一款开关同步检波电路的设计

一款开关同步检波电路的设计
一款开关同步检波电路的设计

一款开关同步检波电路的设计1

张晓飞1,董浩斌1,鲁永康1,常莉1

1中国地质大学(武汉)机械与电子信息学院,武汉(430074)

E-mail:z_afei@https://www.360docs.net/doc/a010465734.html,

摘要:本文利用AD790及74HC4053的高速特性以及低噪声前置放大器,设计与制作了一款同步检波电路。实测结果表明,电路有良好的线性,对检测微弱信号的下限可达1uV,适用于对低频微弱信号的检测。

关键词:高速电压比较器,高速模拟开关,开关式同步检波器,低噪声前置放大器

中图分类号:TN722

1.引言

众所周知,对于待测的微弱信号,相敏检波电路有着极强的压制干扰的能力,是锁定放大器件(LIA)的核心电路,使LIA广泛应用于物理、化学、生物医学与地球物理探测等众多领域,并促进了这些领域的科学研究。在相敏检波电路中,通常可分为模拟乘法器型及电子开关型两大类,前者有多款集成芯片(如AD734等)可供选择,但模拟乘法器型相敏检波器的输出正比于参考信号的大小,要保持参考信号的高精度,在实际实现中有一定困难,且存在一定的非线性[1];开关式相敏检波器的优点有输出精度不受参考信号幅度的影响,线性良好,动态范围大等一系列优点[1],故本设计中选择之。

2.开关同步检波器的设计要点

本文所设计的开关式同步检波器的电路框图如图1所示,由参考信号通道及待测信号通道两部分组成。

图1 电路框图

(1)在参考信号通道中,Ⅳ单元为过零比较器,其输出控制V单元的一刀二掷模拟开关。毋庸置疑,在开关式相敏检波电路中,这两个单元的工作速度将直接限制上限使用频率,故我们分别选择高速电压比较器AD790和高速模拟开关74HC4503[2]。

(2)在待测通道中,信号可能在n μV ~ n V范围内,为了适应不同的输入电压的需求,故设计了I、II、III三个单元电路作为放大器。三个单元电路的放大倍数均为10.0倍,通过一刀三掷开关SW1进行切换,则SW1输出信号的增益Ku可分别为10、100及1000。

值得指出,放大器的噪声水平、可输出的最大不失真电压、放大倍数的稳定性等分别影响到最小可检测信号、线性、及测量精度,为了能可靠的检测出μV数量级的信号,应选用低噪声前置放大器,我们设计了一款超低噪声前置放大器(将另文发表)。这三个放大单元

均采用这种电路。

(3)SW1的输出信号经过隔直电容C1加到R1,R2。设计中R=R1=R2=10k Ω,C1=10μF,要求R<

另外,RC 的时间常数将直接影响到可工作的最低频率,当RC 偏小时,会导致较低频率的相移,故设计中应从最低工作频率出发选择适当的电容容量。

(4)框图中的Ⅵ单元为差分放大电路,采用三片低噪声、低失调、低漂移、单位增益带宽为8MHz 的运算放大器OP27,并加上调零电路,电路如图2所示。

图2 高共模抑制比差分放大电路 图3 各点信号波形图

由于采用高共模抑制比的差分电路,当R1=R2=R3=R4时,电路的放大倍数为1。其输出可以直接接到2

1

4

双积分型数字电压表显示直流电压值。(若采用简单或稍复杂一些的低通电路则效果更好一些。)

应该指出:因为待测信号为正弦信号时,交直流转换由下式决定:

KuUi Ku

Ui o U 90032.022=×

(1) 框图中各点的信号波形如图3所示。

3 测试条件和测试结果

如前所述,信号通道的输入电压范围较大,为了测试同步检波电路的性能指标如线性、频率特性,尤其是对微弱信号的检测能力等,我们还采用了如图4所示的两种连续可调衰减器。

图4 两种连续可调衰减器

图4中的Ui 接到固伟SFG-2110型数字正弦信号发生器的输出端, FLUKE 45型数字电

压表的交直流电压档则分别测量微调电位器滑动端的交流电压Up 及同步检波电路的输出直流电压Uo 。

3.1对较大信号的测试结果

当SW1接通第I 级放大器,衰减器用图4(a )电路,Ui 固定为600mV 左右,使Up 在0~200mV 范围内可调。因信号源的输出正弦幅度-频率特性及稳定性能良好,所以在测量中10Hz 、100Hz 、1kHz 、30kHz 及100KHz 各频率变换时,每次在1kHz 条件下调准Up 值后,不再调节微调电位器。实测结果如表1所示。

对于正弦信号,由式1中可得K 的理论值如式2式所示:

Ku Ku K ×=?

=90032.02

理 (2) 式中Ku 为第I 级的放大倍数,已测得1kHz 条件下为10.02倍。实际计算时,将输出直流电压减去输入短接时的输出后再除以输入信号的有效值Ui 。根据实测结果而求出各点的K 值后,再按照式3算出相对误差δK ,可得表2。

1)/(?=理K K i K δ (3)

表1 同步检波电路实测结果表

Uo(V)

Up(mV)

10Hz

100Hz 1kHz 10kHz 30kHz 100kHz 200.05 1.7650 1.8038 1.0805 1.8001 1.7761 1.6478 179.97 1.5939 1.6223 1.6240 1.6200 1.5979 1.4783 159.91 1.4133 1.4421 1.4430 1.4398 1.4198 1.3104 139.99 1.2382 1.2620 1.2631 1.2605 1.2313 1.1445 120.02 1.0644 1.0823 1.0829 1.0811 1.0657 0.9790 99.99 0.8825 0.9016 0.9023 0.9010 0.8880 0.8131 80.02 0.7091 0.7212 0.7219 0.7212 0.7108 0.6484 60.00 0.5310 0.5411 0.5414 0.5409 0.5331 0.4843 39.98 0.3540 0.3607 0.3609 0.3605 0.3553 0.3214 20.00 117.43(mV) 180.30(mV) 180.47(mV) 180.32(mV) 177.7(mV) 160.11(mV) 10.01 88.51(mV) 90.14(mV) 90.23(mV) 90.18(mV) 88.88(mV) 79.99(mV) 0.00 -0.01mV

