12V50W电子变压器制作

12V50W电子变压器制作
12V50W电子变压器制作

12V50W电子变压器制作

浏览1523 发布时间08/05/24本文介绍的12V50W电子变压器电路成熟,性能稳定。工作原理与开关电源相似,电原理图如下。

工作原理

由VD1-VD4将市电整流为直流,再把直流变成几十千赫兹的高频电流,然后用铁氧休变压器对高频、高压脉冲降压。图中R2、C1、VD5为启动触发电路。C2、C3、L1、L2、L3、VT1、VT2构成高频振荡部分。

元器件选择与制作

元器件清单见下表。

L1、L2、L3分别绕在H7×4×2mm3的磁环上,L1、L2绕6匝;L2绕1匝。L4、L5绕在H31×18×7mm3的磁环上,L4绕用Φ=0.1mm的高强度线绕340匝;L5用Φ=1.45mm 的高强度线绕20匝。VT1、VT2选用耐压BVceo≥350V大功率硅管。其它元件无特殊要求。

电路正常工作时,A点工作电压约为215V,B点约为108V,C点约为10V,D点约为25V。如果不振荡,检查VT1、VT2及L1、L2、L3的相位是否正常(交换L3的两根接线即可)。改变L5的匝数可改变输出电压

变压器的设计实例

摘要:详细介绍了一个带有中间抽头高频大功率变压器设计过程和计算方法,以及要注意问题。根据开关电源变换器性能指标设计出变压器经过在实际电路中测试和验证,效率高、干扰小,表现了优良电气特性。关键词:开关电源变压器;磁芯选择;磁感应强度;趋肤效应;中间抽头 0 引言 随着电子技术和信息技术飞速发展,开关电源SMPS(switch mode power supply)作为各种电子设备、信息设备电源部分,更加要求效率高、成本小、体积小、重量轻、具有可移动性和能够模块化。变压器作为开关电源必不可少磁性元件,对其进行合理优化设计显得非常重要。在高频开关电源设计中,真止难以把握是磁路部分设计,开关电源变压器作为磁路部分核心元件,不但需要满足上述要求,还要求它性能高,对外界干扰小。由于它复杂性,对其设计一、两次往往不容易成功,一般需要多次计算和反复试验。因此,要提高设计效果,设汁者必须有较高理论知识和丰富实践经验。 1 开关电源变换器性能指标 开关电源变换器部分原理图如图1所示。 https://www.360docs.net/doc/a016065312.html,提示请看下图: 其主要技术参数如下: 电路形式半桥式; 整流形式全波整流; 工作频率 f=38kHz; 变换器输入直流电压 Ui=310V; 变换器输出直流电压 Ub=14.7V; 输出电流 Io=25A; 工作脉冲占空度 D=0.25~O.85; 转换效率η≥85%; 变压器允许温升△τ=50℃; 变换器散热方式风冷; 工作环境温度t=45℃~85℃。 2 变压器磁芯选择以及工作磁感应强度确定 2.1 变压器磁芯选择 目前,高频开关电源变压器所用磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。这些材料中,坡莫合金价格最高,从降低电源产品成本方面来考虑不宜采用。非晶合金和超微晶材料饱和磁感应

电子变压器的工作原理 电子变压器材料及分类

电子变压器的工作原理电子变压器材料及分类 电子变压器简介 电子变压器,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器工作原理 工作原理与开关电源相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~20倍。也可用C3093等BUceo>=35OV 的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7X10X6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm 高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。 电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2a、b二线圈的匝数,则可改变输出的高频电压。 电子变压器作用 在电子线路中起着升压、降压、隔离、整流、变频、倒相、阻抗匹配、逆变、储能、滤波等作用。 电子变压器分类 A按工作频率分类: 工频变压器:工作频率为50Hz或60Hz 中频变压器:工作频率为400Hz或1KHz 音频变压器:工作频率为20Hz或20KHz

电力电子变压器简介

电力电子变压器简介 编者按:电力电子变压器是一种有发展前途的电力电子设备。它与目前使用的铁芯铜线变压器,有明显的优点,特别是耐高压(15kV)的碳化硅器件的成熟会给电力电子变压器的发展带来新的机遇。它是未来智能电网的得利电力电子设备。作为一种新型的电力变压器,得到了国内外研究人员越来越多的关注。 此外,电力电子变压器能否将电压变换与电能质量调控结合一起解决?如一条轧钢生产线使用的变压器,采用电力电子变压器,可以即变压,又能实现电能质量调控,能否有可能?我公司已开发成功的‘’27.5k V转10k V‘’装置也是一种电力电子变压器。轻型直流输电系统也可兼有电力电子变压器功能。可见,公司已具备生产电力电子变压器的能力。 根据现有资料选编成“电力电子变压器简介”一文。文中内容不一定十分准确,供公司开发新产品参考。 王春岩2010.10.22 1、定义 电力电子变压器,又称为固态变压器——P E T ( P o w e r E l e c t r o n i c T r a n s f o r m e r ),也有称为EPT。 电力电子变压器是一种含有电力电子变换器,且通过高频变压器实现磁耦合的变电装置,它通过电力电子变换技术和高频变压器实现电力系统中的电压变换和能量传递。 2、电子电力变压器的基本组成和工作原理 2、1 基本组成(以单相为例)

