FTIR红外光谱原理及图谱解析完整版本
傅里叶红外光谱分析PPT课件

2021/4/2
.
34
•3.3 气体样品 •直接注入气体池内测试。 •3.4 塑料、高聚物样品 •3.4.1 溶液涂膜 •把样品溶于适当的溶剂中,然后把溶液一滴一 滴的滴加在KBr晶片上,待溶剂挥发后把留在 晶片上的液膜进行测试。
(1)—O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强
吸收;当浓度较大时,发生缔合作用,峰形较宽。 注意区分 —NH伸缩振动: 3500 3100 cm-1
2021/4/2
.
38
4.1、红外吸收光谱的特征性
group frequency in IR
与一定结构单元相联系的、在一定范围内出现的化学键 振动频率——基团特征频率(特征峰);
例: 2800 3000 cm-1 —CH3 特征峰; 1600 1850 cm1 —C=O 特征峰;
基团所处化学环境不同,特征峰出现位置变化:
应用:有机化合物的结构解析。 定性:基团的特征吸收频率; 定量:特征峰的强度;
2021/4/2
.
6
1.2、红外吸收光谱产生的条件
condition of Infrared absorption spectroscopy
满足两个条件: (1)辐射应具有能满足物质产生振动跃迁所需的能量; (2)辐射与物质间有相互偶合作用。
2021/4/2
.
31
溶剂
可用区域
通常容器长度
CS2 除2200~2100cm-1与1600~1400cm-1以外的区域 0.5mm
FTIR原理和谱图解析(1)

谱图解析——正己烷
在 2 9 2 6 cm-1 处 , 是 CH2 的不对称伸缩振动峰, 一般在2926±10cm-1范 围内。
谱图解析——正己烷
2872cm-1处是CH3的对称伸 缩振动峰,一般波数范围为 :2872±10cm-1。
谱图解析——正己烷
在 2 8 5 3 cm-1 处 的 吸 收 峰 , 是 CH2的对称伸缩振动峰,一般 这种振动峰的吸收位置在: 2853±10cm-1。
透射光谱
为了计算得到一张透射光谱图,必须进行以 下步骤:
•光路中没有样品的干涉图经过傅立叶 变换,结果为单通道背景光谱R().
傅立叶变换
在光路中放置样品时测量并经过傅立叶 变换获得,结果为单通道样品光谱S() 。S()与背景光谱形状相似,只是在样 品有吸收的波数下强度降低。
傅立叶变换
单通道信号强度 0.10 0.20 0.30 0.40
•最后的透射光谱图T()通过样品图除以 背景图获得。T() = S()/R()
4,000 3,500 3,000 2,500 2,000 1,500 1,000 500 波数, cm-1
相除
80 100
60
Transmittance [%]
20 40
4,000 3,500 3,000 2,500 2,000 1,500 1,000 500 Wavenumber, cm-1
1 4 6 0 cm-1, 是 CH3 的 反 对 称 弯 曲 振动峰(仅显示两个简并模式中 的一个)。
谱图解析——2,3-二甲基丁烷
1380和1365cm-1,是CH3”伞“形弯 曲振动峰,在正己烷中,这是一个 单峰;在2,3-二甲基丁烷中,两个 CH3 基 团 联 在 同 一 个 季 碳 上 , 这 个 峰就裂分成双峰,表明有叔-丁基 基团存在。
ftir红外光谱仪原理

傅里叶变换红外光谱仪(FTIR,Fourier Transform Infrared Spectrometer)是一种利用傅里叶变换原理,通过对红外光线在特定波长范围内的吸
收强度进行测量,从而分析物质的分子结构和组成的仪器。
FTIR红外光谱仪的工作原理如下:
1.辐射源:红外光谱仪的辐射源部分会产生宽波长范围的红外光,可
