等离子点火技术
等离子点火技术在电站煤粉锅炉中的应用分析

等离子点火技术在电站煤粉锅炉中的应用分析
等离子点火技术是一种新型的点火方式,具有能耗低、污染小、启动时间短等优点,被广泛应用于煤粉锅炉的点火中。
以下是等离子点火技术在电站煤粉锅炉中的应用分析。
一、等离子点火技术的原理
等离子点火技术是利用电冲击将气体离子化并加热到高温状态,从而形成一个具有高激发能的等离子体,其能量可用来点燃煤粉燃料。
等离子点火技术的原理是通过产生高强度的电场将气体离子化,使气体分子成为高度电离的等离子体,形成电弧放电点,从而达到启动点火的目的。
1. 提高点火成功率
燃料在锅炉内燃烧前需要点火。
传统煤粉锅炉的点火通常采用辅助燃烧器,但存在启动时间长、能耗高、易产生污染等问题。
而等离子点火技术能快速启动并点燃煤粉,其点火成功率高达99%以上,极大提高了锅炉的启动效率。
2. 减少燃料消耗
等离子点火技术可以快速启动锅炉,有效降低了点火过程中的能耗,控制煤粉的使用量,实现节能减排的效果。
使用等离子点火技术,每次点火的耗电量仅为1度电左右,相比传统点火方法节能效果非常显著。
3. 降低污染排放
等离子点火技术采用的是纯物理方式点火,不需加入化学剂和催化剂等物质,避免了传统点火方法产生的NOx、SO2等有害气体排放。
同时,等离子点火技术点火过程中的电磁辐射小,对环境造成的污染更低。
4. 提高设备运行效率
等离子点火技术可以有效提高锅炉的燃烧效率和运行效率,减少CO和其他有害气体的排放,从而避免了锅炉运行不稳定和燃烧不完全等问题。
三、总结。
锅炉|电厂锅炉应用等离子点火的技术

锅炉|电厂锅炉应用等离子点火的技术电力百科第 67 期:点火系统1. 等离子点火系统及原理1.等离子点火系统及原理1.1 等离子点火系统在等离子点火系统当中,主要由等离子发生器、直流电源、点火燃烧器、控制系统等部分组成。
其中,等离子发生器能够对50kW~150kW电功率的空气等离子体进行产生,直流电源能够将三相380V的交流电源整合成直流电源,向发生器供电。
点火燃烧器配合等离子发生器使用,对煤粉进行点燃。
控制系统采用了数据总线、通信接口、CRT、PLC等部分构成,能够实现全数字化自动控制。
系统具有50kW~150kW的输出功率,且连续可调。
压缩空气压力在0.12MPa~0.4MPa,流量在150m3/h以上,且能够保持洁净无油。
冷却水压力在0.3MPa以上,流量在10t/h 以上,t在40℃以下。
1.2 等离子点火原理在等离子点火装置当中,对直流电源进行利用,基于相应的介质气压条件接触引弧,在强磁场控制下,对稳定功率定向流动空气等离子体进行获取,采用磁压缩、机械等方法,向需要点火的位置送入等离子体射流,在点火燃烧器当中,能够达到4000K以上具有极大梯度的局部高温火核,当等离子火核与煤粉颗粒相接触,煤粉颗粒会对挥发物进行迅速释放,劈裂粉碎再造挥发充分,从而被快速点燃。
在等离子发生器当中,采用了阳极、阴极、线圈等部分,在发火原理上,基于相应的输出电流条件,中心阴极和阳极进行接触,系统达到短路的状态,阴极和阳极缓慢分开的过程中,会有电弧产生,在线圈磁场的作用下,将电弧拉出喷管外部。
在电弧的作用下,压缩空气受到电离,产生高温等离子体,从而使煤粉产生了被点燃的可能性。
在设计过程中,采用进退执行机构控制点火装置的阴极,同时控制电弧电功率。
此外,还利用相同的计算机控制系统,监视冷却水、冷却风等。
2. 等离子点火技术的实际应用2.1 技术改造在电厂锅炉对等离子点火技术的应用中,对老机进行技术改造是一项重要的内容。
等离子点火技术在烟煤锅炉上的应用

