中考数学锐角三角函数综合练习题及答案解析

中考数学锐角三角函数综合练习题及答案解析
中考数学锐角三角函数综合练习题及答案解析

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.下图是某儿童乐园为小朋友设计的滑梯平面图.已知BC=4 m,AB=6 m,中间平台宽度DE=1 m,EN,DM,CB为三根垂直于AB的支柱,垂足分别为N,M,B,∠EAB=31°,DF⊥BC于点

F,∠CDF=45°,求DM和BC的水平距离BM的长度.(结果精确到0.1 m.参考数据:sin

31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)

【答案】2.5m.

【解析】

试题分析:设DF=x,在Rt△DFC中,可得CF=DF=x,则BF=4-x,根据线段的和差可得

AN=5-x,EN=DM=BF=4-,在Rt△ANE中,∠EAB=,利用∠EAB的正切值解得x的值.

试题解析:解:设DF=,在Rt△DFC中,∠CDF=,

∴CF=tan·DF=,

又∵CB=4,

∴BF=4-,

∵AB=6,DE=1,BM= DF=,

∴AN=5-,EN=DM=BF=4-,

在Rt△ANE中,∠EAB=,EN=4-,AN=5-,

tan==0.60,

解得=2.5,

答:DM和BC的水平距离BM为2.5米.

考点:解直角三角形.

2.问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

【答案】解:(1)22.

(2)如图,在斜边AC上截取AB′=AB,连接BB′.

∵AD平分∠BAC,∴点B与点B′关于直线AD对称.

过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.

则线段B′F的长即为所求 (点到直线的距离最短) .

在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,

∴.

∴BE+EF的最小值为

【解析】

试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:

如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,

根据垂径定理得弧BD=弧DE.

∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.

∴∠C′AE=45°.

又AC为圆的直径,∴∠AEC′=90°.

∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=2.

∴AP+BP的最小值是22

(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于

E,连接BE,则线段B′F

的长即为所求.

3.某条道路上通行车辆限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速?(参考数据:3≈1.7,2≈1.4).

【答案】车辆通过AB段的时间在8.1秒以内,可认定为超速

【解析】

分析:根据点到直线的距离的性质,构造直角三角形,然后利用解直角三角形的应用,解直角三角形即可.

详解:如图,由题意知∠CAB=75°,∠CAP=45°,∠PBD=60°,

∴∠PAH=∠CAB–∠CAP=30°,

∵∠PHA=∠PHB=90°,PH=50,∴AH=

tan PH PAH

3

3

3,

∵AC∥BD,∴∠ABD=180°–∠CAB=105°,∴∠PBH=∠ABD–∠PBD=45°,则PH=BH=50,∴3,

∵60千米/时=50

3米/秒,∴时间t=

50350

50

3

3≈8.1(秒),

即车辆通过AB段的时间在8.1秒以内,可认定为超速.

点睛:该题考查学生通过构建直角三角形,利用某个度数的三角函数值求出具体边长,即实际路程,并进行判断相关的量。

4.如图,在平面直角坐标系xOy中,点P是⊙C外一点,连接CP交⊙C于点Q,点P关于点Q的对称点为P′,当点P′在线段CQ上时,称点P为⊙C“友好点”.已知A(1,0),B(0,2),C(3,3)

(1)当⊙O的半径为1时,

①点A,B,C中是⊙O“友好点”的是;

②已知点M在直线y=﹣3

x+2 上,且点M是⊙O“友好点”,求点M的横坐标m的取值

范围;

(2)已知点D(23,0),连接BC,BD,CD,⊙T的圆心为T(t,﹣1),半径为1,若在△BCD 上存在一点N,使点N是⊙T“友好点”,求圆心T的横坐标t的取值范围.

【答案】(1)①B;②0≤m3(2)﹣3t<3

【解析】

【分析】

(1))①根据“友好点”的定义,OB=<2r=2,所以点B是⊙O“友好点”;

②设M(m 3

+2 ),根据“友好点”的定义,OM

2

2

3

22

2

m m

??

+-+≤

?

?

??

,由此

求解即可;

(2)B(0,2),C(3,3),D30),⊙T的圆心为T(t,﹣1),点N是⊙T“友好点”,NT≤2r=2,所以点N只能在线段BD上运动,过点T作TN⊥BD于N,作TH∥y轴,与BD交于点

H.易知∠BDO=30°,∠OBD=60°,NT 3

,直线BD:y

3

x+2,可知H(t,﹣

3 3t+2),继而可得NT=﹣

1

2

t+

33

2

,由此可得关于t的不等式,解出t的范围即可.

