2、5、8整除的数的特征 、质数合数
因数倍数、奇数偶数、质数合数概念

倍数和因数1、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:一前一后写,成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘自然数(一般不考虑0)。
(4)2、3、5的倍数特征2的倍数:个位上是0,2,4,6,8的数都是2的倍数。
3的倍数:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
5的倍数:个位上是0或5的数,是5的倍数。
2和5的倍数:个位上是0的数,既是2的倍数又是5的倍数能同时被2、3、5整除(也就是2、3、5的倍数)的最小的两位数是30,最大的两位数是90,最小的三位数是120。
奇数和偶数2、自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。
叫奇数。
也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
自然数中最小的偶数是0,最小的奇数是1。
关系:奇数±偶数=奇数奇数±奇数=偶数偶数±偶数=偶数无论多少个偶数相加,结果都是偶数奇数个奇数相加,结果是奇数偶数个奇数相加,结果是偶数合数和质数(素数)3、质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
既不是质数,也不是合数。
1:只有1个因数。
“1”最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、100以内的质数口诀2、3、5、7和11,13后面是17,19、23、29,(十九、二三、二十九)31、37、41,(三一、三七、四十一)43、47、53,(四三、四七、五十三)59、61、67,(五九、六一、六十七)71、73、79,(七一、七三、七十九)83、89、97。
人教版数学五年级下册质数和合数优秀教案推荐3篇

人教版数学五年级下册质数和合数优秀教案推荐3篇〖人教版数学五年级下册质数和合数优秀教案第【1】篇〗教学目标1.使学生理解质数、合数的概念.2.熟记20以内的质数.教学重点1.理解掌握质数、合数的概念.2.初步学会准确判断一个数是质数还是合数.教学难点区分奇数、质数、偶数、合数.教学步骤一、铺垫孕伏.例1.写出下面各数的所有约数:1的约数: 2的约数: 3的约数: 4的约数:5的约数: 6的约数: 7的约数: 8的约数:9的约数: 10的约数: 11的约数; 12的约数:二、探究新知.(一)引导学生归纳.1.按这些约数个数的多少,可以分为哪几种情况?2.分组讨论后汇报.3.引导学生说明:有一个约数的.2.一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.3.教师提问:1是质数还是合数?学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点.1既不是质数,也不是合数.副标题#e#(五)按约数个数的多少给自然数分类.1.按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)2.教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数)(六)教学例2.1.判断下面各数,哪些是质数,哪些是合数.17 22 29 35 37 87(学生独立练习,集体订正)教师强调:熟练运用找约数的方法,这种做题法是做对题的关键.2.反馈练习:下面哪些数是质数,哪些数是合数?19 21 43 67(七)介绍100以内的质数表.1.除了用找约数的方法判断一个数是质数还是合数,还可以用查质数表的方法.2.用质数表检查例2检查方法;表中有17、29、37,说明是质数;22、35、87表中没有,又不是1,说明是合数.3.教师提示:要熟记20以内的质数三、全课小结同学们,这节课你学到了什么知识?四、课堂练习1.下面是2到50的数,下话画掉2的倍数,再依次画掉3、5、7的倍数(但2、3、5、7、本身不画掉),剩下的数都是什么数?2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46 47 48 49 50教师提示:古希腊的数学家就是用这种方式找质数的,有兴趣的`同学可以用这种方法找100以内的质数.副标题2.检查下面各数的约数的个数,指出哪些是质数,哪些是合数,分别填在指定的圈里,再用质数表检查.3.填空题.①质数有个约数,合数至少有个约数.