等离子点火技术在烟煤锅炉上的应用摘要:当前,等离子点火技术在我国烟煤锅炉行业发展迅速,使用范围也越来越广。
而如何能充分发挥出电站锅炉使用该技术后的整体科学性和经济性,已成为当下电站锅炉行业综合性的难题。
本文对等离子点火系统的技术原理及燃烧机理进行了探讨,并通过实例设计,为广大行业人员提供一定的技术借鉴。
关键词:等离子点火技术;烟煤锅炉;应用1等离子点火系统在电站煤粉锅炉中应用的技术优势等离子点火系统具有较多的技术优势,所以能够在电站煤粉锅炉中得到安全使用。
等离子点火系统实现了无油点火,代替了传统的燃油点火方式,经过现场的实践检验,该项技术比较成熟,能够在煤粉锅炉启停和稳燃过程中应用;燃油点火在煤粉锅炉的启停和稳燃中应用,运行成本较高,而等离子体内的化学活性粒子较多,可大大提高燃烧效率,等离子点火技术代替燃油点火技术,大大降低了电站的运行成本;在使用燃油点火技术时,可能会因为操作失误等原因而造成火灾事故,从而导致人员伤亡和经济损失。
而使用等离子点火技术可有效消除安全隐患,提高煤粉锅炉启停和稳燃的安全性;在使用燃油点火技术时,除尘装置无法投入使用,而烟囱排出的黑烟就会对大气造成严重污染。
在我国取消脱硫旁路的规定后,对于燃油点火时对脱硫浆液造成的污染是电站面临的重要问题。
而在采用等离子点火技术后,在锅炉点火初期就能够实现无油点火,电除尘装置也可同步投入使用,避免烟气粉尘排入大气中,大大提高了电站生产的环保性;除此之外,等离子点火技术还具有运行方式简单和较强的通用性和可配置性的优点,在电站煤粉锅炉启停和稳燃中具有较高的应用价值。
2燃烧机理等离子点火系统的燃烧机理为逐级点火分级燃烧,这主要是因为高温等离子体自身能量受限的原因,所以为了能够提高煤粉燃烧效率,目前的等离子燃烧器一般会设计成四级式燃烧区域。
第一区是等离子拉弧引燃挥发物区。
第一区引弧点火的性能会直接影响到整个等离子燃烧系统的燃烧效果,根据燃烧器的容积在中心筒投入适量的煤粉,煤粉在中心筒内稳定燃烧,在出口的位置会形成比较稳定的二级煤粉点火源,按照这个顺序逐渐放大煤粉燃烧区域。
等离子点火器工作原理

等离子点火器工作原理
等离子点火器是一种常用于点燃燃料的装置,它利用高压电场产生的等离子体来点燃燃料混合物。
其工作原理主要包括等离子体产生、传输和点火三个步骤。
首先,等离子点火器通过高压放电产生等离子体。
当高压电场加在两个电极之间时,电场强度超过气体击穿电压,气体中的自由电子被加速,与气体原子或分子碰撞,将其电离形成等离子体。
这种等离子体具有高能量和高温度,可以用来点燃燃料混合物。
其次,等离子体被传输到燃料混合物中。
等离子体产生后,需要将其传输到燃料混合物中,以点燃燃料。
传输等离子体的方法通常有两种,一种是通过电极直接将等离子体引入燃料混合物中,另一种是利用等离子体的电磁辐射来点燃燃料。
最后,等离子体点燃燃料混合物。
一旦等离子体传输到燃料混合物中,它会引发燃料的燃烧反应。
燃料混合物中的燃料和氧气在高温和高能量的作用下发生燃烧,释放出大量的热能和光能。
这样就完成了等离子点火器的工作,燃料开始燃烧,驱动发动机或其他设备运转。
总的来说,等离子点火器是一种利用高压电场产生等离子体来点燃燃料混合物的装置。
它通过产生、传输和点火三个步骤来完成点火过程。
等离子点火器在内燃机、火花塞点火系统等领域有着广泛的应用,是现代化工、交通运输等领域不可或缺的关键设备。
等离子点火系统

06
等离子点火系统应用前景与挑战
在不同领域的应用前景
航空航天领域
用于火箭发动机和航空发动机的点火系统, 提高发动机的可靠性和性能。
能源领域
应用于燃气轮机、锅炉等设备的点火系统, 提高能源利用效率和环保性能。
交通运输领域
用于汽车、船舶等交通工具的点火系统,提 高燃烧效率和动力性能。
