图像配准算法综述
计算机视觉中的图像配准技术综述

计算机视觉中的图像配准技术综述引言计算机视觉中的图像配准技术是一种将多个图像对齐和融合的关键技术。
图像配准技术在医学影像、地理遥感、计算机图形学等领域都有着广泛的应用。
本文将对计算机视觉中的图像配准技术进行综述,包括图像配准的定义、算法原理、分类和应用。
通过对各个方面的概述和分析,希望读者可以对图像配准技术有更深入的了解。
一、图像配准的定义图像配准是指将多个图像按照某种准则对齐和融合的过程。
在图像配准中,通常有一个参考图像(reference image)和一个或多个需要对齐的目标图像(target image)。
图像配准的目的是将目标图像转换到参考图像的空间坐标系中,以使两个或多个图像之间拥有相同的尺度、方向和位置关系。
二、图像配准的算法原理图像配准的算法原理主要包括特征提取、特征匹配和变换模型估计。
具体步骤如下:1. 特征提取特征提取是图像配准中的第一步,它的目的是从图像中提取出一些具有鲁棒性和区分度的特征点或特征描述子。
常用的特征包括角点、边缘、纹理等。
特征提取的方法有很多种,包括Harris角点检测、SIFT、SURF等。
2. 特征匹配特征匹配是图像配准中的关键步骤,它的目的是将参考图像和目标图像中找到的特征进行匹配。
常用的特征匹配方法有最近邻匹配、RANSAC等。
最近邻匹配通过计算特征之间的距离来进行匹配,而RANSAC算法则通过随机采样和模型估计来选择最佳匹配。
3. 变换模型估计变换模型估计是图像配准中的最后一步,它的目的是通过匹配得到的特征点或特征描述子估计参考图像和目标图像之间的变换关系。
常用的变换模型有仿射变换、透射变换、非刚性变形等。
变换模型估计的方法有最小二乘法、最大似然估计等。
三、图像配准的分类图像配准可根据多个维度进行分类。
一种常见的分类方法是根据变换模型的类型来区分,包括刚性配准和非刚性配准。
刚性配准是指保持图像的旋转、平移和缩放不变的配准方法,常用于医学影像中对齐各个时间点的图像。
医学影像技术中的图像配准方法综述与性能评估

医学影像技术中的图像配准方法综述与性能评估摘要:在医学影像技术中,图像配准发挥着至关重要的角色。
本综述旨在深入探讨在医学影像技术中应用的图像配准方法,并对其性能进行评估。
此文首先讨论了图像配准的基本知识,并概述了其在医学影像技术中的应用。
然后,详细介绍了各种主要的图像配准方法,并通过比较和分析评估了它们的性能。
最后,本文探讨了图像配准方法的未来发展趋势,包括面临的挑战与可能的解决方式。
本篇综述的目标是提供一个全面的进展和发展趋势的概述,以期对图像配准的研究和应用提供深入的了解。
关键词:医学影像技术;图像配准;性能评估;图像处理;图像分析;深度学习一、引言1.背景介绍:在当今医学技术高度发展的背景之下,医学影像技术作为医疗诊断和治疗的重要组成部分,受到广泛关注。
更为关键的是,图像配准作为重要的影像处理步骤,弥补了从多源影像中获取信息的局限性,如时间、视角和模态等,对临床治疗和研究具有至关重要的影响。
图像配准的准确性和效率直接关乎到诊断准确率和治疗效果。
2.目的和目标:本文的主要目标是对医学影像技术中的图像配准方法进行全面系统的综述,并对各种配准方法进行性能评估和比较。
旨在通过对各种图像配准新技术和方法的研究,对图像配准性能进行提升,为疾病的诊断和治疗提供更为准确的医疗影像资源。
此外,还希望能找出影响图像配准性能的因素,以期找到改进图像配准性能的有效方法,进一步推动医学影像技术的发展,提高医疗服务质量。
本文的研究将理论和实证相结合,旨在产生对实践有重要影响的理论成果和切实可行的技术指导建议,为医学影像技术研究和应用提供科学的理论支撑和实践参考。
二、医学影像技术概述1.定义和分类:医学影像技术是应用科学和技术手段获取和处理身体各组织和系统图像的一种技术。
它将生物信号转换为可视化的图像,帮助医生进行诊断和治疗。
根据成像原理和所使用的设备不同,医学影像可以大致分为X射线成像,核磁共振成像(MRI),计算机断层扫描(CT),超声波成像,放射性核素成像(PET,SPECT)等。
图像特征检测与匹配方法研究综述

图像特征检测与匹配方法研究综述图像特征检测与匹配是计算机视觉领域的重要研究方向,它在许多实际应用中发挥着关键作用,如图像检索、目标识别和三维重建等。
本文对图像特征检测与匹配方法进行综述,主要包括特征检测算法、特征描述算法和特征匹配算法三个方面。