②最小的质数是,最小的合数是.③既不是质数也不是合数.4.判断.①所有的奇数都是质数.②所有的偶数都是合数.③在自然数中,除了质数以外都是合数.④既不是质数也不是合数.5.在整数1~20中:①奇数有:偶数有:②质数有:合数有:五、板书设计有一个约数的有两个约数的有两个以上的数的1的约数12的约数1、23的约数1、35的约数1、57的约数l、711的约数1、114的约数1、2、46的约数1、2、3、68的约数1、2、4、89的约数1、3、910的约数l、2、5、1012的约数1、2、3、4、6、12l既不是质数也不是合数一个数,如果只有1和它本身两个约数,这样的数叫做质数(素数)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数.〖人教版数学五年级下册质数和合数优秀教案第【2】篇〗教学目标:1、理解质数和合数的概念,知道它们之间的联系和区别。
第4讲 数的整除

【内容概述】能被2,3,4,5,8,9,11整除的数的数字特征,以及与此相关的整数的组成与补填问题,乘积末尾零的个数的计算.1.整数a除以整数b(b≠0),所得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a),记作b︱a.如:15÷5=3,所以15能被5整除(5能整除15),记作5︱15.反之,则称为不能整除,用“”表示,如715.如果整数a能被整数b(b≠0)整除,则称a是b的倍数,b是a的约数.如15是5的倍数,5是15的约数.特别的,注意0÷b=0(b≠0),所以说零能被任何非零整数整除,零也是任何非零整数的倍数.还有0÷1=0,所以说1能整除任何整数,1是任何整数的约数.因为整除均在整数范围内考察,所以以下所指之数不特加说明均指整数.2.整除的性质:性质1.如果c︱a,c︱b,那么c︱(a±b).如果a、b都能被c整除,那么它们的和与差也能被C整除.性质2.如果bc︱a,那么b︱a,c︱a.如果b与c的积能整除a,那么b与c都能整除a.性质3.如果b︱a,c︱a,且b、c互质,那么bc︱a.如果b、c都能整除,且b和c互质,那么b与c的积能整除a.性质4.如果c︱b,b︱a,那么c︱a.如果c能整除b,b能整除a,那么c能整除a.3.一些质数整除的数字特征(约数只有1和它本身的数,称为质数):(1)能被2整除的数,其末位数字只能是0,2,4,6,8;(2)能被3整除的数,其各位的数字和能被3整除;(3)能被5整除的数,其末位数字只能是0,5;qponm cba能被7整除,7︱cba-qponm或7︱qponm-cba);(5)能被11整除的数,其末三位与前面隔开,末三位与前面隔出数的差(大减小)能被11整除(即qponm cba能被11整除11︱cba-qponm或11︱qponm cba)或者,其奇数位数字之和偶数位数字之和所得的差能被11整除;qponm cba表示这是一个多位数,而不是q与p、o、c、b、a等数的乘积,下同.4.对于合数,先把合数分解质因数,再一个一个的考察.这样就化归为质数整除问题,对于分解质因数,详见《质数、合数与分解质因数》.5.对于一些特殊的合数的判断方法.能被4整除的数,末两位数能被4整除;能被8整除的数,末三位数能被8整除;能被25整除的数,末两位数能被25整除;能被125整除的数,末三位能被125整除;能被9整除的数,其数字和一定是9的倍数.范例1 在公元9世纪,有个印度数学家——花拉子米写有一本《花拉子米算术》,他们计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算过程丢失而经常检验加法运算是否正确.所以后来人把这种算法称为“土盘算法”.如:1234+1898+18922+678967+178902=889923.他们看1234的数字和为,10除以9余1,1898的数字和除以9余8,18922的数字和除以9余4,678967的数字和除以9余7,178902的数字和除以9余0,余数的和除以9余2;而等式的右边889923除以9的余数为3.所以上面的加法算式一定是错误的.为什么呢?6.若干个数相乘,求其末尾有多少个连续的0,只要把这个乘积中的因数2与5的个数分别找出来,其中较少的因数个数就是积的末尾连续的0的个数.范例2 试求1981×1982×1983×1984×1985×…×2005这25个数相乘,积的末尾有多少个连续的“0”?【分析与解】其中1985,1990,1995,2000,2005含有因数5分别有1,1,1,3,1个,所以共有l+1+1+3+1=7个因数5;其中1982,1984,1986,1988,1990,1992,1994,1996,1998,2000,2002,2004含有因数2,分别有1,6,1,2,1,3,1,2,1,4,1,2个,所以共有1+6+1+2+1+3+1+2+1+4+1+2=25个因数2.