工业领域
应用于工业燃烧设备的点火系统,如冶金、 化工、陶瓷等行业的燃烧器。
维护成本低
经济效益显著
通过提高燃烧效率、降低污染物排放 和减少能耗等措施,等离子点火系统 可为企业带来显著的经济效益和环境 效益。
系统结构简单,维护方便,可降低维 护成本和停机时间。
04
等离子点火系统设计及优化
设计原则与方法
安全性原则
确保系统在各种工作条件下都 能安全稳定运行,防止意外点
火或爆炸等危险情况发生。
通过改进电源设计、优化控制算法等方式,提高系统的可靠性和稳定 性。
推动等离子点火系统的应用拓展
积极推广等离子点火系统在各个领域的应用,促进相关产业的发展和 进步。
THANKS
感谢观看
典型案例分析
案例一
某型火箭发动机等离子点火实验 。通过对比实验,验证了等离子 点火系统相较于传统点火方式的 优越性,如点火可靠性、燃烧效
率等。
案例二
航空煤油等离子点火燃烧特性研 究。针对不同燃油类型,探究等 离子点火系统的适应性及燃烧特
性变化规律。
案例三
等离子点火系统在燃气轮机中的 应用。将等离子点火技术应用于 燃气轮机中,提高了燃烧室点火 性能和燃烧效率,降低了污染物
等离子点火系统
汇报人:XX
• 等离子点火系统概述 • 等离子点火系统组成及工作原理 • 等离子点火系统性能评价 • 等离子点火系统设计及优化 • 等离子点火系统实验研究与案例分析 • 等离子点火系统应用前景与挑战
等离子点火技术在电站煤粉锅炉中的应用分析

等离子点火技术在电站煤粉锅炉中的应用分析【摘要】本文主要讨论了等离子点火技术在电站煤粉锅炉中的应用分析。
文章首先介绍了等离子点火技术的原理和优势,接着分析了其在煤粉锅炉中的应用特点,以及在提高燃烧效率和降低污染排放中的作用。
通过案例分析展示了等离子点火技术在电站煤粉锅炉中的应用情况。
探讨了等离子点火技术未来发展趋势,并指出其在提升燃烧效率、降低排放污染等方面具有广阔前景。
文章强调了等离子点火技术对环保和节能的重要性,以及其未来发展的趋势。
综合分析可知,等离子点火技术在电站煤粉锅炉中的应用将在未来取得更加广泛的应用,为环保和节能做出重要贡献。
【关键词】等离子点火技术、电站煤粉锅炉、应用分析、原理、优势、应用特点、燃烧效率、污染排放、应用案例、发展趋势、前景、环保、节能。
1. 引言1.1 等离子点火技术在电站煤粉锅炉中的应用分析等离子点火技术是一种新型的点火方式,通过产生等离子体来点燃燃料,具有高效、节能、环保等优点。
在电站煤粉锅炉中的应用也逐渐受到重视。
本文将对等离子点火技术在电站煤粉锅炉中的应用进行深入分析。
等离子点火技术的原理主要是通过产生高温高能的等离子体,来提高燃烧效率和降低污染排放。
与传统的火焰点火相比,等离子点火技术具有点火速度快、点火可靠等优势。
在煤粉锅炉中的应用特点包括提高煤粉燃烧效率、减少二氧化硫等有害气体排放等方面。
等离子点火技术在提高燃烧效率和降低污染排放中发挥着重要作用。
通过优化点火方式,可以有效改善燃烧过程,提高能源利用效率。
而在一些电站煤粉锅炉中的应用案例也证明了等离子点火技术的有效性。
2. 正文2.1 等离子点火技术的原理和优势等离子点火技术是一种新型的点火技术,其原理是利用电弧放电产生的高温等离子体对燃料进行点火。
这种技术具有以下优势:1. 高效能:等离子点火技术能够在极短的时间内将燃料点燃,提高了点火效率,减少了点火时间。
2. 稳定性强:等离子点火技术能够提供稳定的点火源,避免了传统点火方式中可能出现的不稳定点火现象。
培训资料(等离子点火技术基本原理与系统)-1