基本组成见图2.1 2、2 直接、AC/AC变换的电力电子变压器(以单为例) 2、3 含直流环节的PET

2、4 单相含直流PET的电路结构 2、5 用于风电、光电和小水电单相并网PET 图2.5用于风电、光电和小水电单相并网PET 3、电力电子变压器优点和缺点: 3、1 优点 1).体积小,重量轻,无环境污染; 2).运行时可保持副方输出电压幅值恒定,不随负载变化; 3).始终保证原、副方电压电流为正弦波形,并且原、副方功率因数任意可调;4).具有高度可控性,变压器原副方电压、电流的幅值和相位均可控:

卤素灯用电子变压器原理

卤素灯用电子变压器原理图 卤素灯又称石英灯,它常以石英玻璃做成反射灯罩,制作成石英射灯。石英射灯具有聚光、亮度高、显色性好、外形新颖和寿命长等优点,普遍用于舞厅、宾馆和商场等场所做特殊照明,也可用于展室的橱窗及照相行业的摄影厅。目前,家庭使用石英灯也逐渐增多。普通石英射灯使用12V/50W的小型卤素灯泡,配用小体积的电子变压器,使其效率提高,体积重量均减少。本电子变压器采用工程阻燃塑壳,外观小巧玲珑。 主要电气参数:电源电压AC220V+10%;电源频率50~60Hz;输出电压AC12V;输出功率50W;功率因数0.99。 电子变压器实际上是一种隔离型开关电源,电路原理如附图所示,它主要由全桥整流滤波、开关变换、小体积磁芯隔离降压变压器三部分组成。变换开关元件由于采用了NPN型三重扩散表面玻璃钝化平面型晶体管,它具有击穿电压高、电流容量大、开/关时间短的特点,因此开关管的安全工作区得到保证。电路有较高的使用效率和可靠性,可长时间连续工作。隔离降压变压器亦是本机关键,磁芯参数确定了传输功率,匝数比确定了输出电压。本变压器使用EE25磁芯,初级绕120匝,次级用多股并绕12匝,磁芯不作间隙,组装后经专用树脂浸渍处理而成。使用注意事项:1. 只限接入小于指定功率的负载,也就是配接12V石英灯泡、功率在20~50W之间;2. 严禁输出短路,并保持变压器四周通风。 本文介绍的电子变压器克服了传统硅钢片变压器体积、重量大、效率低、价格高的缺点,电路成熟,性能稳定。 工作原理 本电子变压器工作原理与开关电源相似,电路原理图见图1,由VD1-VD4将市电整流为直流,再把直流变成几十千赫兹的 高频电流,然后用铁氧休变压器对高频、高压脉冲降压。图中R2、C1、VD5为启动触发电路。C2、C3、L1、L2、L3、VT1、VT2构成高频振荡部分。 L1、L2、L3分别绕在H7×4×2mm3的磁环上,L1、L2绕6匝;L2绕1匝。L4、L5绕在H31×18×7mm3的磁环上,L4绕用Φ=0.1mm的高强度线绕340匝;L5用Φ=1.45mm的高强度线绕20匝。VT1、VT2选用耐压BVceo≥350V大功率硅管。其它元件无特殊要求。电路正常工作时,A点工作电压约为215V,B点约为108V,C点约为10V,D点约为25V。如果不振荡,检查VT1、VT2及L1、L2、L3的相位是否正常(交换L3的两根接线即可)。改变L5的匝数可改变输出电压。 元器件选择与制作元器件清单见下表。

电力电子课程设计

电力电子应用课程设计 课题:50W三绕组复位正激变换器设计 班级电气学号 姓名 专业电气工程及其自动化 系别电气工程系 指导教师 淮阴工学院 电气工程系 2015年5月