一、特征检测算法特征检测算法旨在寻找图像中的稳定不变性特征点,以便用于后续的特征描述和匹配。
常用的特征检测算法包括Harris角点检测算法、SIFT 算法和SURF算法等。
1. Harris角点检测算法:该算法通过计算图像的局部灰度变化,寻找具有最大角度变化的像素。
它能够有效检测出图像中的角点,但对于尺度变化和旋转不变性较差。
2.SIFT算法:SIFT算法通过构建高斯金字塔和尺度空间极值检测,寻找出图像中的尺度不变的关键点。
同时,通过计算局部图像的梯度方向直方图,生成特征向量描述子,实现图像的匹配。
3. SURF算法:SURF算法是SIFT算法的改进版本,采用了一种快速的积分图像技术,大大提高了计算效率。
SURF算法在计算图像的尺度空间极值点时,使用了一种基于Hessian矩阵的指标,检测出更加稳定的特征点。
二、特征描述算法特征描述算法利用特征点周围的图像信息,生成唯一且具有区分度的特征向量。
常用的特征描述算法有SIFT描述子、SURF描述子和ORB描述子等。
1.SIFT描述子:SIFT描述子通过计算特征点周围的梯度信息,生成128维的特征向量。
它具有较强的区分度和旋转不变性,在图像匹配任务中表现较好。
2. SURF描述子:SURF描述子是一种基于Haar小波特征的描述子,使用了一种积分图像计算方法,降低了计算复杂度。
SURF描述子的维度为64维,具有良好的尺度不变性和旋转不变性。
3.ORB描述子:ORB描述子是一种快速的二值描述子,基于FAST角点检测算法和BRIEF描述子。
它既具有较快的计算速度,又能够保持较好的特征区分度,适用于实时图像处理任务。
三、特征匹配算法特征匹配算法的目标是在不同图像中找到相互匹配的特征点对。
图像配准算法综述

杭州电子科技大学毕业设计(论文)文献综述毕业设计题目SIFT特征研究及应用文献综述题目图像配准算法综述学院生命信息及仪器工程学院专业电子信息技术及仪器姓名班级学号指导教师图像配准算法综述一.前言图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。
目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。
图像配准的研究是计算机视觉中最困难也是最重要的任务之一。
不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。
随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。
图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。
它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。
正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。
因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。
本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。
二.图像配准算法的研究现状图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。
国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。
医学影像分析中的图像配准方法综述

医学影像分析中的图像配准方法综述医学影像分析是指利用图像处理、模式识别和机器学习等计算方法对医学影像进行分析和处理,以获取相关的解剖、功能和病理信息。
而图像配准是医学影像分析的一个重要环节,它指的是将不同模态或不同时间点获取的医学影像图像进行准确的对齐,以便在后续分析和研究中提供更可靠的结果。
医学影像配准方法的目标是将不同的图像进行对齐,使得它们在空间和几何上相互吻合。
这样做的优点是提高了医学影像分析的准确性和可信度,同时也为临床医生和研究人员提供了更全面的信息,以便更好地诊断疾病、研究病变发展和评估治疗效果。
医学影像配准方法可以分为刚性配准和非刚性配准两大类。
刚性配准(Rigid Registration)是指通过旋转、平移和缩放等刚性变换使得图像彼此对齐。
刚性配准适用于同一器官的不同扫描或同一时间点的不同斜视图像等情况。
它的优点是计算快速、操作简单,但局限性在于无法处理组织形变引起的图像变化。