以是黑体辐射源、电石石墨片、高灯泡等,用来激发样品内分子结构
的振动。
2.干涉仪:干涉仪使用迈克尔逊干涉仪(Michelson interferometer),它的核心是一个可分割和反射的光束的分光镜。
红外光通过一个可移
动的镜子和一个固定的镜子,产生两束光路差的光线,然后返回干涉
仪重新合到一起,产生干涉信号。
3.采样:待测样品放置在红外光经过的路线上,当光透过或反射於此时,样品内的分子会对某些特定波长的红外光进行吸收,导致这些波
长的光强度降低。
4.探测器:FTIR红外光谱仪需要一个冷却的广谱探测器(例如:汞
镉锌(MCT),探测范围约为2-14μm)来接收通过或反射自样品的红
外光,并将其转换为电信号。
此时的电信号包含了所有波长处的吸收
强度,称为原始干涉信号(光学干涉图)。
5.傅里叶变换处理:原始干涉信号经过傅里叶变换(Fourier Transform,FT)处理,即通过逆傅里叶变换,将信号从时间域转换到
频率域,得到实际的红外吸收光谱图,纵轴表示吸收强度,横轴表示
红外光的波数。
通过分析光谱图中吸收峰的位置(波数)、峰值和峰形,可以获得有关样品分子结构和成分的信息。
傅里叶变换红外光谱(ftir)

傅里叶变换红外光谱(FTIR)是一种广泛应用于化学、生物学和材料科学领域的分析技术。
它利用样品对红外光的吸收和散射来确定样品的化学成分和结构。
傅里叶变换红外光谱分析的过程涉及到复杂的光学原理和数学算法,其深度和广度远超一般人的想象。
让我们从简单的红外光谱开始。
红外光谱是指物质在接受红外辐射后发生的吸收、透射或反射现象。
这些现象与物质的分子运动和振动有关,因此可以通过观察红外光谱图来了解物质的分子结构、功能团及化学键等信息。
红外光谱是一种非常有用的分析手段,能够对各种物质进行快速、无损的分析,因此在化学、材料科学、生命科学等领域被广泛应用。
我们可以深入了解傅里叶变换红外光谱。
傅里叶变换(FT)是一种数学方法,用于将信号在时域和频域之间进行转换。
在傅里叶变换红外光谱中,FT将时间域的红外光谱信号转换为频率域的光谱信息,从而能够更准确地分析样品的化学成分和结构。
傅里叶变换的原理和算法需要深入的数学和物理知识来支撑,通过FTIR技术获得的光谱数据也需要复杂的数据处理和解释。
让我们讨论FTIR在化学和材料科学中的应用。
FTIR技术可以用于分析化合物的官能团、结构和构象,从而在有机化学合成、聚合物材料研究、医药化学等领域发挥重要作用。
FTIR还可以用于检测样品的纯度、鉴定杂质和表征材料的特性,因此在材料科学、制药工业、环境监测等领域有着广泛的应用价值。
我想共享一下我对FTIR的个人观点和理解。
作为一种高级的红外光谱分析技术,FTIR需要掌握复杂的原理和操作技巧,但其所获得的化学信息和结构信息也是非常丰富和准确的。
在我看来,FTIR不仅是一种分析手段,更是一种深入探索物质本质的工具,它的应用范围和研究意义将会越来越广泛,对于推动化学和材料科学的发展将会发挥重要作用。
总结而言,傅里叶变换红外光谱(FTIR)作为一种高级的分析技术,其深度和广度远超一般的红外光谱分析,需要深入的理论基础和实践技能来支撑。
通过FTIR技术可以获得大量的化学和结构信息,对于化学、材料科学和生命科学领域具有重要的应用价值。
tAFTIR原理及谱图解析

光程差
2vt
v 动镜移动速率(cm/sec) t 时间(sec)
得到的AC组分I’():就是所谓的干涉图。
FT-IR: 基本原理 ...
动镜
HeNe激光用来控制动镜的位置。
单色光束
波长为632.8 nm
FT-IR: 基本原理 ...
干涉图(非单色光)
多色光源(例如中红外的Globar光源或近红外的钨灯),许多连续波数(即频率 )的光同时发射
FT-IR: 基本原理 ...