一、设计目的 通过本课题的分析设计,可以加深学生对间接的直流变流电路基本环节的认识和理解,并且对隔离的DC/DC电路的优缺点有一定的认识。要求学生掌握单端正激变换器的脉冲变压器工作特性,了解其复位方式,掌握三绕组复位的基本原理,并学会分析该电路的各种工作模态,及开关管、整流二极管的电压电流参数设计和选取,掌握脉冲变压器的设计和基本的绕制方法,熟悉变换器中直流滤波电感的计算和绕制,建立硬件电路并进行开关调试。 需要熟悉基于集成PWM芯片的DCDC变换器的控制方法,并学会计算PWM控制电路的关键参数。输入:36~75Vdc,输出:10Vdc/5A 二、设计任务 1、分析三绕组复位正激变换器工作原理,深入分析功率电路中各点的电压 波形和各支路的电流波形; 2、根据输入输出的参数指标,计算功率电路中半导体器件电压电流等级, 并给出所选器件的型号,设计变换器的脉冲变压器、输出滤波电感及滤波电容。 3、给出控制电路的设计方案,能够输出频率和占空比可调的脉冲源。 4、应用protel软件作出线路图,建立硬件电路并调试。 三、总体设计 3.1 开关电源的发展 开关电源被誉为高效节能电源,代表着稳压电源的发展方向,现已成为稳压电源的主流产品。 开关电源分为DC/DC和AC/DC两大类。前者输出质量较高的直流电,后者输出质量较高的交流电。开关电源的核心是电力电子变换器。按转换电能的种类,可分为直流-直流变换器(DC/DC变换器),是将一种直流电能转换成另一种或多种直流电能的变换器;逆变器,是将直流电能转换成另一种或多种直流电能的变换器;整流器是将交流电转换成直流电的电能变换器和交交变频器四种。 开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前的小型化,并使开关电源进入更广泛的领域,特别是在高新技术领

电子变压器电路图详解

电子变压器电路图详解 无变压器电源电路 电路工作原理是:由图可知,该电路是由控制电路检测市电变化,当市电在过零点附近时,MOS关闭。利用对两只大容量电容的充放电可以保证该电源具有一定的负载输出电流。 市电首先由桥堆VC整流,获得l00Hz的脉动直流电,其最高峰值可达310V。时基IC 及其外围阻容件组成市电过零控制电路。脉动直流电经VD1隔离、R1降压、VZ2稳压、C1滤波为检测控制电路提供稳定工作电源。R2、RP1组成市电检测分压电路。当脉动直流电过零电压低于13V时,IC的第2脚被触发,第3脚输出高电平,场效应管VT导通。脉动直流电经R6限流,通过VT对C2、C3迅速充电,最大瞬时电流可达4A。R5、RP2及IC的第4脚组成电压反馈控制电路,调节RP2可获得5~12V的输出电压。只要IC的第4脚电压大于0.7V,IC 即被复位,第3脚输出低电平,VT截止。除VT导通的时间外,C2、C3保持向负载输出电流。大容量电容C2、C3可以保证最大输出电流达100mA时仍有稳定的输出电压。R4、VD3为供电指示电路,由于第7脚的导通与第3脚输出高电平错开,这就减轻了控制电路的耗电,保证了控制电路工作的可靠。实际上,IC的第6脚与第2脚的共同对市电检测,还使得电路具有过

电压闭锁功能。 显然,本电源的不足之处是由于电路本身不能与市电隔离。因此电路及其负载均会带上市电。 本文介绍的电子变压器,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电路如图所示。其工作原理与开关电源相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,T c绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b 用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发

简易大功率电子变压器制作_四款电子变压器电路图

简易大功率电子变压器制作_四款电子变压器电路图 简易大功率电子变压器制作介绍的电子变压器克服了传统硅钢片变压器体积、重量大、效率低、价格高的缺点,电路成熟,性能稳定。 本电子变压器工作原理与开关电源相似,电路原理图见图1,由VD1-VD4将市电整流为直流,再把直流变成几十千赫兹的高频电流,然后用铁氧休变压器对高频、高压脉冲降压。图中R2、C1、VD5为启动触发电路。C2、C3、L1、L2、L3、VT1、VT2构成高频振荡部分。 元器件选择与制作 L1、L2、L3分别绕在H742mm3的磁环上,L1、L2绕6匝;L2绕1匝。L4、L5绕在H31187mm3的磁环上,L4绕用=0.1mm的高强度线绕340匝;L5用=1.45mm的高强度线绕20匝。VT1、VT2选用耐压BVceo350V大功率硅管。其它元件无特殊要求。 电路正常工作时,A点工作电压约为215V,B点约为108V,C点约为10V,D点约为25V。如果不振荡,检查VT1、VT2及L1、L2、L3的相位是否正常(交换L3的两根接线即刻)。改变L5的匝数可改变输出电压。 500W大功率变压器电路如图为500W大功率变压器电路原理。电路采用TL494为振荡器,VT1~VT6为激励级,是输出为500W的大功率逆变电路。TL494在该逆变器中的应用方法如下:1、2脚构成稳压取样、误差放大电路f逆变器次级绕组整流输出的15V直流电压作为取样电压,经R1、R3分压,使1脚在逆变器正常工作时有近4.7~5.6V的取样电压。2脚输入5V的基准电压(由14脚输出)。当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过TL494内部电路使输出电压升高。 四款电子变压器电路图电路图一:我们经过反复实验这种电子变压器的电流反应速度很快!已经超过了普通的工频变压器,该电路完全可以代替功放的电源。电子变压器AC/DC 有过电流限制保护功能适合电动自行车的电瓶充电。如果将几个AC/DC并联可以做成大