而非刚性配准(Non-rigid Registration)克服了刚性配准的局限性,它可以处理器官形变、组织变形以及疾病进展引起的图像差异。
非刚性配准算法基于局部区域的相似性进行配准,并对图像进行局部形变模型的建立,常见的方法有弹性体变形(Elastic Deformation)、三维网格配准(3D Mesh Registration)和基于特征的配准(Feature-based Registration)等。
在医学影像配准中,常用的方法有基于互信息(Mutual Information)的配准、基于特征点匹配的配准和基于局部图像特征的配准等。
基于互信息的配准算法是一种无需事先标记特征点的配准方法,它通过最大化目标图像和参考图像之间的互信息量来完成图像的配准。
互信息测量的是两个图像之间的统计相关性,由于它不受图像灰度变化和噪声的影响,因此被广泛应用于医学影像配准领域,尤其适用于多模态影像的配准。
基于特征点匹配的配准算法是一种通过识别图像中的关键特征点,并对其进行匹配和对齐的方法。
医学图像配准与分割算法评估指标研究综述

因此,对医学图像配准与分割算法进行评估和 比较,选择最适合特定应用的算法,具有重要 的理论意义和实践价值。
国内外研究现状及发展趋势
国内外学者在医学图像配准与分割算法方面开展了大量研究工作,提出了 许多优秀的算法和方法。
3
基于深度学习的分割算法
通过训练神经网络实现图像分割,能够处理复杂 的医学图像分割任务,分割精度高,但需要大量 训练数据。
配准与分割算法联合应用性能分析
01
配准算法对分割结果 的影响
准确的图像配准能够提高分割算法的 精度和稳定性,减少分割误差。
02
分割算法对配准结果 的影响
精确的图像分割能够为配准算法提供 准确的特征点和边界信息,提高配准 精度。
03
医学图像分割算法评估指标
区域一致性评估指标
01
Dice相似度系数(Dice Similarity Coefficient, DSC):用于衡 量两个样本的相似度,取值范围在0-1之间,值越大表示相似度 越高。在医学图像分割中,DSC通常用于评估分割结果与金标准 之间的区域一致性。
02
Jaccard相似度系数(Jaccard Similarity Coefficient, JSC ):与Dice相似度系数类似,用于衡量两个集合的相似度 。在医学图像分割中,JSC同样用于评估分割结果与金标 准之间的区域一致性。
信息变化指数(Information Variation Index, IVI):衡量分割结果相对于金标准的信 息变化程度。IVI越小,表示分割结果越准确。
标准化互信息(Normalized Mutual Information, NMI):衡量两个图像之间的互信 息程度。在医学图像分割中,NMI用于评估分割结果与金标准之间的综合性能。NMI
医学图像配准算法及其在肿瘤分析中的应用

医学图像配准算法及其在肿瘤分析中的应用近年来,随着医学图像技术的快速发展,医学图像在肿瘤分析中发挥着重要的作用。
然而,由于肿瘤的位置、形状和大小存在较大的变异性,对于不同患者的医学图像进行准确的配准成为一个具有挑战性的问题。
因此,研究人员针对医学图像配准问题提出了一系列的算法,并将其应用于肿瘤分析中,以便为医生们提供更准确、可靠的肿瘤诊断与治疗方案。
一、医学图像配准算法:1. 刚体配准算法刚体配准算法是医学图像配准中最常用的一种算法。
该方法通过寻找两幅图像之间的几何变换,来使得它们更好地对齐。
常见的刚体变换包括旋转、平移和缩放。
刚体配准算法的优点在于简单易用,计算速度快,适用于多种类型的医学图像。
2. 弹性配准算法弹性配准算法是一种更加灵活、准确的医学图像配准方法。
该方法在刚体配准的基础上引入了非刚性变形,以更好地适应肿瘤图像之间的局部形状变换。
弹性配准算法通常基于图像的特征点匹配,通过估计局部变形场来完成图像的配准。
虽然弹性配准算法的计算复杂度较高,但其配准效果更加准确,适用于复杂的医学图像配准场景。
二、医学图像配准在肿瘤分析中的应用:1. 肿瘤定位和分割医学图像配准算法可以帮助医生精确定位并分割肿瘤区域。
通过将多个图像配准到同一坐标系下,可以更好地展示肿瘤的位置和形状,提供更准确的分割结果。
这为医生制定精细化的治疗方案提供了有力的支持。
2. 肿瘤生长监测通过定期采集患者的医学图像并进行配准,可以监测肿瘤的生长情况。
通过比较不同时间点的图像,可以准确地计算肿瘤的生长速率,从而帮助医生评估疾病的进展情况,指导治疗方案的调整。