干涉图(以单色光说明)
因为动镜以一定的速度()移动,检测器上得到的信号是正弦波信号。
I ' ( ) B(){1 cos(2 / )}
I ' ( )
光束强度
B()
在波数光源经过仪器调制后(分束器效率、检测
器和放大器的响应)的强度
波数 1/
Bruker光谱仪
谱图解析——正己烷
正己烷 最常见的有机化合 物。
谱图解析——正己烷
这个样品是液体样品,夹在两个KBr 窗片之间得到的谱图。从谱图上来看 ,这个化合物的红外吸收峰比较宽, 表明该化合物是一个饱和化合物。由 于饱和化合物有很多低能量的构象, 每一种构象吸收峰的位置有一定的差 异,谱峰的加宽是由于不同构象的峰 叠加而成的。
FT-IR: 基本原理 ...
技术局限
事实上,分辨率、带宽以及采样间隔受到谱仪的限制
技术限制: 只是测试整个谱图范围的一 部分
分辨率受到限制
采样间隔不能无限小 (基于 HeNe激光)
得到的干涉图不是对称的
相应问题:
旁瓣峰 牺牲谱图的分辨率
带宽限制 有折叠可能 尖桩篱栅效应 相位问题
傅利叶红外光谱

傅利叶红外光谱
傅里叶红外光谱(Fourier Transform Infrared Spectroscopy,FTIR)是一种常用的分析技术,用于研究物质在红外区域的吸收和散射现象。
它基于傅里叶变换原理,将光通过样品后的光强信号转换为光波数谱或波长谱,以此来确定样品的化学成分和分子结构。
傅里叶红外光谱仪由光源、样品室、干涉仪和检测器组成。
其工作原理如下:
1.光源发出宽谱的红外光。
2.先将光分为两束,一束作为参考光线束,另一束经过样品
后成为被测光线束。
3.两束光线束通过干涉仪,形成干涉光,干涉光的强度会因
两束光的相位差而产生变化。
4.检测器将这种强度变化转化为光谱信号,并通过傅里叶变
换将其转换为红外光谱图。
5.在得到红外光谱图后,可以根据吸收峰的位置和强度来推
断样品中不同化学官能团和分子结构的存在。
傅里叶红外光谱广泛应用于化学、生物、材料科学和药学等领域中,用于定性和定量分析。
它可以识别和鉴定样品中的功能团、化学键、官能团和杂质等,并可以用于研究样品的结构、配位化学、反应机制等方面。
此外,近红外光谱也是一种类似的分析技术,广泛应用于食品、制药等行业中的快速检测和质
量控制。
原理及谱图解析
技术限制: 只是测试整个谱图范围的一 部分
分辨率受到限制
采样间隔不能无限小 (基于 HeNe激光)
得到的干涉图不是对称的
相应问题:
旁瓣峰 牺牲谱图的分辨率
带宽限制 有折叠可能 尖桩篱栅效应 相位问题
解决方案: 采用不同的光源、分
束器以及检测器
切趾函数 采用光圈
满足Nyquist 采样条件
谱图充零 相位校正
Optic Setup and Service
Interferometer/AQP
Absolute Peak Position
检查扫描范围 (Check signal 对话框): 显示在合适的范围内? 不
用箭头改变扫描范围,使得干涉图的最大值(峰)在显示范围内。
FT-IR: 基本原理 ...
问题:没有干涉图
采集样品信号
调整附件,使得光通量最大
FT-IR: 基本原理 ...
问题:没有干涉图
Check signal 没有干涉图,只是一根直线
检查样品仓 : 光路是否有东西挡住了光路?
有 清理光路
FT-IR: 基本原理 ...
问题:没有干涉图
Check signal 没有干涉图,只是一根直线
检查最大值(峰)的位置:
折叠
为了避免假峰,必须满足 Nyquist采样条件。
FT-IR: 基本原理 ...
干涉图数据的采集
Nyquist采样条件 任何谱图数据的采集的采样频率必须等于或大于谱图带宽的两倍。
我们是采用激光来控制采样间隔,因为激光的波长为632.8nm,最大测试 波长为31,600cm-1.