其中因数5较少,含有7个,所以题中25个数的乘积末尾连续的0的个数为7.评注:多数情况下,若干个连续的数相乘,需求其末尾连续0的个数.因为因数2的个数远多于因数5的个数,所以只考虑因数5的个数即可.7.还有一种很重要的方法:试除法.如【典型问题】1、2、3、5、6等类问题都可以使用试除法.如果一个数能同时被多个整数整除,那么一定能被这些数的最小公倍数整除,而求多个数的最小公倍数,则可以采用如下两种方法:①短除法求两个或以上数的最小公倍数,可以使用短除法.范例3试求120、180、300的最小公倍数.【分析与解】于是(120,180,300)=30×2×2×3×5=1800.②分解质因数将一组数的每个数严格分解质因数,然后提出每个质因数的最高次所对应的数,将这些提出的数相乘,求出积就是最小公倍数.8.有时也可以将问题视为数字谜问题,如【典型问题】5、6类问题.1.173口是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,11,6整除.”问:数学老师先后填入的3个数字的和是多少?【分析与解】方法一:利用整除特征注意能被9,11,6整除的数的特征:能被9整除的数,其数字和是9的倍数;开,将新组成的两个数作差,将是11的倍数;能被6整除的数,其数字和是3的倍数,且末位为0,2,4,6,8的其中之一.1+7+3=ll,当口内填入7时,1735的数字和为18,为9的倍数,所以当口内填7所组成的数为9的倍数;173口的奇数位数字和为7+口,偶位数数字和为1+3=4,所以当口内填11+4-7=8时,奇数位数字和22和与偶数位数字和的差为11,所组成的数为11的倍数;1+7+3=11,当口内填入l,4,7时,为3的倍数,但只有4为偶数,所以当口内填入4组成的数为6的倍数.所以,这三种情况下填人口内的数字的和为7+8+4=19.方法二:采用试除法用1730试除,1730÷9=192……2,1730÷1l=157……3,1730÷6=288……2.所以依次添上(9-2=)7、(11-3=)8、(6-2=)4后得到的1737、1738、1734依次能被9、11、6整除.所以,这三种情况下填入口内的数字的和为7+8+4=19.2.如果六位数1992口口能被105整除,那么它的最后两位数是多少?【分析与解】因为105=3×7×5,所以这个六位数同时满足能被3、7、5整除的数的特征即可.而能被7整数的数,将其后三位与前隔开,将新组成的两个数作差,将是7的倍数;能被5整数的数,其末位只能是0或5.方法一:利用整除特征末位只能为0或5.①如果末位填入0,那么数字和为1+9+9+2+口+0=21+口,要求数字和是3的倍数,所以口可以为0,3,6,9,验证均不是200-199=1,230-199=31,260-199=61,290-199=91,有9l是7的倍数,即199290是7的倍数,所以题中数字的末两位为90.②如果末位填入5,同上解法,验证没有数同时满足能被3、7、5整除的特征.所以,题中数的末两位只能是90.方法二:采用试除法用199200试除,199200÷105=1897……15,余15可以看成不足(105-15=)90.所以补上90,即在末两位的方格内填人90即可.3.某个七位数1993口口口能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?【分析与解】方法一:利用整除特征因为这个数能被5整除,所以末位只能是0或5,又能被2整除,所以其末位为偶数,所以只能是0.在满足以上条件的情况下,还能被4整除,那么末两位只能是20、40、60或80.又因为还能同时被9整除,所以这个数的数字和也应该是9的倍数,1993A20,1993B40,1993C60,1993D80的数字和分别为24+A,26+B,28+C,30+D,对应的A、B、C、D只能是3,1,8,6.即末三位可能是320,140,860,680.而只有320,680是8的倍数,再验证只有1993320,1993680中只有1993320是7的倍数.因为有同时能被2,4,5,7,8,9整除的数,一定能同时被2,3,4,5,6,7,8,9这几个数整除,所以1993320为所求的这个数.显然,其末三位依次为3,2,0.方法二:采用试除法一个数能同时被2,3,4,5,6,7,8,9整除,而将这些数一一分解质因数:,所以这个数一定能被32×23×5×7=8×9×5×7=2520整除.