-0.01mV

0.00(mV)

0.07(mV)

0.09(mV)

0.04(mV)

表2 由表1数据整理而得的误差数据表

10Hz 100Hz 1kHz 10kHz 30kHz 100kHz Kmax 8.8712 9.0200 9.024 9.0333 8.9183 8.2349 Kmin 8.827 9.014 9.014 8.9948 8.805 7.987 Kmax/Kmin 1.0050 1.0007 1.0011 1.0043 1.0129 1.0310 δK (×10-3)

-21.5~-16.7

-0.13~-0.79

-0.97~-0.31

-2.9~+1.3

-21.7~24.0

-87.2~-114.6

① 由表2可见,同步检波电路在10Hz ~10kHz 范围内线性误差(由Kmax/Kmin 表示) 在5×10-3以内,表明输入到同步检波电路的信号从100mV~2V 之间具有良好的线性,通常在小信号输入时线性误差大(10Hz 除外),随着频率的增加30kHz~100kHz 线形误差亦增大。

② 相对误差δK 在1kHz 时最小,频率降低或稍高时相对误差均有所增加。低频端误差是 由该级f L 并非足够低所导致,在高频端尤其是100kHz 时,从示波器可观察到开关时间明显

提前于信号的过零点,造成较大误差。

3.2对微弱信号的测试结果

为了检验电路对微弱信号的检测能力,我们利用图4(b)所示的可调衰减器,对输入信号先衰减1000倍,再放大1000倍(即SW1接到放大器Ш的输出端,在没有采取任何屏蔽措施的条件下进行测量,结果如表3所示。

表3 对微弱信号的测试结果表(1kHz条件下)

由表3可见,当Vin为8~10μV时,表征线性关系的K不变,当信号小于8μV后,K 值愈来愈小,即随着输入信号的减小,测量误差逐步增加,但是1μV信号的测量误差为-7.8%。对于更小信号的测量,在这一电路中,主要受放大倍数的制约,对微弱信号的检测能力不可能无限制的提高其检测灵敏度。

当电路用线性检波电路替代同步检波时,因为受干扰严重,根本无法读到准确的读数,这正是同步检波与线性检波的本质区别,表明同步检波电路有良好的抗干扰能力。

4.结论

(1)主要是利用AD790及74HC4053等具有优良高速特性的开关式同步检波电路,具有良好的线性与较小的测量误差,在无屏蔽条件下可检测最小信号下限可达1μV左右,若适当增大放大倍数,采取屏蔽措施,被测信号的下限可望相应的提高。

(2)本电路具有简单、实用及低成本特点,尽管在设计中尽可能地选用前述高速器件,但工作频率上限仍受制约。本电路适宜与30kHz以下工作,当频率较高时,选用模拟乘法电路为佳。

参考文献

[1] 高晋占。微弱信号检测[M]。北京清华大学出版社,2004.11

[2] 吴丽华,童子权,张剑。电子测量电路[M]。哈尔滨工业大学出版社,2004.6

作者简介:

张晓飞(1981- ),男,现为中国地质大学(武汉)机械与电子信息学院研究生,专业:检测技术与自动化装置。Email: z_afei@https://www.360docs.net/doc/a010465734.html,

Design of on-off synchronous demodulation circuit Zhang Xiaofei1Dong Haobin1Lu Yongkang1Chang Li1 (Institute of Mechanical & Electronic Engineering,China University of Geosciences,Wuhan

430074,China)

Abstract

A kind of synchronous demodulation circuit which utilize the high speed characteristics of AD790 and 74HC4053 and the low noise pre-amplifier is presented. The test result shows that the circuit has good linearity, the lower limit of which could reach 1uV for low frequence weak signal detection. Keywords:high speed voltage comparator, high analog switch, on-off synchronous demodulation,Low noise pre-amplifier

二极管检波电路

二极管检波电路 二极管检波电路及故障处理 检波电路或检波器的作用是从调幅波中取出低频信号。它的工作过程正好和调幅相反。检波过程也是一个频率变换过程,也要使用非线性元器件。常用的有二极管和三极管。另外为了取出低频有用信号,还必须使用滤波器滤除高频分量,所以检波电路通常包含非线性元器件和滤波器两部分。 如图9-48所示是二极管检波电路。电路中的VD1是检波二极管,C1是高频滤波电容,R1是检波电路的负载电阻,C2是耦合电容。 图9-48 二极管检波电路 1.电路分析准备知识 众所周知,收音机有调幅收音机和调频收音机两种,调幅信号就是调幅收音机中处理和放大的信号。见图中的调幅信号波形示意图,对这一信号波形主要说明下列几点: (1)从调幅收音机天线下来的就是调幅信号。 (2)信号的中间部分是频率很高的载波信号,它的上下端是调幅信号的包络,其包络就是所需要的音频信号。 (3)上包络信号和下包络信号对称,但是信号相位相反,收音机最终只要其中的上包络信号,下包络信号不用,中间的高频载波信号也不需要。 2.电路中各元器件作用说明 如表9-43所示是元器件作用解说。 表9-43 元器件作用解说