3. 治疗响应评估医学图像配准算法还可以用于评估患者接受治疗后的疗效。
通过将术前和术后的图像进行配准,可以直观地比较肿瘤的变化情况,评估治疗的有效性,并对治疗方案进行优化。
4. 个性化治疗规划医学图像配准技术还可以用于制定个性化的肿瘤治疗规划。
通过将患者的医学图像与之前的病例进行配准,可以根据患者的病情特点进行个性化的治疗规划,提高治疗效果。
计算机视觉技术中的图像配准算法介绍

计算机视觉技术中的图像配准算法介绍图像配准是计算机视觉的一个关键任务,其目标是将多张图像从不同的视角、尺度或形变下进行对齐,以便于后续的图像处理和分析。
图像配准技术广泛应用于医学影像、遥感影像、计算机辅助设计等多个领域。
本文将介绍几种常见的图像配准算法,包括特征点匹配、相位相关法和仿射变换法。
特征点匹配是图像配准中最常用的算法之一。
该算法的思想是在图像中提取一些鲁棒的特征点,并通过匹配这些特征点来确定两幅图像之间的变换关系。
常用的特征点包括角点、边缘点和尺度不变特征点(SIFT、SURF等)。
特征点匹配算法可以分为基于局部邻域的匹配和基于全局优化的匹配。
前者主要根据特征点附近的图像信息进行匹配,例如使用局部特征描述子来计算相似性。
后者则通过全局最优化方法,如RANSAC、Hough变换等,对所有特征点进行匹配和优化,以得到更准确的变换矩阵。
相位相关法是一种基于频域的图像配准方法。
该方法通过计算图像的互相关函数(cross-correlation)来确定两幅图像间的平移参数。
互相关函数测量了两幅图像在不同平移情况下的相似性,平移参数对应于最大互相关值出现的位置。
相位相关法适用于提供噪声较小、对齐相对简单的图像,例如纹理丰富的物体或具有明确边缘的物体。
此外,相位相关法还可以通过引入多尺度和金字塔技术来增强算法的鲁棒性,以适应不同尺度和旋转情况下的图像配准需求。
仿射变换法是一种常用的几何变换方法,它能够通过应用平移、旋转、缩放和切变等操作,将一幅图像映射到另一幅图像上。
在图像配准中,仿射变换法假设两幅图像具有相似的几何形状,且变换关系可以通过线性变换来表示。
一般来说,仿射变换法需要事先提取出一些图像上的特征点,并通过最小二乘法或一致性检测等方法来优化变换参数。
仿射变换法广泛应用于平面图像的配准,例如拼接全景图像、图像纠正和图像校正等场景。
除了上述介绍的算法,图像配准还有其他一些方法,如强度匹配法、基于统计的方法和形态学变换等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杭州电子科技大学毕业设计(论文)文献综述毕业设计题目SIFT特征研究及应用文献综述题目图像配准算法综述学院生命信息及仪器工程学院专业电子信息技术及仪器姓名班级学号指导教师图像配准算法综述一.前言图像配准是指找出场景中同一物体表面的结构点在不同图像上的投影像素点之间的对应关系,是图像信息处理领域中一项非常重要的技术,同时也是其它一些图像分析技术,如立体视觉、运动分析、数据融合等的基础。
目前图像配准广泛应用于虚拟现实、视频压缩、图像复原、图像数据库检索等技术中。
图像配准的研究是计算机视觉中最困难也是最重要的任务之一。
不同的图像配准方法总是对应于某种适用的图像变换模型,其核心问题是提高配准的速度、精度和算法的稳健度。
随着科学技术的发展现在约40%的机器视觉应用中都会使用图像匹配技术,所涉及的领域有:工业检测,导弹的地形匹配,光学和雷达的图像跟踪,交通管理,工业流水线的自动监控、工业仪表的自动监控,医疗诊断,资源分析,气象预报,文字识别以及图像检索等。
图像匹配研究按其处理步骤可以分为样本采集、样本预处理、样本分割、样本的特征提取等,并且与计算机视觉、多维信号处理和数值计算方法等紧密结合。
它也是其它一些图像分析技术,如立休视觉、运动分析、数据融合等的基础。
正因为其应用的广泛性,新的应用和新的要求逐步产生,使得匹配算法的研究逐步走向深入,出现了快速、稳定、鲁棒性好的匹配算法。
因此,研究图像的匹配算法对于如何提高实际工程中的图像处理质量和识别精度具有非常重要的意义。
本文主要分析图像匹配常用方法的优点和不足之处,讨论了图像匹配中需要进一步研究和解决的问题。
二.图像配准算法的研究现状图像配准是立体视觉、运动分析、数掘融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域有重要的应用价值。