工频变压器设计计算

工频变压器的设计计算 赵一强2010-9-15 ,这个 U2), 从上可知,变压器是通过铁芯的磁场来传递电功率的。借助于磁场实现了初级电路和次级电路的电隔离;又通过改变绕组匝比,来改变次级的输出电压。 二、变压器特性参数和设计要求 1、磁通密度B和电流密度J 磁通密度(又叫磁感应强度)B和电流密度J是变压器设计的关键参数,直接关系着变压器的体积和重量,B 、J值越高,变压器越轻,但是B 、J的取值受到一定条件的限制,因此,变压器的体积和重量也受到这些条件的限制。 4Gs 。 H的关系曲线,在

图3中,Bs —饱和磁感应强度; Bs —过压保护磁感应强度 Bm —最大磁感应强度(计算值) 导磁率: H B ΔΔ= μ 饱和磁通密度为Bs 和导磁率μ是曲线的两个重要参数。 对于磁性材料,要求Bs 、μ 越高越好。Bs 高,变压器体积可减小;μ高,变压器空载电流小。 另外,还要求电阻率ρ高,这样损耗小、发热小。 ⑵ 电流密度J 电流密度J : 电路单位截面积的电流量,单位 :安/厘米2(A/cm 2)。 变压器绕组导线的电阻:q l R cu ρ= 电流导线中所产生的损耗(铜损): l IJ R I P cu cu cu ρ2 == 可以看出,铜损与电流和电流密度的乘积成正比,就是说,随着电流增加,要保持同样的绕组损耗和温升,必须相应地降低电流密度。 2、铁心、导线和绝缘材料 ⑴ 铁心形状和材料 铁心形状:卷绕的有O 型、CD/XCD 型、ED/XED 型、R 型、HSD 型(三相), 冲片的有EI 、CI 型;这是我们常用两种冲片。 铁心材料牌号:硅钢(含硅量在2.3~3.6%) 冷轧无取向硅钢带:含硅量低(在0.5~2.5%);厚0.35、0.5、0.65mm,我们常用0.5mm ; B 高、μ高,铁损大,价格较低,多用于小功率工频变压器。 冷轧取向硅钢带:含硅量较高(在2.5~3%),厚0.27、0.3、0.35mm, 我们常用0.35mm ;B 高、μ高,铁损小,价格较高,多用于中大功率工频变压器。 ⑵ 线圈导线材料 油性漆包线Q 0.05~2.5 耐温等级 A 105℃ 塑醛漆包线QQ 0.06~2.5 耐温等级 E 120℃ 聚酯漆包线QZ 0.06~2.5 耐温等级 B 130℃ 耐压均在600V 以上。最常用的是QZ 漆包线。 线圈允许的平均温升⊿τm =线圈绝缘所允许的最高工作温度-最高环境温度-(5—10K ), 通常不超过60℃。5—10K 是考虑线圈最高温度与平均温度之差,功率大取大值。 ⑶ 层间绝缘材料 500V 以下不需要层间绝缘。各绕组间应垫绝缘0.03 聚酯薄膜2~3层。 3、 电源变压器的主要技术参数 ⑴ 输出功率(视在功率、容量、V A 数) ⑵ 输出电压及电压调整率和要求 ⑶ 电源电压、频率及变化范围 ⑷ 效率 ⑸ 空载电流及空载损耗 ⑹ 绕组平均温升 ⑺ 输入功率因数