如图9-51所示是检波二极管导通后的三种信号电流回路示意图。负载电阻构成直流电流回路,耦合电容取出音频信号。 图9-51 检波二极管导通后三种信号电流回路示意图 4.故障检测方法及电路故障分析 对于检波二极管不能用测量直流电压的方法来进行检测,因这这种二极管不工作在直流电压中,所以要采用测量正向和反向电阻的方法来判断检波二极管质量。 当检波二极管开路和短路时,都不能完成检波任务,所以收音电路均会出现收音无声故障。 5.实用倍压检波电路工作原理分析 如图9-52所示是实用倍压检波电路,电路中的C2和VD1、VD2构成二倍压检波电路,在收音机电路中用来将调幅信号转换成音频信号。电路中的C3是检波后的滤波电容。通过这一倍压检波电路得到的音频信号,经耦合电容C5加到音频放大管中。 图9-52 实用倍压检波电路

检波器设计(完整版)概要

职业技术学院学生课程设计报告 课程名称:高频电路课程设计 专业班级:信工102 姓名: 学号:20110311202 学期:大三第一学期

目录 1课程设计题目……………………………………………2课程设计目的…………………………………………3课程设计题目描述和要求……………………………4课程设计报告内容……………………………………… 4.1二极管包络检波电路的设计……………………… 4.2同步检波器的设计……………………………5结论……………………………………………………6结束语………………………………………………………7参考书目……………………………………………………8附录………………………………………………………

摘要 振幅调制信号的解调过程称为检波。有载波振幅调制信号的包络直接 反映调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑 制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变 换规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要是用于对DSB和SSB信号进行解调(当然也可以用于AM)。它的特点是必须加一个与载波同频同相的恢复载波信号。外加载波信 号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,实现 (t),和输入的同步 同步检波是很简单的,利用抑制载波的双边带信号V s (t),经过乘法器相乘,可得输出信号,实现了双 信号(即载波信号)V c 边带信号解调 课程设计作为高频电子线路课程的重要组成部分,目的是一方面使我们能够进一步理解课程内容,基本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手能力以及分析、解决问题的能力。 另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。

流电路图和工作原理,相敏检波电路图...)

关键词语:差动变压器式传感器工作原理,螺线管式差动变压器结构图,差动变压器等效电路图,差动变压器基本特性,差动变压器式传感器测量电路,差动整流工作原理,差动整流电路,相敏检波电路图,差动变压器式加速度传感器原理图,差动变压式传感器的应用 差动变压器式传感器 把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。 一、工作原理 螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈#, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成。 螺线管式差动变压器按线圈绕组排列的方式不同可分为一节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示。一节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类。 图4-11 螺线管式差动变压器结构图

差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示。当初级绕组w1加以激励电压1? U 时, 根据变压器的工作原理, 在两个次级绕组w2a 和w2b 中便会产生感应电势a E 2?和b E 2?。 如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。根据电磁感应原理, 将有??=b a E E 22。 由于变压器两次级绕组反向串联, 因而0222=-=???b a E E U , 即差动变压器输出电压为零。 图4-12 差动变压器等压电路 活动衔铁向上移动时,由于磁阻的影响, w2a 中磁通将大于w2b, 使M1>M2, 因而a E 2?增加, 而b E 2?减小。 反之, b E 2?增加, a E 2?减小。因为? ??-=b a E E U 222, 所以当a E 2?、b E 2?随着衔铁位移x 变化时, 2?U 也必将随x 变化。 图 4 - 13 给出了变

峰值检波器电路的设计

峰值检波器电路的设计 第一章绪论 检波器,是检出波动信号中某种有用信息的装置。 用于识别波、振荡或信号 存在或变化的器件。检波器通常用来提取所携带的信息。 检波器分为包络检波器 和同步检波器。前者的输出信号与输入信号包络成对应关系, 主要用于标准调幅 信号的解调。后者实际上是一个模拟相乘器,为了得到解调作用,需要另外加入 一个与输入信号的载波完全一致的振荡信号(相干信号)。同步检波器主要用于 单边带调幅信号的解调或残留边带调幅信号的解调。 从调幅波中恢复调制信号的电路,也可称为幅度解调器。与调制器一样,检 波器必须使用非线性元件,因而通常含有二极管或非线性放大器。 检波器分为包络检波器和同步检波器。前者的输出信号与输入信号包络成对 应关系,主要用于标准调幅信号的解调。 后者实际上是一个模拟相乘器,为了得 到解调作用,需要另外加入一个与输入信号的载波完全一致的振荡信号 (相干信 号)。同步检波器主要用于单边带调幅信号的解调或残留边带调幅信号的解调。 1.1检波器的构成 命话就血滤除无用的频率 实M 谱搬移分量,取出所需 的原调制信号的 频率分量 乘法器等非线性器件 低a 滤波器LPF 同步信号发生器 同步检波器(包络检波器) 应输入一个与输入载波 问频冋相的本地参考电 (同步电压斗

1.2检波器的作用 1. 2.1包络检波器电路 Wat A EBl 也雄检理电界 图1是典型的包络检波电路。由中频或高频放大器来的标准调幅信号 ua(t) 加在L1C1回路两端。经检波后在负载 RLC 上产生随ua(t)的包络而变化的电压 山⑴,其波形如图2所示。这种检波器的输出 u(t)与输入信号ua(t)的峰值成正 比,所以又称峰值检波器。 122包络检波器波形 包络检波器的工作原理可用图2的波形来说明。在t1vtvt2时间内,输入信号 瞬时值ua(t)大于输出电压 出(t),二极管导通,电容C 通过二极管正向电阻ri 充 电,ui(t)增大;在t2