【详解】

(1)①∵r=1,

∴根据“友好点”的定义,OB=<2r=2,

∴点B是⊙O“友好点”,

∵OC22

33

+2>2r=2,∴点C不是⊙O“友好点”,A(1,0)在⊙O上,不是⊙O“友好点”,

故答案为B ; ②如图,

设M (m ,﹣

3

3

m +2 ),根据“友好点”的定义, ∴OM =2

23

22

2m m ??+-+≤ ? ???

, 整理,得2m 2﹣23m ≤0, 解得0≤m ≤3;

∴点M 的横坐标m 的取值范围:0≤m ≤3;

(2)∵B (0,2),C (3,3),D (23,0),⊙T 的圆心为T (t ,﹣1),点N 是⊙T “友好点”, ∴NT ≤2r =2,

∴点N 只能在线段BD 上运动,过点T 作TN ⊥BD 于N ,作TH ∥y 轴,与BD 交于点H .

∵tan ∠BDO =

3

3

23OB OD ==

∴∠BDO=30°, ∴∠OBD =60°, ∴∠THN=∠OBD=60°,

∴NT=HT?sin∠THN=3

2

HT,

∵B(0,2),D(23,0),

∴直线BD:y=﹣3x+2,

∵H点BD上,

∵H(t,﹣3

3

t+2),

∴HT=﹣3t+2﹣(﹣1)=﹣3t+3,

∴NT=3HT=3(﹣3t+3)=﹣1

2t+

33

∴﹣1

2t+

33

≤2,

∴t≥﹣4+33,

当H与点D重合时,点T的横坐标等于点D的横坐标,即t=33,

此时点N不是“友好点”,

∴t<33,

故圆心T的横坐标t的取值范围:﹣4+33≤t<33.

【点睛】

本题是圆的综合题,正确理解“友好点”的意义,熟练运用相似三角形的性质与特殊三角函数是解题的关键.

5.如图,在⊙O的内接三角形ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是AC上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.

(1)求证:△PAC∽△PDF;

(2)若AB=5,AP BP

,求PD的长.

【答案】(1)证明见解析;(2 【解析】 【分析】

(1)根据AB ⊥CD ,AB 是⊙O 的直径,得到AD AC =,∠ACD =∠B ,由∠FPC =∠B ,得到∠ACD =∠FPC ,可得结论;

(2)连接OP ,由AP BP =,得到OP ⊥AB ,∠OPG =∠PDC ,根据AB 是⊙O 的直径,得到∠ACB =90°,由于AC =2BC ,于是得到tan ∠CAB =tan ∠DCB =

BC

AC

,得到12CE BE AE CE ==,求得AE =4BE ,通过△OPG ∽△EDG ,得到OG OP

GE ED =,然后根据勾股定理即可得到结果. 【详解】

(1)证明:连接AD ,

∵AB ⊥CD ,AB 是⊙O 的直径,

∴AD AC =, ∴∠ACD =∠B =∠ADC , ∵∠FPC =∠B , ∴∠ACD =∠FPC , ∴∠APC =∠ACF , ∵∠FAC =∠CAF , ∴△PAC ∽△CAF ;

(2)连接OP ,则OA =OB =OP =1522

AB =, ∵AP BP =,

∴OP ⊥AB ,∠OPG =∠PDC , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵AC =2BC ,

∴tan ∠CAB =tan ∠DCB =

BC AC

, ∴

1

2CE BE AE CE ==, ∴AE =4BE ,

∵AE+BE =AB =5,

∴AE =4,BE =1,CE =2, ∴OE =OB ﹣BE =2.5﹣1=1.5, ∵∠OPG =∠PDC ,∠OGP =∠DGE ,

∴△OPG∽△EDG,∴OG OP GE ED

=,

2.5

2 OE GE OP

GE CE

-

==,

∴GE=2

3,OG=

5

6

∴PG=225

OP OG

6

+=,

GD=222 3

DE GE

+=,

∴PD=PG+GD=310

2

【点睛】

本题考查了相似三角形的判定和性质,垂径定理,勾股定理,圆周角定理,证得

△OPG∽△EDG是解题的关键.

6.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.

(1)求A、B之间的路程;

(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数据:2 1.414,3 1.73

≈≈).

【答案】

【小题1】73.2

【小题2】超过限制速度.

【解析】

解:(1)100(31)AB =-73.2 (米).…6分

(2) 此车制速度v=

=18.3米/秒

7.如图,在平面直角坐标系xOy 中,抛物线y =﹣

14x 2+bx +c 与直线y =1

2

x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .

(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;

(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.