632.8nm/2=316.4nm 31,600cm-1
谱图解析——正己烷
红外光谱-全ppt课件
到1930年前后,随着量子理论的提出和发展,红 外光谱的研究得到了全面深入的开展,并且测得大量 物质的红外光谱。
1947年第一台实用的双光束自动记录的红外分光光 度计问世。这是一台以棱镜作为色散元件的第一代红外 分光光度计。
较高频率。
C-H弯曲振动:1475-1300 cm-1 ,甲基的对称变形 振动出现在1375 cm-1处 ,对于异丙基和叔丁基,
吸收峰发生分裂。
亚甲基平面摇摆:800-720cm-1对判断-(CH2)n-的碳
链长度有用, n>4 725,
n=3 729-726,
n=2 743-734, n=1 785-770
H
H
H
υ C=C υ =C H
1645cm-1 3017cm-1
1610cm-1 3040cm-1
1565cm-1 3060cm-1
精选课件
21
氢键效应(X-H):
形成氢键使电子云密度平均化(缔合态),使体系 能量下降,基团伸缩振动频率降低,其强度增加但峰形 变宽。
如: 羧酸 RCOOH (RCOOH)2
(5)所需样品用量少,且可以回收。红外光谱分析一次 用样量约1~5mg,有时甚至可以只用几十微克。
精选课件
5
红外光谱基本原理
化学键的振动与频率:
双原子分子中化学键的振动可按谐振子处理。
m1
m2
用虎克定律来表示振动频率、原子质量和键力常数之间的关系:
υ= 1 2
若用波数取代振动频率,则有下式:
μ为折合原子量
μ=
M1M2 M1 M2
红外原理及谱图解析
FT-IR: 基本原理 ...
干涉图(以单色光说明)
因为动镜以一定的速度()移动,检测器上得到的信号是正弦波信号。
I'()B ()1 { co 2 s/ ()}
I ' ( )
光束强度
B()
在波数光源经过仪器调制后(分束器效率、检测
器和放大器的响应)的强度
波数 1/
光程差
分辨率受到限制切趾函数旁瓣峰牺牲谱图的分辨率采用光圈采样间隔不能无限小基于hene激光带宽限制有折叠可能满足nyquist采样条件尖桩篱栅效应谱图充零得到的干涉图不是对称的相位问题相位校正谱图范围谱图范围的选择决定了仪器采用的光学组件ftftirir
红外光谱简单介绍 ...
布鲁克光谱仪器公司 陆兴军
FT-IR: 基本原理 ...
红外光
当一束红外光射到物质上,可能发生:吸收、透过、反射、散射或者 激发荧光(即拉曼效应)。
FT-IR: 基本原理 ...
红外光
不同波段的光连接起来构成成了整个光谱范围。
FT-IR: 基本原理 ...
红外光
光的辐射可以看作是波的运动,波长是两个连续峰之间的距离。
Check signal
没有干涉图,只是一根直线
检查 IR 光源参数: Optic Source Setting: MIR Source
OK ? 检查IR光源: 取出光源 (警告, 光源是热的): 发光吗?
不 关闭仪器,更换光源
FT-IR: 基本原理 ...