二极管检波电路设计

目录 第1章二极管检波电路设计方案论证 (1) 1.1检波的定义 (1) 1.2二极管检波电路原理 (1) 1.3二极管检波电路设计的要求及技术指标 (1) 第2章对二极管检波电路各单元电路设计 (2) 2.1检波器电路设计检波器电路 (2) 2.1.1检波器电路原理及工作原理 (2) 2.1.2检波器质量指标 (3) 第3章二极管检波电路整体电路设计及仿真结果 (4) 3.1整体电路图及工作原理 (4) 3.3电路仿真图形 (4) 第4章总结 (5) 参考文献 (6) 元器件清单 (7)

第1章二极管检波电路设计方案论证 1.1检波的定义 广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说,是从它的振幅变化提取调制信号的过程;对调频波来说,是从它的频率变化提取调制信号的过程;对调相波来说,是从它的相位变化提取调制信号的过程。 狭义的检波是指从调幅波的包络提取调制信号的过程。因此,有时把这种检波称为包络检波或幅度检波。图1-20-21出了表示这种检波的原理:先让调幅波经过检波器(通常是晶体二极管),从而得到依调幅波包络变化的脉动电流,再经过一个低通滤波器滤去高频成分,就得到反映调幅波包络的调制信号 1.2二极管检波电路原理 调幅波信号是二极管检波电路的输入,由于二极管只允许单向导电,所以,如果使用的是硅管,则只有电压高于0.7V的部分可以通过二极管。 同时,由于二极管的输出端连接了一个电容,这个电容与电阻配合对二极管输出中的高频信号对地短路,使得输出信号基本上就是AM信号包络线。电容和电阻构成的这种电路功能叫做滤波。 1.3二极管检波电路设计的要求及技术指标 1.对常规调幅信号进行二极管检波解调并仿真,能够观察输入输出波形。 2.根据电路结果求出电压利用系数 3.判断设计的电路是否能够产生失真 参数:常规调幅信号调幅系数为0.5,输入信号载波频率10000HZ,载波电压100mV左右。

检波二极管应用电路

检波二极管应用电路 检波二极管应用电路1.收音机检波电路收音机检披电路的任务是将465kHz中频调幅信号还原为音频信号。图14-7为两种常用的收音机检披电路,中频电路采用PNP型半导体二极管时.其检波电路如图14-7(a)所示;采用NPN型半导体二极管时,其电路如图14-7(b)所示。检波电容C1的电容值一般为5100pF-0.01μF。电位器RP为检波负载,其阻值一般取4.7kΩ。R1与C2是为更好地滤掉残余中频部分而设置的阻容滤波器,R1取500-1000Ω,C2取0.1μF。自动增益A 检波二极管应用电路 1.收音机检波电路 收音机检披电路的任务是将465kHz 中频调幅信号还原为音频信号。图14-7 为两种常用的收音机检披电路,中频电路采用PNP型半导体二极管时.其检波电路如图14-7 (a) 所示;采用NPN 型半导体二极管时,其电路如图14-7 (b) 所示。检波电容C1的电容值一般为5100pF - 0.01μF。电位器RP 为检波负载,其阻值一般取4.7k Ω。R1与C2 是为更好地滤掉残余中频部分而设置的阻容滤波器,R1取500 - 1000Ω , C2取0.1μF 。自动增益AGC 的电压是利用检波输出电压直流成分的一部分,加到控制管基极来完成的。 2. 调频、调幅收音机检波及鉴频电路 图14-8 是一个调频、调幅收音机共用的检波、鉴频电路,其VT2是中放的末级电路。 中频变压器T1调谐于10.7MHz 调频波的中频,T2调谐于465kHz周幅波的中频,T1的输出端与比例鉴频器电路耦合,通过鉴频电路解调出调频波中的音频信号。T2的输出端与二极管检波电路耦合,通过检波电路解调出调幅波中的音频信号。S为调频、调幅选择开关。 3. 来复式收音机中的检波电路 图14-9 所示是来复式收音机电路,其中VD1和VD2组成倍压检波电路,C3 为高频滤被电容器。检波后得到的低频信号再加到VT1的输出端,再作一次低频放大,然后送给耳机。

二极管检波电路的设计

高频电子线路课程设计(论文)题目:二极管检波电路设计 院(系):信息科学与工程学院 专业班级: 学号: 学生姓名: 指导教师: 教师职称: 起止时间:

课程设计(论文)任务及评语

目录 第1章课程设计的基本概念 (1) 1.1 检波电路的基本概念 (1) 第2章课程设计目的与要求 (1) 2.1 课程设计目的 (1) 2.2 课程设计的实验环境 (1) 2.3 课程设计的预备知识 (1) 2.4 课程设计要求 (1) 第3章课程设计内容 (1) 3.1电路原理设计 (1) 3.2设计电路 (5) 3.3电路分析 (5) 3.4总结 6参考文献 (6)

第一章课程设计的基本概念 1.1检波电路的基本概念 调幅信号的解调就是从已调波信号中还原出原调制信号,这个过程是调制的逆过程,称为振幅检波,简称为检波。 从频谱关系看,调幅是把调制信号的频谱搬移到高频载波附近:检波则是把已调波中的边带信号不失真地从高频载波附近搬移到原来的位置,因此检波电路也是频谱搬移电路。 检波方法可分为两大类:包络检波和同步检波,包络检波是指检波器的输出电压直接反映高频调幅波包络变化规律的一种检波方法。由于普通调幅波的包络反映了调制信号的规律,与调制信号成正比,因此包络检波适用于普通调幅波的解调。接下来将介绍二极管包络检波电路。 第二章课程设计目的与要求 2.1 课程设计目的 本课程的课程设计是设计一个简单的二极管检波电路,通过本次设计,让学生掌握高频电子线路的设计方法,并将其与仿真联系起来,理论与实践相结合,培养学生的设计能力。 2.2 做仿真部分:课程设计的实验环境 硬件要求能运行Windows 9.X操作系统的微机系统。EWB仿真操作系统。 2.3 课程设计的预备知识 熟悉EWB仿真操作系统,及高频电子线路课程。 2.4 课程设计要求 按课程设计指导书提供的课题,按照要求设计电路,计算电路的参数,完成课程设计。