电力电子变压器研究综述

电力电子变压器研究综述 李璟 摘要:电力电子变压器(PET ) 是一种采用电力电子变换器和高频开关变压器的电能传输装置。首先,介绍了电PET 的基本工作原理及其研究现状。其次,介绍了发展过程中出现的几种典型拓扑结构。再次,对PET 的控制方法进行了总结。最后,对将来PET 的应用及发展做出了展望。 关键词:电力电子变压器 电力系统 控制 拓扑 0 引言 PET 除了具有传统电力变压器电能变换与传输功能外,其突出优点在于体积小、重量轻,通过变压器原、副方电压源变换器对其交流侧电压幅值和相位的实时控制,可以实现变压器原、副方电压、电流和功率的灵活调节,在暂态过程中控制性能良好,本身具有断路器的功能,无需传统的变压器继电保护装置等[1~3]。因此PET 具备解决电力系统相关问题的潜力,应用前景广阔。随着电力系统朝着智能电网不断发展,PET 也受到越来越多的专家学者的关注。 1 PET 基本工作原理 电力电子变压器是一种将电力电子变换技术和基于电磁感应原理的电能变换技术相结合,实现将一种电力特征的的电能转变为另一种电力特征的电能的静止电气设备。[4]上述电力特征包括电压或者电流的幅值、相位、相序、波形、频率和相数等。它的主要功能包括变压、变流、电气隔离、能量传递和电能控制。 在结构上,电力电子变压器主要包括两个部分:高频变压器和电力电子变换器。电源接到一次侧时,电力电子变换器1将输入的工频交流电变换成高频交流电,高频交流电经高频变压器耦合后与这电力电子变换器2相连接,通过电力电子变换器2输出到负载上。 图1 电力电子变压器中电力电子变换器的主要功能是实现电压或者电流的频率控制、相位控制和谐波控制;电力电子变压器中的高频变压器主要功能是电压等级的变换和电气隔离。变压器容量S 可以表示为下式: m e c B A A J f K S ******=22.2 (1) 式中K 为铜导线饱和因数;f 为励磁频率(Hz );c A 、e A 分别表示为铁芯和绕组导线面积(m 2);J 为导体中的电流密度(2 /m A );m B 为最大磁通密度(T)。可见在其他条件相同的情况下,f 与e c A A *成反比,因此高频变压器体积远小于同容量的工频变压器。[5]

逆变器用变压器设计

计算方法 A 已知条件: 输出功率:2P =25W ; 次级电流:2I =0.115A ;(220V ?) 初级电流:1I =1.0A ; 电源频率:f =50Hz ; 效率:η>0.9; 功率因数:cos ?>0.9; 温升:m τ?<55℃。 B 电压计算输入功率:212527.80.9P P η= ==W 初级电压:11127.827.81P U I = ==V 次级电压:22225217.390.115 P U I ===V 次级负载电阻:()222222518900.115P R I = ==?C 选择铁芯 按2P 选择铁芯。当使用R 型铁芯R-30,材料使用DQ151-35时。铁芯 相关性能为: 当0B =1.70T 时,S P ≤2.2W/kg ,磁化伏安≤8V A/kg ,~H ≤3.5A/cm 2 223.1410 3.142C d S cm π??==×=????;()()2 5.45 2.021.95 2.022.8C L =×+++=cm ;

C G =0.425(kg );c F =64cm 2 D 匝数计算 44 1010108.43864.44 4.4450 1.7 3.14 c TV fB S ===×××匝/V 当%U ?=15%(8%?),()()128.43869.92781%10.15TV TV U ===???匝/V (()()128.43869.1721%10.08TV TV U ===???)11127.88.4386235N U TV =×=×=匝 2222179.92782155N U TV =×=×=匝(2222179.1721990N U TV ==×= )E 导线直径确定(数据提供23.5~4.0/j A A mm = )1 1.130.604d === mm 2 1.130.205d ===mm 若取QZ-2(二级聚酯漆包线)标准导线,则10.630d mm =,1max 0.704d mm =,铜导体电阻54.84/km ?;20.224d mm =,2max 0.266d mm =,铜导体电阻433.8/km ?。

LED(50W)电子变压器

LED(50W)电子变压器 本文介绍的电子变压器,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电路如图所示。其工作原理与开关电源相似,二极管VD1~VD4构成整流桥把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm 高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。 电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

12v电子变压器工作原理

电子变压器工作原理图 电子变压器就是开关稳压电源。它实际上就是一种逆变器。首先把交流电变为直流电,然后用电子元件组成一个振荡器直流电变为高频交流电。通过开关变压器输出所需要的电压然后二次整流供用电器使用。开关稳压电源具有体积小,重量轻,价格低等优点,所以被广泛用在各种电器中。开关稳压电源的原理较复杂。 下面一种电子变压器电路图的分析,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点。 电子变压器电路图: 电子变压器工作原理电路如图所示。电子变压器原理与开关电源工作原理相似,二极管VD1~VD4 构成整流桥 把市电变成直流电,由振荡变压器T1,三极管VT1、VT2组成的高频振荡电路,将脉动直流变成高频电流,然后由铁氧体输出变压器T2对高频高压脉冲降压,获得所需的电压和功率。R1为限流电阻。电阻 R2、电容C1和双向触发二极管VD5构成启动触发电路。三极管VT1、VT2选用S13005,其B为15~2 0倍。也可用C3093等BUceo>=35OV的大功率三极管。触发二极管VD5选用32V左右的DB3或VR60。振荡变压器可自制,用音频线绕制在H7 X 10 X 6的磁环上。TIa、T1b绕3匝,Tc绕1匝。铁氧体输出变压器T2也需自制,磁心选用边长27mm、宽20mm、厚10mm的EI型铁氧体。T2a用直径为0.45mm高强度漆包线绕100匝,T2b用直径为1.25mm高强度漆包线绕8匝。二极管VD1~VD4选用IN4007型,双向触发二极管选用DB3型,电容C1~C3选用聚丙聚酯涤纶电容,耐压250V。此电子变压器电路工作时,A点工作电压约为12V;B点约为25V;C点约为105V;D点约为10V。如果电压不满足上述数值,或电子变压器电路不振荡,则应检查电路有无错焊、漏焊或虚焊。然后再检查VT1、VT2是否良好,T1a、T1b的相位是否正确。整个电子变压器电路装调成功后,可装入用金属材料制作的小盒内,发利于屏蔽和散热,但必须注意电路与外壳的绝缘。引外,改变T2 a、b二线圈的匝数,则可改变输出的高频电压。