等离子点火技术基本原理与系统目录1.概述 (3)1.1 等离子点火技术的开发背景及功能 (3)1.2 等离子点火技术的发展历程 (4)2.等离子发生器及其辅助系统 (5)2.1 等离子发生器工作原理 (5)2.2 等离子冷却水系统 (7)2.3 等离子载体风系统 (9)2.4 等离子电源系统 (13)3.等离子燃烧器及其工作原理 (15)3.1 等离子燃烧器结构特点 (15)3.2 等离子燃烧器点火原理 (16)4.等离子点火风粉系统 (17)4.1 中储式制粉系统等离子点火一次风粉来源及其解决方案 (17)4.2 直吹式制粉系统等离子点火一次风粉来源及其解决方案 (18)4.2.1 直吹式制粉系统蒸汽加热器制备热风方案 (18)4.2.2 直吹式制粉系统燃油加热器制备热风方案 (20)5.等离子点火监控系统 (23)5.1 等离子燃烧器壁温测量系统 (24)5.2 一次风风速测量系统 (24)5.2.1 一次风在线测速装置的组成 (24)5.2.2 测速管的选择 (25)5.3 图像火焰监视 (26)6.等离子点火控制系统与锅炉FSSS、DCS的连接 (27)6.1 等离子点火控制系统 (27)6.2 等离子点火系统与锅炉的连接 (28)1.概述1.1 等离子点火技术的开发背景及功能火力发电机组中的煤粉锅炉,其点火及低负荷稳燃的传统方法是燃用柴油、重油或燃气。
这种方法运行成本高,以一台670t/h锅炉为例,在冷态启动过程中,要耗费约50t轻质柴油。
据统计,每年全国仅电站锅炉因点火及低负荷稳燃就消耗数百万吨燃油。
大量的燃油消耗,以及因此而带来的燃油采购、运输、储存、硬件设备等方面的费用,无疑加大了发电成本。
同时,由于油煤混烧,使锅炉的技术和经济指标下降。
据有关资料表明:锅炉燃煤过程中,同时燃烧具有高反应性能的燃油将降低锅炉机组的经济生态效益,主要表现在增加燃料固体未燃尽热损失10%~15%,降低锅炉机组的传热系数2%~5%,增加水冷壁高温腐蚀速度,降低锅炉设备的运行可靠性,在一定条件下增加NO X、SO X等污染物的排放量30%~40%。
等离子点火技术在电站煤粉锅炉中的应用分析

等离子点火技术在电站煤粉锅炉中的应用分析随着人们对环保和能源效率要求的不断提高,电站煤粉锅炉作为传统的燃煤锅炉,在运行过程中存在着许多问题,如烟气排放量大、煤粉燃烧不充分、燃烧效率低等。
传统的火焰点火方式往往会产生较多的氮氧化物和硫氧化物等有害气体,对环境产生危害。
为了提高燃烧效率,减少排放,降低对环境的影响,燃煤电厂需要采用先进的点火技术,其中等离子点火技术就是一种比较有效的选择。
一、等离子点火技术原理等离子点火技术是利用放电等离子体的高温、高压、高速等特性,在燃气燃烧时可以加速燃料和空气的混合,增强点火效率和火焰传播速度,从而提高燃烧效率,减少有害气体排放。
具体来说,等离子点火技术是通过产生等离子体,使其释放出的高能量电子碰撞气体分子,从而在燃气混合物中极大地增加了游离电子和活性分子的浓度,加速了化学反应,提高了燃气的燃烧速度和燃烧效率。
1.提高燃烧效率传统的煤粉锅炉容易产生煤粉堆积和煤粉不完全燃烧的问题,导致燃烧效率低下,同时排放出大量的烟尘和有害气体。
而采用等离子点火技术可以在点火时直接对煤粉及煤气进行充分混合,使得煤粉在燃烧时更加均匀,燃烧速度更快,燃烧效率得到提高,减少了煤粉堆积和不完全燃烧的问题,从而降低了烟尘和有害气体的排放。
2.改善煤粉点火情况煤粉锅炉点火时往往会遇到煤粉的点火率低、点火时间长的问题,甚至会发生点火失败的情况。
采用等离子点火技术可以在点火时产生高能电子,促进煤粉的点火和燃烧,加速火焰传播速度,改善了煤粉点火的情况。
等离子点火技术可以使火焰形成更加稳定,降低了煤粉锅炉运行中的不稳定因素,保证了锅炉的安全稳定运行。
