,2x0≤0”的否定是() A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0 C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0 2.“(2x-1)x=0”是“x=0”的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 3.与命题“能被6整除的整数,一定能被3整除”等价的命题是() A.能被3整除的整数,一定能被6整除 B.不能被3整除的整数,一定不能被6整除 C.不能被6整除的整数,一定不能被3整除 D.不能被6整除的整数,不一定能被3整除 4.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是() A.p∧q B.綈p∧q C.p∧綈q D.綈p∧綈q 6.在三角形ABC中,∠A>∠B,给出下列命题: ①sin∠A>sin∠B;②cos2∠A<cos2∠B;③tan ∠A 2>tan ∠B 2. 其中正确的命题个数是() A.0个B.1个

C .2个 D .3个 7.下面说法正确的是( ) A .命题“?x 0∈R ,使得x 20+x 0+1≥0”的否定是“?x ∈R ,使得x 2 +x +1≥0” B .实数x >y 是x 2>y 2成立的充要条件 C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题 D .命题“若α=0,则cos α=1”的逆否命题为真命题 8.已知命题p :?x 0∈R ,使tan x 0=1,命题q :?x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧綈q ”是假命题 C .命题“綈p ∨q ”是真命题 D .命题“綈p ∧綈q ”是假命题 9.下列结论错误的是( ) A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1” B .设α,β∈? ???? -π2,π2,则“α<β”是“tan α<tan β”的充要条件 C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题 D .“?α∈R ,使sin 2α+cos 2α≥1”为真命题 10.给出下列三个命题: ①若a ≥b >-1,则 a 1+a ≥ b 1+b ;②若正整数m 和n 满足m ≤n ,则mn -m 2≤n 2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切. 其中假命题的个数为( ) A .0个 B .1个 C .2个 D .3个 第Ⅱ卷(非选择题,共70分) 二、填空题:本大题共4小题,每小题5分,共20分. 11.给出命题:“若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.

高二数学(必修五,选修2-1)周测

高二周测数学试题卷(C 班) 学校:___________姓名:___________班级:___________ 第I 卷(选择题) 一、选择题 1.已知命题与命题,若命题:为假命题,则下列说法正确 就是( ) A 、 真,真 B 、 假,真 C 、 真,假 D 、 假,假 2.若等差数列{a n }得前5项与S 5=30,且a 2=7,则a 7 = ( ) A 、0 B 、1 C 、2 D 、3 3.等比数列{}n a 前n 项与为n S ,3=q ,则=4 4a S ( ) A.940 B 、 980 C 、 2740 D 、 2780 4.“0若:,则b a 1 1<,那么“p ?”就是( ) A 、若b a >,则b a 11≥ B 、若b a >,则不一定有b a 1 1< C 、若b a ≤,则b a 11< D 、若b a ≤,则b a 1 1≥ 10.不等式022 >--x x 得解集为( ) A. }12|{-<>x x x 或 B. }21|{<<-x x C. }12|{<<-x x D. }21|{-<>x x x 或 11.点A(1,1)在直线l:mx+ny=1上,则mn 得最大值为( ) A. B. C. D.1 12.ABC ?得内角A , B , C 所对得边分别为a , b , c , 2a =, 2b =,

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

高中数学单元测试试题

高中数学单元测试 试题 2019.09 1,复平面内的以点(01)-, 为圆心,1为半径的圆的方程是 . 2,我们把利用随机变量2K 来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的 . 3, 2()2x f x x =+,11x =,1()(2)n n x f x n n -=∈N 且≥,计算234x x x ,,分别为212325,,,猜想n x = . 4,某种产品的广告费用支出x 与销售额y 之间有如下的对应数据: (1)画出散点图; (2)求回归直线方程; (3)据此估计广告费用为10时,销售收入y 的值. 5,已知1a b c ++=,求证:1 3ab bc ca ++≤. 6,若复数 22(1)(483)()z m m m m i m =+-+-+∈R 的共轭复数z 对应的点在第一象限,求实数m 的集合. 7,求满足2101000x <<的所有正整数x 的值,用程序框图表示出来. 8,已知2()(1)1x x f x a a x -=+>+. (1)证明:函数()f x 在(1)-+,∞上为增函数;(2)用反证法证明:方程()0 f x =没有负数根. 9,一个公司共有240名员工,下设三部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知甲部门有36名员工,那么从甲部门抽取的员工人数是 .