【答案】(1)21y 234x x =-+-,D (4,1);(2)1

3

;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =

1

2

x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣

14

x 2

+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB?sin ∠OBC 5CE =2,则CH 5

解;

(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =

1

2

x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣1

4

×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣

14

x 2

+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1);

(2)过点E作EH⊥BC交于点H,

C、D的坐标分别为:(0,﹣3)、(4,1),

直线CD的表达式为:y=x﹣3,则点E(3,0),

tan∠OBC=

31

62

OC

OB

==,则sin∠OBC=

5

则EH=EB?sin∠OBC=

5

CE=32,则CH=

5

则tan∠DCB=

1

3 EH

CH

=;

(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),

则BC=35,

∵OE=OC,∴∠AEC=45°,

tan∠DBE=

1

64

-

1

2

故:∠DBE=∠OBC,

则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,

过点F作FG⊥BG交BC的延长线与点G,

则∠GFC=∠OBC=α,

设:GF=2m,则CG=GFtanα=m,

∵∠CBF=45°,∴BG=GF,

即:35+m=2m,解得:m=35,

CF=22

=5m=15,

GF CG

故点F(0,﹣18);

②当点F在y轴正半轴时,

同理可得:点F(0,1);

故:点F坐标为(0,1)或(0,﹣18).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.

8.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).

【答案】1.5米.

【解析】

试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出

在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD?CD即可求出浮漂B与河堤下端C之间的距离.

试题解析:延长OA交BC于点D.

∵AO的倾斜角是,

在Rt△ACD中, (米),

∴CD=2AD=3米,

∴△BOD是等边三角形,

∴(米),

∴BC=BD?CD=4.5?3=1.5(米).

答:浮漂B与河堤下端C之间的距离为1.5米.

9.在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P 作PF∥BC,交对角线BD于点F.

(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E.求证:△DEF是等腰三角形;

(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).

①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.

②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时

tan∠DBF'的值,如果不能,请说明理由.

【答案】(1)证明见解析;(2)①证明见解析;②1

2

3

【解析】

【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;

(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;

②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.

【详解】(1)由翻折可知:∠DFP=∠DFQ,

∵PF∥BC,

∴∠DFP=∠ADF,

∴∠DFQ=∠ADF,

∴△DEF 是等腰三角形;

(2)①若0°<α<∠BDC ,即DF'在∠BDC 的内部时, ∵∠P′DF′=∠PDF ,

∴∠P′DF′﹣∠F′DC=∠PDF ﹣∠F′DC , ∴∠P′DC=∠F′DB ,

由旋转的性质可知:△DP′F′≌△DPF , ∵PF ∥BC , ∴△DPF ∽△DCB , ∴△DP′F′∽△DCB ∴

'

'

DC DP DB DF = , ∴△DP'C ∽△DF'B ;

②当∠F′DB=90°时,如图所示, ∵DF′=DF=1

2

BD , ∴

'1

2

DF BD =, ∴tan ∠DBF′=

'1

2

DF BD =;

当∠DBF′=90°,此时DF′是斜边,即DF′>DB ,不符合题意; 当∠DF′B=90°时,如图所示,

∵DF′=DF=1

2

BD , ∴∠DBF′=30°,

∴tan ∠DBF′=

3.

【点睛】本题考查了相似三角形的综合问题,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合性较强,有一定的难度,熟练掌握相关的性质与定理、运用分类思想进行讨论是解题的关键.

10.问题探究:

(一)新知学习:

圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).

(二)问题解决:

已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.

(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;

(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;

(3)若直径AB与CD相交成120°角.

①当点P运动到的中点P1时(如图二),求MN的长;

②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.

【答案】(1)证明见解析,直径OP=2;

(2)证明见解析,MN的长为定值,该定值为2;

(3)①MN=;②证明见解析;

(4)MN取得最大值2.

【解析】

试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;

(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;

(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:

MN=QN?sin∠MQN,从而可得MN=OP?sin∠MQN,由此即可解决问题;

(4)由(3)②中已得结论MN=OP?si n∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.

试题解析:(1)如图一,

∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;

(2)如图一,

∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,

∴MN=OP=2,∴MN的长为定值,该定值为2;

(3)①如图二,

∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,

P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.

∵P1M=OP1?sin∠MOP1=2×sin60°=,∴MN=;

②设四边形PMON的外接圆为⊙O′,连接NO′并延长,

交⊙O′于点Q,连接QM,如图三,

则有∠QMN=90°,∠MQN=∠MPN=60°,

在Rt△QMN中,sin∠MQN=,∴MN=QN?sin∠MQN,

∴MN=OP?sin∠MQN=2×sin60°=2×=,∴MN是定值.

(4)由(3)②得MN=OP?sin∠MQN=2sin∠MQN.

当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.考点:圆的综合题.

相关主题
相关文档
最新文档