用1993000试除,1993000÷2520=790……2200,余2200可以看成不足2520-2200=320,所以在末三位的方格内填入320即可.4.从0,l,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?【分析与解】因为[3,5,7,13]=1365,在100000之内最大的1365的倍数为99645(100000÷1365=73……355,100000-355=99645),有99645-1365=98280,98280-1365=96915.96915-1365=95550.95550-1365=94185.所以,满足题意的5位数最大为94185.5.修改31743的某一个数字,可以得到823的倍数.问修改后的这个数是多少?【分析与解】方法一:采用试除法823是质数,所以我们掌握的较小整数的特征不适用,31743÷823=38……469,于是31743除以823可以看成余469也可以看成不足(823-469=)354,于是改动某位数字使得得到的新数比原来大354或354+823n也是满足题意的改动.有n=1时,354+823:1177,n=2时,354+823×2=2000,所以当千位增加2,即改为3时,有修改后的五位数33743为823的倍数.方法二:视作数字谜假设改动数位不是首位与末位,那么我们考虑3口口口3除以823的商:30003÷823=36……375;39993÷823=48……489.所以商在37~48之间,而823的个位3只有与1相乘所得的积才是3,所以这个商的尾数为1,这样的数字在37~48之问,只有41.有823×41=33743.所以改动31743的千位为3即可.6.在六位数11口口11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?【分析与解】方法一:采用试除法110011÷323=340……191,余191也可以看成不足(323-191=)132.所以当132+323n是100的倍数时,才能保证在只改动110011的千位、百位数字,而得到323的倍数.所以有323n的末位只能是10-2=8,所以n只能是6,16,26,…验证有n=16时,132+323×16=5300,所以原题的方框中填入5,3得到的115311满足题意.方法二:视为数字谜因为[17,19]=323,所以有:注意,第3行的个位数字为1,于是乘数的个位数字只能为7,所以第3行为323×7=2261;于是有所以第4行的末位为10+1-6=5,所以乘数的十位数字只能为5,于是第4行为323×5=1615;于是有,所以第5行在(110011-16150-2261=)91600~(119911-16150-2261=)101500之间,又是323×100的倍数,所以只能为32300×3=96900;所以题中的方框内应填入5,3这两个数字.7.已知四十一位数55…5口99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?【分析与解】 我们知道abcabc 这样的六位数一定能整除7、11、13;下面就可用这个性质来试着求解:由上知2055555个2099999个的末6位数999999必定整除7; 有2055555个2099999个=2055555个1499999个×1000000+999999;于是只用考察:2055555个1499999个×1000000,又因为1000000,7互质,所以1000000对整除7没有影响,所以要求2055555个1499999个一定是7的倍数.注意到,实际上我们已经将末尾的6个9除去;这样,我们将数字9、5均6个一组除去,最后剩下的数为(2036)555-⨯个口(2036)999-⨯个,即55口99.我们只用计算55口99当“口”取何值时能被7整除,有口为6时满足.评注:对于含有类似n abcabcabcabc abcabc个的多位数,考察其整除7、11、13情况时,可以将abcabc 一组一组的除去,直接考察剩下的数.8.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少?【分析与解】 因为168=20×3×7,所以组成的六位数可以被8、3、7整除.能够被8整除的数的特征是末三位组成的数一定是8的倍数,末两位组成的数一定是4的倍数,末位为偶数.由上题知abcabc形式的数一定是7、11、13的倍数,所以768768一定是7的倍数,口口口688的口不管怎么填都得不到7的倍数.至于能否被3整除可以不验证,因为整除3的数的规律是数字和为3的倍数,在题中给定的条件下,不管怎么填数字和都是定值,必须满足,不然本题无解.