10,已知},......,,{321n x x x x 的平均数为a ,则23 ..., ,23 ,2321+++n x x x 的平均数是_____. 11,如图,某人向圆内投镖,如果他每次都投中圆内,那么他投中正方形区域的概率为 . 12,在大小相同的6个球中,2个是红球,4个是白球。若从中任意选取3个,则所选的3个球至少有一个红球的概率是 .(结果用分数表示) 13,判断方程 220x x y y ++=所表示的曲线关于 对称(填x 轴或y 轴或原点). 14,双曲线218322 2-=-y x 的焦距等于 . 15,若点A 的坐标为(3,2),F 为抛物线22y x =的焦点,点P 在该抛物线上 移动,为使得PA PF +取得最小值,则P 点的坐标为 . 16,设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点 P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 . 17,P 为椭圆22 143x y +=上的一点,M 、N 分别是圆 22(1)4x y ++= 和 22(1)1x y -+=上的点,则|PM | + |PN |的最大值为 . 18,12-的相反数是 A .12 B . 12- C . -2 D . 2 19,下列运算中,正确的是 A .22223a a a --=- B .221 a a -=- C .235()a a -= D . 236a a a =

高中数学必修二测试题七(直线与圆)

高中数学必修二测试题七 班级 姓名 座号 一、选择题(每小题5分,共50分. 以下给出的四个备选答案中,只有一个正确) 1. 1.直线20x y --=的倾斜角为( ) A .30? ; B .45? ; C. 60? ; D. 90?; 2.将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线为( ) A.1133y x =-+ ; B. 113 y x =-+ ; C.33y x =- ; D.31y x =+; 30y m -+=与圆2 2 220x y x +--=相切,则实数m 等于( ) A .-; B .- C D .4.过点(0,1)的直线与圆22 4x y +=相交于A ,B 两点,则AB 的最小值为( ) A .2 ; B .; C .3 ; D .5.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准 方程是( ) A. 1)3 7()3(22=-+-y x ; B. 1)1()2(2 2=-+-y x ; C. 1)3()1(2 2=-+-y x ; D. 1)1()2 3(22=-+-y x ; 6.已知圆1C :2 (1)x ++2 (1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方 程为( ) A.2 (2)x ++2 (2)y -=1 ; B.2 (2)x -+2 (2)y +=1; C.2 (2)x ++2 (2)y +=1; D.2 (2)x -+2 (2)y -=1 7.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的 方程为( ) A.2 2 (1)(1)2x y ++-= ; B. 2 2 (1)(1)2x y -++= C. 2 2 (1)(1)2x y -+-= ; D. 2 2 (1)(1)2x y +++= 8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( ) A.(1,0,0)和( -1,0,0) ; B.(2,0,0)和(-2,0,0); C.(12,0,0)和(1 2 -,0,0) ; D.(,0,00,0)

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高二数学排列组合二项式定理单元测试题(带答案)

排列、组合、二项式定理与概率测试题 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、如图所示的是2008年北京奥运会的会徽,其中的“中国印”的外边是 由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来(如同架桥),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ( ) A. 8种 B. 12种 C. 16种 D. 20种 2、从6名志愿者中选出4个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96种 B .180种 C .240种 D .280种 3、五种不同的商品在货架上排成一排,其中a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则 不同的选排方法共有( ) A .12种 B .20种 C .24种 D .48种 4、编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A . 10种 B. 20种 C. 30种 D . 60种 5、设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a ≡b (mod m )。已知a =1+C 120+C 220·2+C 320·22+…+C 2020· 219,b ≡a (mod 10),则b 的值可以是( ) A.2015 B.2011 C.2008 D.2006 6、在一次足球预选赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分.积分多的前两名可出线(积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22种 B .23种 C .24种 D .25种 7、令1 ) 1(++n n x a 为的展开式中含1 -n x 项的系数,则数列}1 { n a 的前n 项和为 ( ) A . 2) 3(+n n B . 2) 1(+n n C . 1+n n D . 1 2+n n 8、若5522105)1(...)1()1()1(-++-+-+=+x a x a x a a x ,则0a = ( )