问题:没有干涉图
Check signal
干涉仪是红外光谱仪的心脏部件
到样品
红外光 源发出 的光束
在干涉仪的出口,两束有光程差的光发生干涉,然后到样品。
ftir红外光谱原理
ftir红外光谱原理
FTIR(Fourier Transform Infrared Spectroscopy)红外光谱是一种常用的分析技术,用于研究物质的分子结构和化学键。
其原理基于红外辐射与样品之间的相互作用。
红外辐射是电磁辐射的一种,其波长范围在0.78至1000微米之间,对应频率范围在300 GHz至400 THz之间。
红外光谱仪通过测量样品与红外辐射的相互作用,可以得到样品的红外吸收光谱。
FTIR技术利用了光的干涉原理。
在FTIR光谱仪中,红外辐射经过一个干涉仪,该干涉仪包含一个移动的反射镜。
红外辐射被分成两个光束,一个通过样品,一个直接通过参考光路。
两个光束的光程差会随着反射镜的移动而改变。
经过样品的光束会与样品中的分子发生相互作用,部分红外辐射会被样品吸收。
吸收的红外辐射会导致光束的幅度发生变化。
参考光束则不受样品吸收影响,保持不变。
两个光束在干涉仪中重新合并,形成干涉图案。
干涉图案中的干涉条纹表示了样品吸收红外辐射的强度变化。
通过对干涉图案进行傅里叶变换,可以将时域信号转换为频域信号,得到样品的红外吸收光谱。
FTIR光谱的红外吸收峰对应于样品中不同化学键的振动和转动模式。
不同的化学键会在不同的波数范围内吸收红外辐射。
通过分析红外吸收峰的位置和强度,可以确定样品中的化学组成和结构。
总结起来,FTIR红外光谱原理基于红外辐射与样品之间的
相互作用,利用光的干涉原理测量样品对红外辐射的吸收,通过傅里叶变换将干涉图案转换为红外吸收光谱,从而研
究样品的分子结构和化学键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谱图解析——2,3-二甲基丁烷
1380和1365cm-1,是CH3”伞“形弯 曲振动峰,在正己烷中,这是一个 单峰;在2,3-二甲基丁烷中,两个 CH3 基 团 联 在 同 一 个 季 碳 上 , 这 个 峰就裂分成双峰,表明有叔-丁基 基团存在。
谱图解析——1-己烯
2 8 6 1 cm-1, 是 CH2 对 称伸缩振动峰。
谱图解析——1-己烯
1821cm-1(红色),是=CH2 面弯曲振动,这是909cm-1处 的基频峰的倍频峰(灰色) ,倍频峰的吸收强度要比基 频峰弱得多。
谱图解析——1-己烯
1 6 4 2 cm-1 是 C=C 伸 缩 振 动 , 一 般 来 说 , 1640±20cm-1是顺式和乙烯基的伸缩振动 峰的位置;1670±10cm-1是反式、叔碳、季 碳取代的双键伸缩振动峰的位置。反式-2己烯只有一个很弱的吸收峰,这是因为内双 键伸缩仅会导致偶极矩的微小变化(近似于 对称的情况)。
频率是每秒光波通过的数目。
c
c:光在真空中的速度。
在红外中,经常使用的是波数。
1/ :cm-1
谱图解析——正己烷
正己烷 最常见的有机化合 物。
谱图解析——正己烷
这个样品是液体样品,夹在两个KBr 窗片之间得到的谱图。从谱图上来看 ,这个化合物的红外吸收峰比较宽, 表明该化合物是一个饱和化合物。由 于饱和化合物有很多低能量的构象, 每一种构象吸收峰的位置有一定的差 异,谱峰的加宽是由于不同构象的峰 叠加而成的。
谱图解析——正己烷
这是指纹区,这一段区间的吸 收有很多的因素,很难解释。 不管多么复杂,利用参考谱图 进行比对,即可对样品进行定 性判断。
谱图解析——正己烷
当四个或更多的CH2基 团在一根链上, 720±10 cm-1是CH2基 团的摇摆振动。
谱图解析——2,3-二甲基丁烷
2,3-二甲基丁烷 与正己烷相比,这两个化合 物均有CH3和CH2基团;而环 己烷却仅有CH2基团。
谱图解析——正己烷