包络检波器的设计与实现

2013~2014学年第一学期 《高频电子线路》 课程设计报告 题目:包络检波器的设计与实现 专业:电子信息工程 班级:11电信1班 姓名: 指导教师:冯锁 电气工程学院 2013年12月12日

任务书

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用了最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验,Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

目录 第1章设计目的及原理 (4) 1.1设计目的和要求 (4) 1.1设计原理 (4) 第2章指标参数的计算 (8) 2.1电压传输系数的计算 (8) 2.2参数的选择设置 (8) 第3章 Multisim的仿真结果及分析 (11) 总结 (16) 参考文献 (17) 答辩记录及评分表 (18)

峰值检波器电路原理

三极管恒流源电路 恒流源的输出电流为恒定。在一些输入方面如果应用该电路则能够有效保护输入器件。比如RS422通讯中采用该电路将有效保护该通讯。在一定电压方位内可以起到过压保护作用。以下引用一段恒流源分析。 恒流源是输出电流保持不变的电流源,而理想的恒流源为: a)不因负载(输出电压)变化而改变。 b)不因环境温度变化而改变。 c)内阻为无限大。 恒流源之电路符号: 理想的恒流源实际的流源 理想的恒流源,其内阻为无限大,使其电流可以全部流出外面。实际的恒流源皆有内阻R。 三极管的恒流特性:

从三极管特性曲线可见,工作区内的IC受IB影响,而VCE对IC的影响很微。因此,只要IB值固定,IC亦都可以固定。 输出电流IO即是流经负载的IC。 电流镜电路Current Mirror: 电流镜是一个输入电流IS与输出电流IO相等的电路: Q1和Q2的特性相同,即VBE1 = VBE2,β1 = β2。 优点: 三极管之β受温度的影响,但利用电流镜像恒流源,不受β影响,主要依靠外接电阻R经 Q2去决定输出电流IO(IC2 = IO)。 例: 三极管射极偏压设计 范例1:

从左边看起:基极偏压 所以 VE=VB - 0.6=1.0V 又因为射极电阻是1K,流经射极电阻的电流是 所以流经负载的电流就就是稳定的1mA 范例2.

这是个利用稳压二极管提供基极偏压5.6V VE=VB - 0.6=0.5V 流经负载的电流 范例3. 这个例子有一点不同:利用PNP三极管供应电流给负载电路.首先,利用二极管0.6 V的压降,提供8.2 V基极偏压(10 – 3 x 0.6 = 8.2). 4.7 K电阻只是用来形成通路,而且不希望(也不会)有很多电流流经这个电阻。 VE=VB + 0.6=8.8V PNP晶体的560欧姆电阻两端电位差是1.2V, 所以电流是2mA 晶体恒流源应用注意事项 如果只用一个三极管不能满足需求,可以用两个三极管架成:

包络检波器设计书

《通信电子线路》课程设计说明书 包络检波器 学院:电气与信息工程学院 学生:磊 指导教师:欣职称/学位实验师 专业:通信工程 班级:通信1302班 学号: 1330440253 完成时间: 2015-12-31

工学院通信电子线路课程设计课题任务书 学院:电气与信息工程学院专业:通信工程

摘要 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。检波广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波是从它的频率变化提取调制信号的过程;对调相波是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 关键词:调幅波;低频信号;振幅检波

目录 1 绪论 0 2 包络检波器设计原理 (1) 2.1原理框图 (1) 2.2原理电路 (2) 2.3工作原理分析 (2) 2.4 峰值包络检波器的输出电路 (4) 2.5 电压传输系数 (4) 2.6检波器的惰性失真 (5) 2.7检波器的底部切割失真 (6) 3包络检波器电路设计 (7) 4调试 (8) 4.1 AM发射机实验 (8) 4.2 AM接收机实验 (9) 参考文献 (11) 致 (12)

包络检波器的设计与实现

目录 前言 (1) 1 设计目的及原理 (2) 1.1设计目的和要求 (2) 1.1设计原理 (2) 2包络检波器指标参数的计算 (6) 2.1电压传输系数的计算 (6) 2.2参数的选择设置 (6) 3 包络检波器电路的仿真 (9) 3.1 Multisim的简单介绍 (10) 3.2 包络检波电路的仿真原理图及实现 (10) 4总结 (13) 5参考文献 (14)

前言 调幅波的解调即是从调幅信号中取出调制信号的过程,通常称为检波。广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说是从它的振幅变化提取调制信号的过程;对调频波,是从它的频率变化提取调制信号的过程;对调相波,是从它的相位变化提取调制信号的过程。 工程实际中,有一类信号叫做调幅波信号,这是一种用低频信号控制高频信号幅度的特殊信号。为了把低频信号取出来,需要专门的电路,叫做检波电路。使用二极管可以组成最简单的调幅波检波电路。调幅波解调方法有二极管包络检波器、同步检波器。目前应用最广的是二极管包络检波器,不论哪种振幅调制信号,都可采用相乘器和低通滤波器组成的同步检波电路进行解调。但是,对普通调幅信号来说,它的载波分量被抑制掉,可以直接利用非线性器件实现相乘作用,得到所需的解调电压,而不必另加同步信号,通常将这种振幅检波器称为包络。 为了生动直观的分析检波电路,利用最新电子仿真软件Multisim11.0进行二极管包络检波虚拟实验。Multisim具有组建电路快捷、波形生动直观、实验效果理想等优点。计算机虚拟仿真作为高频电子线路实验的辅助手段,是一种很好的选择,可以加深学生对一些抽象枯燥理论的理解,从而达到提高高频电子线路课程教学质量的目的。