高二数学周测7

高二数学周测7 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若椭圆的一个焦点是,则实数( ) A . B . C . D . 2.直线1:60l x my ++=和()2:2320l m x y m -++=平行,则m 的值为( ) A .1-或3 B .3 C .1- D .1或3- 3.过点(3,-4)且在两坐标轴上的截距相等的直线的方程是( ) A .4x +3y =0 B .4x -3y =0或x +y +1=0 C .4x -3y =0 D .4x +3y =0或x +y +1=0 4.若双曲线(,)的一条渐近线方程为, 则其离心率为( ) A B . C D . 5.已知椭圆 的焦点在轴上,且焦距为,则等于( ) A .4 B .5 C .7 D .8 6.已知离心率为的双曲线(,)与椭圆有公共焦点,则双曲线的方程为( ) A . B . C . D . 7.已知双曲线的一条渐近线是,则双曲线的离心率是( ) A . B C . D . 8.已知圆2 2 :10210C x y y +-+=与双曲线22 221(0,0)x y a b a b -=>>的渐近线相切,则该 双曲线的离心率是( ) A B .5 3 C . 52 D 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中, 有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知点,点,直线:(其中),若直线与线段有公共点,则可能的取值是( ) A . B . C . D . 22 55x ky +=(0,2)k =521 1152522 31mx ny -=0m >0n >2y x =2 2 22 1102 x y m m +=--y 4m 222221x y a b -=0a >0b >22 184 x y + =221412x y - =221124x y -=22 13y x -=2213 x y -=2 2 2:1y C x b -=y =C 234)0,2(A )0,2(-B l 04)1()3(=--++λλλy x λ∈R l AB λ0124

直线与圆的方程试卷

2011—2012学年度第二学期 2010级数学期中试卷 姓名班级成绩 一、单项选择:(10*4) 1、已知直线L的方向向量为(1、2),则直线的斜率K=() A、1 B、2 C、3 D、4 2、已知直线L的倾斜角为45゜,则直线的斜率K=() A、1 B、2 C、3 D、4 3、已知直线L上的两个点A(1、2)、B( 4、14),则直线的斜率 K=() A、1 B、2 C、3 D、4 4、判断下列关系错误的是()。 A、与一条直线平行的非零向量叫做这条直线的方向向量 B、与一条直线垂直的非零向量叫做这条直线的法向量 C、一条直线 L向上的方向与X轴正方向所成的最小正角a, 叫做直线L的倾斜角 D、斜截式方程:y=kx+b中,k是它的斜率,而b称为 直线 L在X轴上的截距 5、判断下列关系错误的是()。 A、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程, 而向量(A、B)为直线Ax+By+C=0的一个法向量 B、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程, 而向量(B、-A)或(-B、A)为直线Ax+By+C=0的一个方向向量 C、如果已知直线的斜率为K,则(1、K)是该直线的一个方向向量 D、方程式:x2+y2+Dx+Ey+F=0所表示的曲线一定是圆 6、圆:(x-1) 2+(y-3)2=5中,圆心坐标为()。 A、(1、3) B、(-1、3 ) C、(3、-1) D、(-1、-3) 7、圆:(x-1) 2+(y-3)2=25中,则该圆的半径为()。 A、1 B、3 C、5 D、25 8、直线:3x-4y-1=0的一个法向量为() A、(3、4) B、(3、-4 ) C、(4、3) D、(4、-3) 9、已知直线a:2x-4y+7=0和直线b: x-2y +5=0,则两直线的 位置关系为()。 A、平行 B、相交 C、重合 D、无法判断 10、判断下列关系错误的是()。 A、与直线Ax+By+C=0 (A,B不全为零)平行的直线都可以表示成 Ax+By+D=0 (D≠C) B、与直线Ax+By+C=0 (A,B不全为零)垂直的直线都可以表示成 Bx-Ay+D=0 (D≠C) C、圆的方程式:(x-a) 2+(y-b)2=r2称为圆的标准方程式 D、圆的方程式:x2+y2+Dx+Ey+F=0称为圆的标准方程式 二、填空题:(6*4) 11、过点P(1、2),且一个法向量为(3、4)的直线方程为 12、过点P(1、-2),且一个方向向量为(-1、3)的直线方程 为。 13、已知直线L过点P(1、2),且斜率为-2,则直线L的方程式 为。 14、圆心坐标为(-2、1),半径为2的圆的标准方程式为 15、圆的一般方程式为:x2+y2+4x-6y-12=0,则圆心坐标为 该圆的半径为

直线与圆练习题(带答案解析)

. . 直线方程、直线与圆练习 1.如果两条直线l 1:260ax y + +=与l 2:(1)30x a y +-+=平行,那么a 等 A .1 B .-1 C .2 D .23 【答案】B 【解析】 试题分析:两条直线平行需满足12211221A B A B A C A C =?? ≠?即1221 1221 1A B A B a AC A C =??=-?≠?,故选择B 考点:两条直线位置关系 2. 已知点A (1,1),B (3,3),则线段AB 的垂直平分线的方程是 A .4y x =-+ B .y x = C .4y x =+ D .y x =- 【答案】A 【解析】 试题分析:由题意可得:AB 中点C 坐标为()2,2,且 31 1 31AB k -= =-,所以线段AB 的垂 直平分线的斜率为-1,所以直线方程为: ()244 y x y x -=--?=-+,故选择A 考点:求直线方程 3.如图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++=与直线10x y +-=的交点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】D 【解析】 试题分析:由图形可知0b a c >>>,由010ax by c x y ++=??+-=?得0 b c x b a a c y b a +?=>??-?--?=