3.减少对环境的影响采用等离子点火技术可以使燃烧效率得到提高,减少了煤粉锅炉的燃料消耗,同时降低了烟尘、二氧化硫和氮氧化物等有害气体的排放量,保护了环境和人民的健康。
特别是近年来国家对燃煤电厂的环保要求不断提高,采用等离子点火技术可以帮助燃煤电厂更好地满足环保标准,减少对环境的污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等离子点火技术发电分公司王鹏恒引言从我国目前的能源结构中分析,油资源短缺是一个不争的事实,我国每年所消耗的石油都要大量依靠进口来满足国内日益增长的需要,这是一项耗费巨额资金的经济活动!面对国内油资源短缺这一严峻事实,我们迫切需要节约燃油来减少进口!当前情况下石油已成为影响我国能源安全和经济发展的重要战略物资,通过节约和寻找燃油替代品来保证国家能源和经济安全已经被提上了重要日程。
为了满足燃煤机组的无油点火,等离子燃烧技术应运而生!随着科技的发展,等离子点火技术已经得到很大的进步,在国内很多电厂中得到使用,而且使用效果良好,可以在保证机组安全的基础上为发电企业节约部分发电成本,已经逐渐成为电厂的主流点火方式。
当前,等离子系统主要涉及到发电行业的大型燃煤火力发电厂,主要应用于发电厂煤粉锅炉的启动、点火和稳燃。
当然,也涉及应用于其他行业或者类似领域的煤粉锅炉的点火和稳燃。
通过等离子点火技术的广泛使用,逐渐代替了传统的燃油点火,从而实现了节能减排,对企业的经济效益有了很大提高。
同时在等离子点火中运用电除尘技术,使得颗粒物的排放明显减少,这项技术也适应了当前对燃油这一紧缺资源的节约,在国家提倡绿色能源的今天,等离子技术定将得到进一步发展,从而实现良好的社会和经济效益。
1 等离子点火系统1.1 等离子点火系统的原理等离子点火技术是一种新型的锅炉点火燃烧技术,等离子体直接点燃煤粉替代燃料油的原理是:它利用电弧电离空气流(也可以是其它气体)形成高温等离子体,利用水冷通道、自身磁场、外磁场以及气体旋流等稳弧方法来控制该等离子体,使其定向流动则形成了高温等离子射流。
让煤粉通过此高温等离子射流,煤粉颗粒则在瞬间析出挥发份,再造挥发份、爆燃,在完全没有任何燃油的情况达到无油点火及稳燃的目的,满足锅炉点火启动及低负荷稳燃的需要。
等离子点火技术是先通过等离子发生器产生高温射流,从而将电源的电能传递给空气,然后使用高温等离子射流先点燃部分煤粉,然后在燃烧器中分级点燃煤粉形成较大的火焰,最后在点燃锅炉一次风携带的煤粉。
煤在电弧等离子体高温射流中热解后的主要产物是挥发分、焦和烟炱。
挥发份主要由CH4,C2H2,C2H4,C4H6,H2,CO,CO2,N2和H2O 等组成,其中乙炔是主要成分,煤焦是析出挥发份以后的煤残留物,而烟炱则是乙炔在高温下的分解积碳。
因为电弧等离子体射流的温度极高,而煤粉颗粒在燃烧器内停留时间却很短,所以热解速率非常高。
在这种快速热解条件下,热分解将更加剧烈,热缩聚则更加减弱,这就是挥发分中主要由小分子组成的主要原因。
在等离子体高温射流加热过程中,主要是等离子体的热分量在起作用。
随着气体和煤粉颗粒温度的升高,在原子团和分子解离产物的参与下,燃料开始异质热化学转化,在这个反应阶段,是电弧等离子体的热化学分量在起重大作用。
因为煤的挥发分转化为气相,加上残余焦炭的局部气化,挥发份与氧化剂(空气,水蒸气)间,以及各挥发分相互之间开始产生化学反应,亦即在此气相反应阶段,等离子体的热电分量可使反应明显加强,以更低的激活能参与反应,从而加速化学转化。
据估计,当氧由分子转变为原子形态时,激活能已减少为1/10 到1/15。
挥发份的氧化反应将加快数倍,使释热过程更加迅速,这又使残余焦炭受热加剧,使碳加速转化为气相。