实验六 二极管包络检波电路资料

实验六 二极管包络检波电路 一、 实验目的 1. 掌握用二极管大信号包络检波器实现普通调幅波(AM )解调的方法。 2. 了解电路参数对普通调幅波(AM )解调影响。 二、实验使用仪器 1.集成乘法调幅实验板、二极管包络检波实验板 2.高频信号源、100MHz 双踪示波器、万用表。 图6-1是二极管大信号包络检波电路,图6-2表明了大信号检波的工作原理。输入信号)(t u i 为正并超过C 和L R 上的)(0t u 时, 二极管导通,信号通过二极管向C 充电,此时)(0t u 随充电电压上升而升高。当)(t u i 下降且小于)(0t u 时,二极管反向截止,此时停止向C 充 电并通过L R 放电,)(0t u 随放电而下降。充电时,二极管的正向电阻D r 较小,充电较快, )(0t u 以接近)(t u i 上升的速率升高。放电时,因电阻L R 比D r 大得多(通常Ω=k R L 10~5),放电慢,故)(0t u 的波动小,并保证基本上接近于)(t u i 的幅值。如果)(t u i 是高频等幅波,且L R 很大,则)(0t u 几乎是大小为0U 的直流电压,这正是带有滤波电容的半波整流电路。当输入信号)(t u i 的幅度增大或减少时,检波器输出电压)(0t u 也将随之近似成比例地升高或降

低。当输入信号为调幅波时,检波器输出电压)(0t u 就随着调幅波的包络线而变化,从而获得调制信号,完成检波作用,由于输出电压)(0t u 的大小与输入电压的峰值接近相等,故把这种检波器称为峰值包络检波器。 2.二极管大信号包络检波器的电压传输系数 电压传输系数是检波器的主要性能指标之一,用d η表示, cm a m cm a m d U m U U m U ΩΩ== )()(调幅波包线变化的幅度检出的音频电压幅度η 对于二极管包络检波器,当C R L 很大而D r 很小时,输出低频电压振幅只略小于调幅波包络振幅,故d η略小于1,实际上d η在80%左右。并且L R 足够大时,d η为常数,即检波器输出电压的平均值与输入高频电压的振幅成线性关系,所以又把二极管峰值包络检波称为线性检波。电压传输系数与电路参数L R 、C 、0r 以及信号大小有关,很难用一个简单关系式表达,所以d η常用实测估算得到。 3.二极管大信号包络检波器输入电阻 输入电阻是检波器的另一个重要的性能指标。对于高频输入信号源来说,检波器相当于一个负载,此负载就是检波器的等效输入电阻in R 。 d L in R R η2~ - 上式说明,大信号输入电阻in R 等于负载电阻的一半再除以d η。例如Ω=k R L 1.5,当d η=0.8,时,则Ω=?= k R in 2.38 .021 .5。 由此数据可知,一般大信号检波比小信号检波输入电阻大。 3.二极管大信号包络检波器检波失真 检波输出可能产生三种失真:第一种,由于检波二极管伏安特性弯曲引起的非线性失真;第二种是由于滤波电容放电慢引起的惰性失真;第三种是由于输出耦合电容上所充的直流电压引起的负峰切割失真。其中第一种失真主要存在于小信号检波器中,并且是小信号检波器中不可避免的失真,对于大信号检波器这种失真影响不大,主要是后两种失真。 (1) 惰性失真。如图6-3电路所示。

峰值检波的各种设计

一、前言 峰值检测电路(PKD,Peak Detector)的作用是对输入信号的峰值进行提取,产生输出Vo = Vpeak,为了实现这样的目标,电路输出值会一直保持,直到一个新的更大的峰值出现或电路复位。 峰值检测电路在AGC(自动增益控制)电路和传感器最值求取电路中广泛应用,自己平时一般作为程控增益放大器倍数选择的判断依据。有的同学喜欢用AD637等有效值芯片作为程控增益放大器的判据,主要是因为集成的方便,但个人认为是不合理的,因为有效值和信号的正负峰值并没有必然联系;其次,实际应用中这类芯片太贵了。当然,像电子设计竞赛是可以的,因为测试信号总是正弦波,方波等。(本文参加了TI公司的博文比赛,觉得还行的话,希望大家帮顶一下、回复一个,谢谢大家,我会更努力的:-) 二、峰值检测电路原理 顾名思义,峰值检测器(PKD,Peak Detector)(本文默认以正峰值检测为例)就是要对信号的峰值进行采集并保持。其效果如下如(MS画图工具绘制): 根据这样的要求,我们可以用一个二极管和电容器组成最简单的峰值检测器。如下图(TINA TI 7.0绘制): 这时候我们可以选择用面包板搭一个电路,接上信号源示波器观察结果,但在这之前利用仿真软件TINA TI进行简单验证会节省很多时间。通过简单仿真(输入正弦信号5kHz,2Vpp),我们发现仅仅一个二极管和电容器组成的峰值检测器可以工作,但性能并不是很理想,对1nF的电容器,100ms后达到稳定的峰值,误差达10%。而且,由于没有输入输出的缓冲,在实际应用中,电容器中的电荷会被其他部分电路负载消耗,造成峰值检测器无法保持信号峰值电压。

3 、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是

一、相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号Ux乘以幅值为1的载波信号就可以得到双边带调幅信号Us,将双边带调幅信号Us再乘以载波信号,经低通滤波后就可以得到调制信号Ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 二、相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