当然验证的确满足.所以768768能被168整除,且验证没有其他满足条件的六位数.9.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?【分析与解】因为72=32×23,所以这个数必须是8的倍数,即后三位必须是8的倍数(也一定有后二位为4的倍数,末位为偶数),且数字和是9的倍数.有456,312,516,920,324,728,132,536…均是4的倍数,但是只有456,920,728,536是8的倍数.验证这些数对应的自然数的数字和:456对应123456,数字和为2l,920对应123…91011…1920,数字和为102,728对应123…91011…192021…28,数字和为154,536对应123…91011…192021…293031…36,数字和为207,所以在上面这些数中,只有536对应的123…91011…192021…293031…36既是8的倍数,又是9的倍数.所以,满足题意的自然数为36.10.1至9这9个数字,按图4-1所示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(例如,在l和7之间剪开,得到两个数是193426857和758624391).如果要求剪开后所得到的两个九位数的差能被396整除,那么剪开处左右两个数字的乘积是多少?【分析与解】 在解这道题之前我们先看一个规律:n n 位原序数与位反序数的差一定是99n 9n ⎧⎨⎩的倍数为奇数时的倍数为偶数时(如:12365为原序数,那么它对应的反序数为56321,它们的差43956是99的倍数.对于上面的规律想想为什么?)那么互为反序的两个九位数的差,一定能被99整除.而396=99×4,所以我们只用考察它能否能被4整除.于是只用观察原序数、反序数的末两位数字的差能否被4整除,显然只有当剪开处两个数的奇偶性相同时才有可能.注意图中的具体数字,有(3,4)处、(8,5)处的两个数字奇偶性均不相同,所以一定不满足.而剩下的几个位置奇偶性相同,有可能满足.进一步验证,有(9,3)处剪开的末两位数字之差为43-19=24,(4,2),(2,6),(6,8),(5,7),(7,1),(1,9)处剪开的末两位数字之差为62-3=28.86-42=44,58-26=32,85-17=68,91-57=34,71-39=32.所以从(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处剪开,所得的两个互为反序的九位数的差才是396的倍数.(9,3),(4,2),(2,6),(6,8),(5,7),(1,9)处左右两个数的乘积为27,8,12,48,35,9.11.有15位同学,每位同学都有编号,他们是l 号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.2、3、4、5 、6、7、 8、9 、 10、11 、12 、 13 、 14 、 15.注意到如果这个数不能被2整除,那么一定不能被4、6、8、10…等整除,显然超过两个自然数;类。
(完整版)第二讲 质数与合数讲解与练习

第二讲质数与合数【前言】自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1。
第二类:只能被两个不同的自然数整除的自然数.因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。
这类自然数叫质数(或素数)。
例如,2,3,5,7,…第三类:能被两个以上的自然数整除的自然数。
这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除.这类自然数叫合数.例如,4,6,8,9,15,…上面的分类方法将自然数分为质数、合数和1,1既不是质数也不是合数,是自然数最基本的单位。
【专项练习】问题一 1~100这100个自然数中有哪些是质数?试一试1、现有1,3,5,7四个数字。
(1)用它们可以组成哪些两位数的质数(数字可以重复使用)?(2)用它们可以组成哪些各位数字不相同的三位质数?试一试2、在三张纸片上分别写上三个最小的连续奇质数,如果随意从其中至少取出一张组成一个数,其中有几个质数,将它们写出来。
试一试3、50以内的最大质数与最小自然数的和是多少?问题二两个质数的和是39,这两个质数的积是多少?试一试1、从小到大写出5个质数,使后面的数都比前面的数大12。