国内外学者针对不同的图像配准应用问题进行了大量的研究工作,早在1992年英国剑桥大学的Lisa Gottesfeld Brown在文献[1]习中就总结了图像配准的主要理论及图像配准在各个领域的应用。
当时他讨论的图像配准技术主要还是著眼于医学图像处理、遥感图像处理等传统应用领域。
图像配准是图像镶嵌技术的核心问题。
微软研究院的Richard Szeliski在1996年SIGGRAPH上提出了基于运动模型的全景图拼接算法[7]。
Szeliski采用了非线性优化的方法来最小化像素两幅图像的亮度差以确定变换参数。
该方法使用了全部像素进行优化处理,所以配准精度较高,但是计算速度较慢,且稳健性不佳。
国内的赵向阳。
杜立民在2004年提出了一种基于特征点匹配的图像自动拼接算法[2],其中使用了Harris算法[3]提取角点并进行匹配。
赵的算法采用了鲁棒变换估计技术,在一定程度上提高配准算法的稳健性,但是计算速度依然较慢,且无法配准重叠区域较小、运动物体较多的图像。
M.Brown 在2003年ICCV 大会上发表了一篇名为Recognising Panoramas 的文章[4],文中使用了基于不变量技术[5]的SIFT 算法[6]进行图像配准,算法完全自动完成且效果较好。
M.Brown 的大会发言再次掀起了全景图拼接技术研究的热潮。
另外,B.Reddy 和B.Chatterji [7]中提出了一种基于FFT 的图像配准方法,可以处理包含平移、缩放和尺度变化在内的图像配准问题;李忠新等在2004年提出了一种基于频域相关的柱面全景图拼接技术[8]。
这些方法都是在变换域进行图像配准的例子。
下面就介绍几种常见的图像配准算法:1.基于像素灰度的匹配[9]的序贯相似性检测法(SSDA)SSDA 算法是一种快速图像匹配算法,它使用式(1)作为相似性度量∑∑==-=m i n j Xij ij b a Y mn b a D 11),(1),((1)SSDA 随机选取位置),(l i 上的像素,但选取不能重复,求和时并不计算所有的像素,只要其和超过设定的阀值,则说明当前位段为非匹配位置,停止本次计算,否则进行下一位置的测试,直至找到匹配点为止。
2.归一化积相关灰度匹配归一化积相关具有不受比例因子误差影响和抗白噪声干扰能力强等优点,其度量定义如式(2)∑∑∑∑∑∑=======m i n j m i n j m i nj ijb a Y il X ij b a XijY b a R 1111112),(2),(),((2)比较参考图像与输入图像在各个位置的相关系数值最大的点就是最佳匹配位置。
刘煜李言俊等在文献[10]中提到了一种解决几何形变所带来的模板匹配误差的方法。
根据单像素的偏移将导致相关性的骤降,而多像素的偏移会使相关性缓慢减少的特性,采用多像素边缘匹配方法,克服了当实时图与基准图之间存在局部变形时,单像素边缘匹配方法将会影响实时图与它在基准图真实位置的相关性的缺点,使之仍能保证整体上较大的相似性,减小了相关算法受边缘变形等的影响。
2.1图像匹配的三要素(1)特征空间特征空间是由参与匹配的图像特征构成的,特征可以是灰度值,也可以是边界、轮廓、表面、显著特征、统计特征、高层结构描述与句法描述等。
选择合理的特征可以提高匹配性,降低搜索空间、减小噪声等不确定性因素对算法的影响,提高适应性;(2)相似性度量相似性度量指用什么来确定待匹配特征之间的相似性,它通常是某种代价函数或者是距离函数的形式,经典的相似性度量包括相关函数和Minkowski距离,最近人们又提出了Hausdorff距离、互信息作为匹配度量;(3)搜索策略搜索策略是用合适的搜索方法在搜索空间中找出平移、旋转等变换参数的最优估计,使得图像之间经过变换后的相似性最大。
搜索策略有穷尽搜索、分层搜索、模拟退火算法、Powell方向加速法、动态规划法、遗传算法和神经网络法等。
2.2算法分类及优缺点图像匹配的算法很多,但基本原则是不变的:有效性,稳定性以及实时性。
本文将匹配算法分为基于区域的匹配方法、基于特征的匹配方法、基于模型的匹配和基于变换域的匹配。
基于区域的匹配方法又称为基于图像灰度的配准方法,通常直接利用整幅图像的灰度信息,建立两幅图像之间的相似性度量,然后采用某种搜索方法,寻找使相似性度量值最大或最小的变换模型的参数值。
基于图像灰度的配准方法不需要对图像做特征提取,而是直接利用全部可用的图像灰度信息,因此能提高估计的精度和鲁棒性[11]。
但是它计算量大,难以达到实时性要求,而且一旦进入信息贫乏的区域,会导致误匹配率的上升。