高二圆锥曲线单元测试题及答案

《圆锥曲线》单元测试题 一、选择题 1.已知椭圆方程 19 252 2=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( ) A .2 B .4 C .8 D . 2 3 2.从椭圆的短轴的一个端点看长轴的两个端点的视角为120o,那么此椭圆的离心率为( ) A . 2 2 B . 33 C .2 1 D . 3 6 3.设1>k ,则关于x 、y 的方程1)1(222-=+-k y x k 所表示的曲线是( ) A .长轴在y 轴上的椭圆 B .长轴在x 轴上的椭圆 C .实轴在y 轴上的双曲线 D .实轴在x 轴上的双曲线 4.到定点(7, 0)和定直线x = 77 16 的距离之比为47的动点轨迹方程是( )。 A . 116922=+y x B .19 1622=+y x C .1822=+y x D .1822 =+y x 5.若抛物线顶点为(0,0),对称轴为x 轴,焦点在01243=--y x 上那么抛物线的方程为( ) A .x y 162= B .x y 162-=; C .x y 122=; D .x y 122-=; 6.过椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B , 且点B 在x 轴上的射影恰好为右焦点F ,若13<k <1 2 ,则椭圆离心率的取值范围是( ) A .????14,94 B .????23,1 C .????12,23 D .??? ?0,1 2 7.若椭圆)1(12 2>=+m y m x 与双曲线)0(122>=-n y n x 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ?的面积是( ) A .4 B .2 C .1 D .1 2 8.双曲线 22 1(0)x y mn m n -=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A . 316 B .38 C .163 D .83 9.设双曲线以椭圆 22 1259 x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .43± C .12± D .34 ± 10.已知椭圆2 2 2(0)2 y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( ) A .02a << B .02a << 或a > C .103a << D .2a <<第Ⅱ卷(非选择题,共90分) 二、填空题(本大题共5小题,每小题5分,共25分) 11.双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值为 。 12.如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a -c =3, 那么椭圆的方程是 。 13.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为_________ 14.双曲线的实轴长为2a ,F 1, F 2是它的左、右两个焦点,左支上的弦AB 经过点F 1,且|AF 2|、|AB |、|BF 2|成等差数列,则|AB |= 15.关于曲线0992 2 3 3 =++-xy y x y x ,有下列命题:①曲线关于原点对称; ②曲线关于x 轴对称;③曲线关于y 轴对称;④曲线关于直线x y =对称;其中正确命题的序号是________。

高二数学周测6

椭圆 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知两定点()()124,0,4,0F F -,点P 是平面上一动点,且128PF PF +=,则点P 的轨迹是 ( ) A . 圆 B . 直线 C . 椭圆 D . 线段 2、椭圆22 11216 x y + =的焦点坐标为 ( ) A. ()2,0± B. ()4,0± C. ()0,4± D. ()0,2± 3、设12,F F 是椭圆22 221(0)x y a b a b +=>>的左右焦点,过12,F F 作x 轴的垂线交椭圆四点 构成一个正方形,则椭圆的离心率e 为( ) A. B. C. 2 D. 4、AB 为过椭圆22 221x y a b +=中心的弦, (),0F c 为椭圆的右焦点,则AFB 面积的最 大值是( )A. bc B. ab C. ac D. 2b 5.一个椭圆的长轴长是短轴长的两倍,那么这个椭圆的离心率为( ) A. 4 B. 2 C. 2 D. 1 2 6、若(),0F c 是椭圆22 221x y a b +=的右焦点, F 与椭圆上点的距离的最大值为M ,最小 值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是 A . 2,b c a ?? ± ??? B . 2,b c a ?? -± ?? ? C . ()0,b ± D . 不存在 7、已知,A B 是椭圆22 2:12x y E a + =的左、右顶点,M 是E 上不同于,A B 的任意一点,若直线,AM BM 的斜率之积为4 9 -,则E 的焦距为 A . B . C . 2 3 D 8、已知椭圆22 221(0)x y a b a b +=>>的左右焦点分别为12,F F ,点Q 为椭圆上一点. 12 QF F ?的重心为G ,内心为I ,且12GI F F λ=,则该椭圆的离心率为 A . 12 B . C . 13 D .

圆与方程测试题及答案

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

相关文档
最新文档