高频电子线路课程设计-同步检波器设计

同步检波器 摘要 振幅调制信号的解调过程称为检波。有载波振幅调制信号的包络直接反映调制信号的变化规律,可以用二极管包络检波的方法进行检波。而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变换规律,无法用包络检波进行解调,所以要采用同步检波方法。 同步检波器主要是用于对DSB 和SSB 信号进行解调(当然也可以用于AM )。它的特点是必须加一个与载波同频同相的恢复载波信号。外加载波信号电压加入同步检波器的方法有两种。利用模拟乘法器的相乘原理,实现同步检波是很简单的,利用抑制载波的双边带信号V s (t ),和输入的同步信号(即载波信号)V c (t ),经过乘法器相乘,可得输出信号,实现了双边带信号解调 课程设计作为高频电子线路课程的重要组成部分,目的是一方面使我们能够进一步理解课程内容,基本掌握数字系统设计和调试的方法,增加集成电路应用知识,培养我们的实际动手能力以及分析、解决问题的能力。 另一方面也可使我们更好地巩固和加深对基础知识的理解,学会设计中小型高频电子线路的方法,独立完成调试过程,增强我们理论联系实际的能力,提高电路分析和设计能力。通过实践引导我们在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 通过设计,一方面可以加深我们的理论知识,另一方面也可以提高我们考虑问题的全面性,将理论知识上升到一个实践的阶段。

同步检波器功能分析 根据高频电子线路理论分析,双边带信号DSB,就是抑制了载波后的调制信号,它的有用 信号成分以边带形式对称地分布在被抑制载波的两侧。由于有用信号所在的双边带调制信号的上、下边频功率之和只有载波功率的一半,即它只占整个调幅波功率1/3,实际运用中,调制度 a m 在0.1~1之间变化,其平均值仅为0.3,所以边频所占整个调幅波的功率还要小。为了节省发射功率和提高有限频带资源的利用率,一般采用传送抑制载波的单边带调制信号SSB,单边带调制信号已经包含了所有有用信号成分,电视信号采用残留单边带发送图像的调幅信号就是其中一例。而要实现对抑制载波的双边带调制信号DSB 或单边带调制信号SSB 进行解调,检出我们所需要的调制有用信号,不能用普通的二极管包络检波电路,而需要用同步检波电路。 同步检波电路与包络检波不同,检波时需要同时加入与载波信号同频同相的同步信号。利用乘法器可以实现调幅波的乘积检波功能,普通调幅电压乘积器的原理框图如图2.1所示。 图2.1 普通调 幅电压乘积器原理框图 图2.1中,设输入信号)(t U AM 为普通调幅信号: t t m U U x y a XM AM ωωcos )cos 1(+= (2.1) 限幅器输出为等幅载波信号 ,乘法器将两输入信号进行相乘后输出信号为: )()()(t v t v K t v c s E o = (2.2)

检波器电路设计

检波器电路设计 一、设计目的 1、理解二极管的操作原理 2、理解二极管检波器的基本原理和基本工作 原理 二、设计要求 1、设计二极管检波电路。 2、对二极管检波电路的特性进行仿真 3、设计报告应该包括二极管检波的基本工作原理以及仿真分析。 三、基本原理 1、二极管的工作原理 从根本上来说,二极管是个非线性的直流的电压电流的阻抗,用公式可看出其特性: 当q:电荷 k:玻耳兹曼常数()T:绝

对温度 n:理想因数 理想因数n和二极管的结构有关,值为1~2。使用于肖特基势垒二极管的n值大约为1.2。 图8.1 二极管等价模型 将二极管的电压值代入到公式8.2中: 这里,:直流偏压:交流小信 号电压 可以将公式8.1在0V点进行泰勒级数展开: 这里,显示为直流偏流

从0V的第一个和第二个派生得出公式8-4和8-5: 这里,二极管的合阻抗,二 极管的动态电导率 因此,公式8-3和公式8-6可以用直流偏流I和交流偏压i的和来表示: 当只使用公式8-6的前三项来替代称为小信号近似,对于大多数的检波器来说这是比较适宜的解决方式。 2、二极管的检波原理 用二极管的非线性原理可以检测振幅已调的载波。在这种情况下,二极管的电压表现为:

这里 ,已调信号频率,载波频率 调频指数 交流电的二极管电流值为: 用公式8-8替代8-7,二极管的输出电流值为: 使用低通滤波器,从非必需的频率成分中只提取需要的输出频率成分mω是可能的。电流频率mω为 ,这与输入电流的功率成比例。这种平方关系对于二极管检波器来说是普遍出现的情况,

但只存在于对输入功率的范围进行限制时。如果输入功率太高的话,小信号的情况将不会出现,输出将达到饱和状态。 四、设计过程 1、检波器设计说明 2、检波器等效电路 3、原理图的绘制 打开ADS软件如图

二极管峰值包络检波器的设计

******************* 实践教学 ******************* 计算机与通信学院 2012年秋季学期 《通信系统基础实验》设计报告题目:二极管峰值包络检波器的设计

目录 一、实验目的 (1) 1.1、进一步了解调幅波的原理,掌握调幅波的调制方法 (1) 1.2、了解调幅波解调的原理,掌握调幅波的解调方法 (1) 1.3、了解二极管包络检波的主要指标,检波效率及波形失真 (1) 1.4、掌握用集成电路实现同步检波的方法 (1) 二、设计指标 (1) 三、整体电路图说明 (1) 四、详细单元电路设计 (2) 4.1、峰值包络检波 (2) 4.2、失真电路 (3) 4.3、改进电路 (5) 4.4、实验电路 (5) 五、整体电路设计与仿真结果 (6) 5.1、混频器仿真电路仿真图 (6) 5.2、包络检波仿真 (7) 六、设计总结 (7) 七、参考文献 (8)