基于图像特征的配准方法[12]需要对图像进行预处理,然后提取图像中保持不变的特征,如边缘点、闭区域的中心、线特征、面特征、矩特征等,作为两幅图像配准的参考信息。
这类方法的主要优点是它提取了图像的显著特征,大大压缩了图像的信息量,使得计算量小,速度较快,而且它对图像灰度的变化不敏感。
但另一方面,正是由于其不依赖于图像的灰度信息,这种方法对特征提取和特征匹配的错误十分敏感,匹配性能依赖于特征提取的质量,需要可靠的特征提取和鲁棒的特征一致性,匹配精度低于基于灰度的匹配方法。
基于模型的匹配方法在计算机视觉领域中的应用非常广泛,它可以分为刚体形状匹配和变形模板匹配[13]两大类。
Kass提出的Snake主动轮廓模型是比较典型的自由式变形模板模型。
由于不受全局结构的限制,所以Snake模型能表示任意的形状,但是该模型对于模板的初始位置和噪声比较敏感,对于凹边缘的收敛性较差,而且容易陷入局部最小值。
基于变换域的匹配的方法有基于傅立叶变换、基于Gabor变换和基于小波变换的匹配,这些匹配方法对噪声不敏感,检测结果不受照度变化影响,可以较好的处理图像之间的旋转和尺度变化。
三.总结目前对于彩色图像的匹配研究最多的是基于颜色特征的图像检索,而对其在形状、纹理、轮廓或者多种特征的组合匹配到目前引入学习机制(监督学习、非监督学习、Bayes学习、SVM动态学习、相关反馈等)用于图像高层语义的图像匹配方法的研究甚少,因此这也是一个值得研究的问题。
各种匹配算法各有其特点及应用范围。
使其相互借鉴、渗透及融合,以克服单个算法的局限性,提高匹配的适应性。
图像匹配研究作为计算机视觉和图像处理中的主要内容,有着重要的理论和实践意义。
由于成像过程中各种不可预知因素的影响,该问题至今尚未得到很好的解决,但已经取得了很大的进展。
四.参考文献[1]Lisa Gottesfcld Brown.A survey of image registration techni ques[J].ACMComputing Surveys.V01.24,No,4,December1992:p325-376[2]赵向阳,杜立民.一种全自动稳健的图像自动拼接融合算法田.中国图象图形学报;Z004,9(4):p417-422[3] C.Harris,M.Stephens.A combined comer and edge detector[C].The4thVisionConference,147-151,1988[4]M.Brown and DG Lowe.Re.ognising Panoramas[C].Proceedings of IEEE InternationalConference OR ComputerVision2003.page(s):1218·1225v01.2[5]M.Brown and D.Lowe.Invariant Features from Interem Point Groups[C].In Proe ofthe13th British Machine Vision Conference,P253-262,Cardiif,2002.[6]K.Mikolajczyk,C.Schmid.Scale&Affine invariant interest point detectors[C].InLiCV1(60):63-86,2004.[7] B.Reddy and B.Chatterji.A FFT-Based Technique for Translation,Rotation,andScale Invariant Image Registration[J].IEEE Trans.Pattern Analysis and Machine Intelligence,v01,5(8),PP.1266-127l,1996.[8]李忠新,茅耀斌,王执铨.一种基于频域相关技术的柱面全景图生成方法[J].计算机工程与应用.2004V01.40No.11pp81-82,145[9]黄诚,王国营.一种基于颜色聚合向量的图像检索方法[J].计算机工程,2006,32(2):194-199.[10]刘煌,李言俊.飞行器下视景像边缘提取和定位方法研究[J]中国图象图形学报,2008,13(11).[11]沈振康,孙仲康.数字图像处理及应用[M].北京:国防工业出版社.1983.[12]郑南宁.计算机视觉与模式识剐[M].北京:国防工业出版社.1998.[13]施鹏飞.图像匹配算法及其应用[D].上海交通大学硕士论文.2000.。