电力电子的课程设计--BUCK变换器的设计

目录 一、设计要求 (2) 二、设计方案 (2) 三、电路的设计 (3) 四、主电路参数计算和元器件选择 (4) 1、IGBT (4) 2、二极管 (4) 3、电感 (4) 4、电容 (5) 五、各模块所选器件说明 (5) 1、变压器EI86 (5) 2、误差放大器UC3842 (5) 3、脉宽调制器SG3525 (6) 4、驱动器MC34152 (7) 5、三端正稳压器7815 (8) 六、电气原理总图及元器件明细表 (8) 七、课程设计心得 (10) 八、参考资料 (10)

汽车电力电子技术课程设计 ——BUCK变换器的设计 一、设计要求 设计一稳压直流电源,输入为交流220V/50HZ,输出为直流15V的直流稳压电源,如下图1所示,其中DC-DC变换时主要采用BUCK变换器,变换器主器件采用IGBT,控制方式采用PWM控制。 图1 总电路原理框图 二、设计方案 小功率直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如2所示。

图2 直流稳压电源原理框图 三、电路的设计 G a b c Vi 0WM V G d 图3 Buck 变换器电路及相关波形 Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。 为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设: a 、开关元件M1和二极管D1都是理想元件。它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零; b 、电容和电感同样是理想元件。电感工作在线性区而未饱和时,寄生电阻等于零。电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Series

新编电子变压器手册

新编电子变压器手册 新编电子变压器手册主要介绍小功率电源变压器、高压和高电位变压器、音频变压器和超音频输出变压器、变换器中的变压器、变换相数的变压器、变换频率的变压器、磁控变压器、充电变压器、调幅器式变压器、触发器式变压器、参量变压器、磁通可控的铁磁谐振变压器、电感电容联合体、滤波器式变压器、移相与鉴相变压器、低频压电变压器、高频压电变压器、宽频带压电变压器、具有匹配尺寸的压电变压器、多层压电变压器、盒式压电变压器、交流扼流圈、滤波扼流圈、饱和扼流圈、充电扼流圈、转换扼流圈等的工作原理、绕组线路、最佳结构及设计计算方法详细列出了设计步骤,并以图表的形式提供了设计所必须的大量参考材料。 本书可供无线电设备电源及电子变压器行业的广大工程技术人员使用,也可供雷达、高能物理、自动控制、通讯、广播电视、水声、冶金、电机、电器等部门的科技工作者及高等院校相应专业的师生参考。 目录 第一章小功率电源变压器 1.1 设计的主要依据 1.2 变压器结构与材料的选择 1.3 高压和高电位变压器的绝缘方式及冷却方式的选择 1.4 高压和高电位变压器绕组结构的选择及绝缘距离的确定

1.5 有关系数及尺寸功率的确定 1.6 电磁负荷的确定 1.7 铁心主要尺寸的确定 1.8 标准铁心的选取 1.9 线圈的结构计算及绕组主要参数的确定1.10 变压器的损耗和最热点温升 1.11 小功率电源变压器的设计程序 1.12 设计计算时应注意的其它问题 第二章音频和超音频变压器 2.1 音频变压器的电磁参数 2.2 音频变压器的特殊形式及其设计特点 2.3 音频变压器的漏感 2.4 音频变压器的分布电容 2.5 音频变压器的结构计算 2.6 超音频输出变压器的结构 2.7 超音频输出变压器各主要参数间的基本关系2.8 超音频输出变压器的计算方法 第三章变换器中的变压器 3.1 变换器中变压器的基本关系