这时,在热化学分量和热电分量的作用下,将讲一步促使碳的转化。
另外,等离子体与煤粉作用过程中能生成低着火点的双相燃料,等离子体点燃煤粉过程中可以再造挥发份,提高燃料的反应度、强化煤粉混合物的燃烧,降低着火温度、加速热化学转换,促使燃料完全燃烧。
正是由于等离子点火具有以上的种种优点,才促进了等离子点火技术应用不断的发展。
1.2 等离子点火装置的系统构成目前国内各火电厂普遍采用的等离子点火装置是由山东烟台龙源电力技术有限公司开发的。
整个点火装置的示意图如图1所示。
图1 等离子点火装置示意图1.2.1 等离子发生器及拉弧原理等离子发生器主要由阳极组件、阴极组件、线圈组件3大部分组成,如图2所示。
1-线圈;2-阳级;3-阴极;4-电源图2 等离子发生器工作原理其拉弧原理为:首先设定输出电流,当阴极3前进同阳极2接触后,整个系统具有抗短路的能力且电流恒定不变,当阴极缓缓离开阳极时,电弧在线圈磁力的作用下拉出喷管外部。
一定压力的空气在电弧的作用下,被电离为高温等离子体。
其中带正电的离子流向电源负极形成电弧的阴极,带负电的离子及电子流向电源的正极形成电弧的阳极。
阴极材料采用高导电率的金属材料制成。
阳极由高导电率、高导热率及抗氧化的金属材料制成,它们均采用水冷方式,以承受电弧高温冲击。
1.2.2 等离子燃烧器根据高温等离子体有限能量不可能同无限的煤粉量及风速相匹配的原则设计了多级燃烧器。
它的意义在于应用多级放大的原理,使系统的风粉浓度、气流速度处于一个十分有利于点火的工况条件,从而完成一个持续稳定的点火、燃烧过程。
烟台龙源的等离子点火实验证明:运用这一原理及设计方法使单个燃烧器的出力可以从ZT/H扩大到10T/H。
在建立一级点火燃烧过程中,采用了将经过浓缩的煤粉送入一定角度等离子火炬中心区,高温等离子体同浓煤粉的汇合及所伴随的物理化学过程使煤粉原挥发分的含量提高了80%,其点火延迟时间不大于1秒。
图3 等离子燃烧器燃烧器点火的性能决定了整个燃烧器运行的成败,在设计上该燃烧器出力约为500~800kg/h,其喷口温度不低于1300℃。
另外加设了第一级气膜冷却技术避免了煤粉的贴壁流动及挂焦,同时又解决了燃烧器的烧蚀问题。
该区称为第一区。
第二区为混合燃烧区,在该区内一般采用“浓点浓”的原则,环形浓淡燃烧器的应用将淡粉流贴墙,而浓粉掺入主点火燃烧器燃烧。
这样做的结果既利于混合段的点火,又冷却了混合段的壁面。
如果在特大流量条件还可采用多级点火。
第三区为强化燃烧区,在一、二区内挥发分基本燃尽,为提高疏松炭的燃尽率,采用提前补氧强化燃烧措施,提前补氧的原因在于提高该区的热焙进而提高喷管的初速达到加大火焰长度提高燃尽度的目的,所采用的气膜冷却技术亦达到了避免结焦的目的。
第四区为燃尽区,疏松碳的燃尽率决定火焰的长度。
随烟气的温升,燃尽率逐渐加大。
1.2.3 电源系统电源系统是用来产生维持等离子电弧稳定的直流电源装置。
其基本原理是通过三相全控桥式晶闸管整流电路将380V三相交流电源变为稳定的直流电源。
其由隔离变压器和电源柜两大部分组成。
电源柜主要是提供稳定的直流电源,电源柜内主要有由六组大功率晶闸管组成的三相全控整流桥、大功率直流调速器6RA70、直流电抗器、交流接触器、控制PLC等。
隔离变压器的主要作用是隔离,一次绕阻接成三角形,使3次谐波能够通过,减少高次谐波的影响;二次绕组接成星型,可得到零线,避免等离子发生器带电。
1.2.4 控制系统控制系统主要是由PLC、CRT、通讯接口和数据总线构成。
其采用集电源全数字整流与点火器FO接口,具有通讯能力为一体的全数字直流控制器,为控制核心元件。
由于该控制器除具有正常的整流控制功能外,还具有拍扩展和RS485接口通讯功能。