这是C-H弯曲振动区域,把 该区域放大CH2和CH3的弯 曲振动峰叠加在一起,关 于这一点,我们可以比较 环己烷和2,3-二甲基丁烷在 该区间的吸收峰。
谱图解析——正己烷
在1460cm-1出现的宽峰实际上 是两个峰叠加而成的。一般地 ,CH3基团的反对称弯曲振动 峰 的 位 置 在 1 4 6 0 ± 1 0 cm-1, 这 是一个简并弯曲振动(仅显示 一种)。
谱图解析——1-己烯
2997cm-1, =CH2的对称伸缩振 动。一般来说,反对称伸缩振 动吸收峰的频率要高于对称伸 缩振动的频率。
谱图解析——1-己烯
2960cm-1,是CH3的反对 称伸缩振动峰。
谱图解析——1-己烯
2924cm-1, CH2的反对称 伸缩振动峰。
谱图解析——1-己烯
2870cm-1, 是CH3 的对称伸缩振动。
谱图解析——正己烷
谱图的解析一般从高波数开始,因为高 波数谱峰频率与基团一一对应,而且最 容易解释。在3000cm-1以上没有吸收峰 ,表明没有不饱和的C-H伸缩振动。在 3000cm-1以下的四个峰是饱和C-H伸缩 振动峰。
谱图解析——正己烷
在2962cm-1处的峰是CH3基团 的反对称伸缩振动。这种反对 称伸缩振动范围2962±10cm-1 ,事实上,存在两个简并的反 对称伸缩振动(显示其中一个 )。
谱图解析——2,3-二甲基丁烷
指纹区:在这个区域与标准谱比 较即可对该样品定性,注意这个 样 品 没 有 7 2 0 cm-1 的 CH2 的 摇 摆 振动峰。
谱图解析——1-己烯
1-己烯 你能分辨出哪一个峰是双键峰? (提示:与己烷峰比较即可得出 结论)。
谱图解析——1-己烯
3080cm-1, 是=CH2反对称伸 缩 振 动 峰 。 在 3 0 0 0 cm-1 以 上 有吸收峰,表面有不饱和基团 存在(双键或炔烃或芳烃)。
谱图解析——正己烷
在1455±10cm-1处,是 CH2 的 弯 曲 振 动 峰 吸 收 值(也叫剪刀振动)。
谱图解析——正己烷
在1375±10cm-1,是CH3对称弯曲振 动(也叫“伞”弯曲振动)吸收峰位 置,这个峰通常时很有用的,因为这 个峰比较孤立,比较环己烷的谱图, 最大的差异就是在环己烷谱图中没有 CH3基团的对称弯曲振动峰。
红外光谱简单介绍 ...
布鲁克光谱仪器公司 陆兴军
FT-IR: 基本原理 ...
红外光
当一束红外光射到物质上,可能发生:吸收、透过、反射、散射或者 激发荧光(即拉曼效应)。
FT-IR: 基本原理 ...
红外光
不同波段的光连接起来构成成了整个光谱范围。
FT-IR: 基本原理 ...
红外光
光的辐射可以看作是波的运动,波长是两个连续峰之间的距离。
谱图解析——正己烷
在 2 9 2 6 cm-1 处 , 是 CH2 的不对称伸缩振动峰, 一般在2926±10cm-1范 围内。
谱图解析——正己烷
2 8 7 2 cm-1 处 是 CH3 的 对 称 伸 缩振动峰,一般波数范围为 :2872±10cm-1。
谱图解析——正己烷
在 2 8 5 3 cm-1 处 的 吸 收 峰 , 是 CH2的对称伸缩振动峰,一般 这种振动峰的吸收位置在: 2853±10cm-1。
谱图解析——1-己烯
1 4 6 6 cm-1,CH3 的 反 对称弯曲振动。
谱图解析——1-己烯
1455cm-1,CH2剪刀弯曲 振动。
谱图解析——1-己烯
1379cm-1谱图对比,即可以定 性归属样品。注意:该谱图中没有 720cm-1的CH2的摇摆振动吸收峰( 一般只有4个或4个以上的CH2存在时 才出现720cm-1的峰)。
谱图解析——2,3-二甲基丁烷
2 9 6 2 cm-1,CH3 反 对 称 伸 缩 振 动 ( 仅 显示两个简并反对称伸缩振动模式之 一)。
谱图解析——2,3-二甲基丁烷
2880cm-1,CH3基团的伸缩振动。注意:这 里没有CH2基团的吸收峰,因为该分子中 没有CH2基团。
谱图解析——2,3-二甲基丁烷