电力电子变换器设计

摘要 电力电子变换器是应用电力电子技术将一种电能转变为另一种或多种形式电能的装置。其中,直流变换器是一个重要部分,它是将一种直流电能转换成另一种或多种直流电能的变换器。DC/DC全桥变换器由DC/AC和AC/DC两种电路形式组合而实现直直变换的,其中DC/AC全桥逆变器的主电路只有一种,但控制方式有三种,其输出不仅与开关器件状态有关,且与负载性质和大小有关。在后两种控制方式中,电路是否具有续流管会直接影响其输出,同时在变换器的实际应用中还存在直流分量问题,其对电路性能有不良影响,要想办法抑制或消除。 关键字:直流变换器、控制方式续流管、全桥逆变器、输出整流滤波电路、直流分量的抑制 目录 一全桥逆换器及其控制 1.1 双极性控制方式 1.1.1 负载为纯电阻 1.1.2 负载为电感 1.2 有限双极性控制方式 1.3 移相控制方式 二PWM DC/DC全桥变换器 2.1 具有续流管的DC/DC全桥变换器 2.2 没有续流管的DC/DC全桥变换器 三DC/DC全桥变换器中直流分量的抑制 四设计结论 五设计体会 六参考文献

一 全桥逆换器及其控制 DC/DC 全桥变换器由全桥逆变器和输出整流滤波电路构成,首先就全桥逆变器的构成和工作原理做一下简单概述。 1.1 双极性控制方式 全桥逆变器的主电路如图1-1所示,有四只功率管1Q ~4Q ,反并联二极管1D ~4D 和输出变压器r T 等构成。输入直流电源电压为in V ,输出交流电压为o v ,变压器r T 的原边绕组接与AB 两端。变压器原边绕组匝数为1N ,副边匝数为2N ,变比21/N N K =。 1.1.1 负载为纯电阻 晶体管为脉宽调制(PWM )工作方式,在一个开关周期S T 的前半周,1Q 和4Q 导通2/S T D ?,D 为占空比,2 /s on T T D =,后半周期为2Q 和3Q 导通,导通时间也为2/S T D ?。1Q 和4Q 导通时in AB V v -=,1Q 和4Q 与2Q 和3Q 均截止时,0=AB v 。故变压器副边开路时,变压器原边电压AB v 的波形如图1-1(b)所示。为一个方波电压。调节晶体管的导通时间,即改变占空比D ,就可以调节AB v 的宽度,从而调节AB v 的有效值的大小。副边电压o v 波形与AB v 相同,幅值为K V in /。 (a) 全桥逆变器主电路

平面变压器的工作原理

平面变压器的结构原理与应用 摘要:大多数DC/DC变换器都需要隔离变压器 而平面变压器技术在隔离变压器的许多方面实现了重要的突破。介绍了平面变压器的结构、性能和使用方法。 关键词:隔离变压器平面变压器开关电源 在DC/DC变换中,基本的Buck、Boost、Cuk变换器是不需要开关隔离变压器的。但如果要求输出与输入隔离,或要求得到多组输出电压,就要在开关元件与整流元件之间使用开关隔离变压器,所以绝大多数变换器都有隔离变压器。目前开关电源的发展趋势是效率更高、体积更小、重量更轻,而传统的隔离变压器在效率、体积、重量等方面严重制约了开关电源的进一步发展。同时由于变压器涉及到的主要参数有电压、电流、频率、变比、温度、磁芯u值、漏抗、损耗、外形尺寸等,所以一直无法象其它电子元器件那样有现成的变压器可供选用,常常要经过繁琐的计算来选用磁芯和绕组导线,而且绕组绕制对变压器的性能也有较大影响,加之变压器的许多重要参数不易测量,给使用带来一定的盲目性,很难在频率响应、漏抗、体积和散热等方面达到满意效果。平面变压器(FlatTransformer 技术则在隔离变压器的许多方面实现了重要的突破。 目前,国外的许多电源产品中都开始采用平面变压器技术,如蓄电池充电电源、通信设备分布式电源、UPS等。而国内的隔离开关变压器在材料、工艺等方面与国外先进国家有一定差距,阻碍了开关电源开关高频的提升和效率提高,使开关电源产品停留在一个较低的水平。平面变压器技术将会为高频开关电源的设计和产品化提供有益的帮助。 传统变压器的绕组常常是绕在一个磁芯上,而且匝数较多。而平面变压器(单元)只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。并且平面变压器原边绕组的匝数通常也只有数匝,不仅有效降低了铜损和分布电容、电抗,而且为绕制带来了很多便利。由于磁芯是用简单的冲压件组合而成的,性能的一致性大大提高,也为大批量生产降低了成本。 1 平面变压器的结构和性能 1.1 结构 平面变压器通常有2个或2个以上大小一样的柱状磁芯(图1a)。现以2个磁芯的平面变压器为例介绍其结构。每个磁芯柱在对角线上的两角都用铜皮连接,铜皮在通过磁芯柱时紧贴磁芯内壁(图1b)。两个磁芯并排放置,相邻的两角用铜皮焊接起来,在一个磁芯的一个外侧面上的两个角上的铜皮用一片铜皮焊接在一起,这里就是平面变压器次级线圈的中心,如果在这里引出抽头,就是次级线圈的中心抽头;在另一个磁芯