因此,它作为整流和等离子发生器的引弧控制接口,水流、风压保护接口,从硬件上满足了系统的需要。
电流、电压的参数调整完全可以由上位机界面设定操作,实现过程的全自动化控制。
1.2.5 辅助系统辅助系统主要包括冷却水系统、风粉系统和压缩空气系统。
等离子电弧形成后,弧柱温度一般在3000K到4000K范围,因此对于形成电弧的等离子发生器的阴极和阳极必须通过水冷的方式来进行冷却,否则很快会被烧毁,通过大量实验总结得出:为保证好的冷却效果,需要冷却水以高的流速冲刷阳极和阴极。
风粉系统主要是由给粉机,磨煤机,暖风器,一次风系统,气膜风系统,二次风系统六个部分组成。
压缩空气是等离子电弧的介质,等离子电弧形成后,通过线圈形成的强磁场的作用压缩成为压缩电弧,需要压缩空气以一定的流速吹出阳极才能形成可利用的电弧。
因此,等离子点火系统需要配备压缩空气系统,压缩空气的要求是洁净的,且压力稳定。
2 等离子点火器国内外应用的研究进展2.1 国外研究进展自上世纪70 年代末开始,由于世界能源危机及环境危机的爆发,世界上的发达国家均开始研制等离子点火这一新型技术,并将该技术广泛推广到船用燃气轮机、地面发电用燃气轮机及火力发电厂的锅炉设备中,尤其是独联体国家、美国和澳大利亚等发达国家均在等离子点火技术方面投入了大量的人力和物力。
上世纪70 年代,独联体国家较早开展了对等离子点火技术的试验研究,主要研究部门有乌克兰国立海洋技术大学、莫斯科物理技术学院、俄罗斯科学院新西伯利亚分院、俄罗斯中空气动力研究院等科研单位,研究结果表明,采用等离子点火技术不仅可以提高燃料的燃烧效率,还可降低点火延迟时间,增加活化粒子的浓度,降低NOx 排放,改善燃烧室出口温度的不均匀度,起到强化及稳定燃烧的作用。
独联体国家还将实验成果应用到了舰船燃气轮机及多种型号的地面燃气轮机中,截止到1998 年,超过500台燃机系统已采用了等离子点火技术,极大改善了燃机低工况的性能。
除用于燃机系统的点火设备外,独联体国家将等离子点火技术应用于电厂煤粉的燃烧中。
图4 为乌斯基-可麦洛沃斯克电站锅炉中的等离子点火煤粉燃烧器,由阴极及阳极之间的电弧加热煤粉,且阴极为可移动式石墨组成,可随时调整电极间隙,并及时补充阴极材料的烧蚀,该装置发生器的功率可达200KW。
独联体研制的等离子发生器的功率一般达50-200KW,是将等离子发生器与热裂化反应器组合在一起,采用部分煤粉燃烧的热量加热其余煤粉,用煤粉自身放热促使热裂化反应的进行。
等离子电弧工作约1.5-2.0 小时后上述反应可达到平衡可停止工作,独联体国家研制的煤粉用等离子点火系统虽结构较为复杂,但实现了不烧重油而直接点燃煤粉的目的,极大减少了燃料的消耗,降低了NOx 的排放并提高了燃料的燃烧效率。
图4 同轴等离子体发生器煤粉燃烧室图5 马里塔电厂锅炉用燃烧器1-阴极;2-阳极;3-煤粉空气混合物美国、澳大利亚等发达国家也对等离子点火技术的应用进行了研究,主要应用于电站锅炉中煤粉的直接点燃,已达到降低能源消耗及污染物排放的目的。
美国联合碳化物公司于1978 年成功研制了热等离子点火燃烧器,如图 5 所示,且在马里塔电厂锅炉上进行了试验,该点火系统的功率为109KW,直接将圆管型电弧点火器插入煤粉燃烧器中,实现了煤粉的直接点燃。
Foster Wheeler 国际能源公司在1997 年的全美电力年会上,公布了本公司生产的大型锅炉机组的生产情况,同时该公司生产的锅炉机组全部装有等离子直接点火燃烧系统。
1993 年,澳大利亚太平洋电力公司生产了澳大利亚第一台工业用等离子体点火器,并将其安装于万吉 5 号机组锅炉中,该锅炉功率60MW,并最终点火试验成功。