一、实验目的 1.1、进一步了解调幅波的原理,掌握调幅波的调制方法 1.2、了解调幅波解调的原理,掌握调幅波的解调方法 1.3、了解二极管包络检波的主要指标,检波效率及波形失真 1.4、掌握用集成电路实现同步检波的方法 二、设计指标 2.1、输入AM信号 2.2、输出信号 三、整体电路图说明 在设计电路时要考虑选择性和通频带的要求,保证输出的高频波纹小,减小频率 失真,避免惰性失真和负峰切割失真。在选择二极管时要选择正向电阻小、反向电阻大、结电容小最高工作频率高的二极管。一般多用点触型锗二极管2AP系列。其正向电阻小,正向电流上升快,在信号较小时就可以进入大信号线形检波区。电阻R的选择,主要考虑输入电阻及失真的问题,同时考虑对Kd的影响.容C不能太大,以防止惰性失真:C太小又会使高频波纹大,应使RC>>Tc。 图1:整体电路图

相敏检波

相敏检波 (一)相敏检波的功用和原理 1、什么是相敏检波电路? 相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。 2、为什么要采用相敏检波? 包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。第二,包络检波电路本身不具有区分不同载波频率的信号的能力。对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。 3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么? 相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。有了参考信号就可以用它来鉴别输入信号的相位和频率。 4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别? 将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。这就是相敏检波电路在结构上与调制电路相似的原因。 二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。这使它们的输入、输出耦合回路与滤波器的结构和参数不同。 (二)相敏检波电路的选频与鉴相特性 1、相敏检波电路的选频特性 什么是相敏检波电路的选频特性? 相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

二极管检波电路设计

二极管检波电路设计

————————————————————————————————作者:————————————————————————————————日期:

目录 第1章二极管检波电路设计方案论证 (1) 1.1检波的定义 (1) 1.2二极管检波电路原理 (1) 1.3二极管检波电路设计的要求及技术指标 (1) 第2章对二极管检波电路各单元电路设计 (2) 2.1检波器电路设计检波器电路 (2) 2.1.1检波器电路原理及工作原理 (2) 2.1.2检波器质量指标 (3) 第3章二极管检波电路整体电路设计及仿真结果 (4) 3.1整体电路图及工作原理 (4) 3.3电路仿真图形 (4) 第4章总结 (5) 参考文献 (6) 元器件清单 (7)

第1章二极管检波电路设计方案论证 1.1检波的定义 广义的检波通常称为解调,是调制的逆过程,即从已调波提取调制信号的过程。对调幅波来说,是从它的振幅变化提取调制信号的过程; 对调频波来说,是从它的频率变化提取调制信号的过程;对调相波来说,是从它的相位变化提取调制信号的过程。 狭义的检波是指从调幅波的包络提取调制信号的过程。因此,有时把这种检波称为包络检波或幅度检波。图1-20-21出了表示这种检波的 原理:先让调幅波经过检波器(通常是晶体二极管),从而得到依调幅波 包络变化的脉动电流,再经过一个低通滤波器滤去高频成分,就得到反 映调幅波包络的调制信号 1.2二极管检波电路原理 调幅波信号是二极管检波电路的输入,由于二极管只允许单向导电,所以,如果使用的是硅管,则只有电压高于0.7V的部分可以通过 二极管。同时,由于二极管的输出端连接了一个电容,这个电容与电阻 配合对二极管输出中的高频信号对地短路,使得输出信号基本上就是AM 信号包络线。电容和电阻构成的这种电路功能叫做滤波。 1.3二极管检波电路设计的要求及技术指标 1.对常规调幅信号进行二极管检波解调并仿真,能够观察输入输出波形。 2.根据电路结果求出电压利用系数 3.判断设计的电路是否能够产生失真 参数:常规调幅信号调幅系数为0.5,输入信号载波频率10000HZ,载波电压100mV左右。

同步检波器设计

学生姓名:专业班级: 指导教师:工作单位:信息工程学院题目: 同步检波器设计 初始条件: 高频理论知识,Multisim和Protel软件使用基础,装有Multisim和Protel的PC 机一台。 要求完成的主要任务: 1.设计出信号调制系统 2.设计出同步检波器原理图 3.结合仿真软件进行仿真设计 4.给出设计具体参数及技术指标 参考书: 电子线路设计·实验·测试(谢自美) 高频电子线路实验与课程设计(杨翠娥) 模拟电子线路Ⅱ(谢沅清) 时间安排: 1、理论讲解,老师布置课程设计题目,学生根据选题开始查找资料; 2、课程设计时间为1周。 (1)确定技术方案、电路,并进行分析计算,时间1天; (2)选择元器件、安装与调试,或仿真设计与分析,时间2天; (3)总结结果,写出课程设计报告,时间2天。 指导教师签名: 2010年 01月26 日 系主任(或责任教师)签名:年月日

目录 摘要.................................................................................................................................................................................................... I ABSTRAC T..................................................................................................................................................................................II 1 MC1496芯片介绍 .. (1) 1.1MC1496内部结构及基本性能 (1) 1.2误差源和非线性 (2) 1.3应用电路 (3) 1.3.1 乘法器 (3) 1.3.2 压控低通滤波器 (3) 2 信号调制的一般方法 (3) 2.1模拟调制 (4) 2.2数字调制 (4) 2.3脉冲调制 (4) 3 振幅调制 (4) 3.1基本原理 (4) 3.2AM调制与仿真实现 (8) 4 解调 (10) 4.1解调基本原理 (10) 4.2包络检波 (10) 4.3同步检波 (11) 4.3.1 叠加型同步检波器 (11) 4.3.2 乘积型同步检波器 (13) 4.3.3 乘积型同步检波器的优点 (16) 5 小结与体会 (18) 6参考文献 (19) 7 附录:总原理图 (20)

相关文档
最新文档