电子变压器项目规划设计方案 (1)

电子变压器项目规划设计方案 规划设计/投资方案/产业运营

摘要 中国电子变压器为满足国际市场的需要,通过实施“以质取胜”的战略,电子变压器出口已逐步形成规模,工艺装备也日臻完善。特别是近年来电子变压器产业的发展前沿,如功率铁氧体材料、软磁合金材料、非晶结晶磁性材料、纳米合金磁性材料、压电陶瓷、纳米绝缘材料等均取得卓有成效的发展,这为电子变压器行业技术进步创造了良好条件,电子变压器将伴随着整机微型化的需求,向高频化、低损耗、片式的方向发展。 该电子变压器项目计划总投资11693.96万元,其中:固定资产投资8863.02万元,占项目总投资的75.79%;流动资金2830.94万元,占项目总投资的24.21%。 本期项目达产年营业收入24920.00万元,总成本费用19643.28 万元,税金及附加226.10万元,利润总额5276.72万元,利税总额6230.64万元,税后净利润3957.54万元,达产年纳税总额2273.10万元;达产年投资利润率45.12%,投资利税率53.28%,投资回报率33.84%,全部投资回收期4.45年,提供就业职位429个。

电子变压器项目规划设计方案目录 第一章总论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设背景 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章建设内容 一、产品规划 二、建设规模 第四章项目建设地方案 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

电力电子课程设计

课程设计报告

目录一.基本现状及意义 1.1国内外的研究现状和发展趋势: 1.2三相逆变器研究设计的意义:二.任务书要求 、设计目的: 、设计任务: 三.基本原理 .三相电压型逆变电路工作原理 .控制电路的设计 四.系统硬件设计 系统总体介绍 系统参数计算 五.仿真电路 六.仿真波形分析 七.实验总结

一.基本现状及意义 国内外的研究现状和发展趋势? 逆变技术的发展可以分为如下两个阶段:? 1956-1980年为传统发展阶段,这个阶段的特点是,开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加法为主,体积重量较大,逆变效率低。 1980年到现在为高频化新技术阶段,开关器件以高速器件为主,逆变器开关频率高,波形改善以脉宽调制为主,体积重量小,逆变效率高。 在PWM逆变器中,为了减小其体积重量,提高其功率密度,高频化是主要发展方向之一,但高频化也存在一些问题,如增加开关损耗和电磁干扰。为此提出两个解决办法,一是提高开关器件的速度,二是使逆变开关工作在软开关状态。20世纪80年代初,美国弗吉尼亚电力电子技术中心提出了准谐振变换技术,使软开关与PWM技术的结合成为可能。它的研究对于逆变器性能的提高和进一步推广应用,以及电力电子学技术的发展,都有十分重要的意义,是当前逆变器的发展方向之一。 高频软开关逆变技术产生的背景是为了克服传统逆变器的输出波形差,开关应力和EMI较大的缺点。在相同背景下,于1981年提出了多电平逆变技术,成为当前高压大功率逆变器的发展方向。它通过主电路改进,使所有逆变开关都工作在基频或低频,以达到减小开关应力,改善输出电压或电流波形的目的。 总之,逆变技术的发展是在提高波形质量的背景下,随着电力电子技术、微电子技术和现代控制理论的发展而发展,进入二十一世纪,逆变技术正朝着高功率密度、高变换效率、高可靠性、无污染、智能化和集成化的方向发展。 三相逆变器研究设计的意义 (1)促进新能源的开发和利用? 随着电力电子技术的迅猛发展,逆变技术广泛应用于航空、航天、航海等国防领域和电力系统,交通运输、邮电通信、工业控制等民用领域。特别是随着石油、煤和天然气等主要能源日益紧张,新能源的开发和利用越来越受到人们的重视。利用新能源的关键技术----逆变技术,能将蓄电池、太阳能电池和燃料电池

电子电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。

二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。 当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下:

高频变压器设计时选择磁芯的两种方法

高频变压器设计时选择磁芯的两种方法 https://www.360docs.net/doc/a016065312.html, 2003年04月28日 03:32 高频变压器设计时选择磁芯的两种方法 Two Method for Select Core in Design of High Freguency Transformers 在高频变压器设计时,首先遇到的问题,便是选择能够满足设计要求和使用要求的磁芯。 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe,有些讲义和书本上简写为Ap,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或 0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip

得到以下关系式: 0.5KWα= 即: 于是就有如下式: 由于:EδIp=Pi 又有: Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。 在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公

相关文档
最新文档