试一试2、有一个质数,它加上10是质数,加上14也是质数,这个质数最小是几?试一试3、一个质数的3倍与另一个质数的2倍之和为100,这两个质数的乘积是多少?问题三判断269是合数还是质数?试一试1、判断437是合数还是质数?试一试2、11111是质数还是合数?试一试3、判断1111112111111是质数还是合数?问题四 A是一个质数,而且A+6,A+8,A+12,A+14都是质数。
试求出所有满足要求的质数A。
试一试1、a,b,c都是质数,a>b>c,且a×b+c=88,求a,b,c。
试一试2、9个连续的自然数,它们都大于80,那么其中质数最多有多少个?试一试3、两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少?很多数学问题与质数有关,我们要理解质数的意义,记住100以内有哪些质数。
小升初数学数轮专题小升初考试所有题型都在这里(质数合数约数余数倍数公约数)图文详解

详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
点评:解题此题的关键是运用高斯求和公式,把数列的和 表示为106的整数倍
详解
小升初数学
2.质数与合数
(一)质数与合数的定义 质数是只能被1和自身整除的数;合数是除了1和它自身外, 还能被其他数整除的数. (二)分解质因数 分解质因数是指把一个数写成质因数相乘的形式.例如
详解
小升初数学
例题2.已知七位数92AB4329能被99整除,那么两位数 AB=________
解:在92AB4329中, 奇数位上的数是9、3、B、2,则它们的和是9+3+2+B=14+B, 偶数位上的数是2、4、A、9,则它们的和是,2+4+A+9=15+A, 又因为一个整数的数字和能被9整除,一个整数的奇位数字之和与偶位 数字之和的差(包括0)能被11整除, 所以14+A+15+B=29+A+B=9的倍数,(14+B)-(15+A)=11倍数, 由29+A+B可知,式子的值可能是36、45,由(14+B)-(15+A)是11的 倍数可知45不合适, 所以29+A+B=36,A+B=7,则(14+B)-(15+A)=0, 由此可推出A=3,B=4,
五年级数学下册各单元知识点归纳(附常见题型)

第二单元因数和倍数1、因数、倍数:①一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
②一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
③一个数的最大因数和最小倍数都是它本身。
如15的最大因数和最小倍数都是15。
例题:1、从0、4、5、8、9中取出三个数字组成三位数,①在能被2整除的数中,最大的是(),最小的是()②在能被3整除的数中,最大的是(),最小的是()③在能被5整除的数中,最大的是(),最小的是()2、在四位数21□0的方框中填入一个数,使它能同时被2、3、5整除,最多能()种填法。
分别是。
3、质数和合数(1)质数和合数的意义:一个数,如果只有1和它本身两个因数,这样的数叫做质数;一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
判断题:①所有的奇数都是质数。
()如②所有的偶数都是合数()如③在1,2,3……自然数中,除了质数以外都是合数。
()如④两个质数的和是偶数。
()如(2)质数×质数=合数每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
(3)20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是就是合数,不是的就是质数。
4、最大、最小A的最小因数是:1;A的最大因数是:A;A的最小倍数是:A;最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4最小的自然数是:0;连续的两个质数是2、3。
例题:猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数,又是4的因数 E ——它的所有因数是1,2,3,6 F——它的所有因数是1, 3 G——它只有一个因数,这个号码就是附:判断(1)因为7×8=56,所以56是倍数,7和8是因数()因为(2)1是1,2,3,4,5…的因数()(3)14比12大,所以14的因数比12的因数多()(4)因为1.2÷0.6=2,所以1.2是0.6的倍数。
高斯小学奥数六年级上册含答案第15讲数论综合提高一
第十五讲数论综合提高本讲知识点汇总:一. 整除1. 整除的定义如果整数a除以整数b b 0,所得的商是整数且没有余数,我们就说a能被b整除,也可以说b能整除a,记作b|a .如果除得的结果有余数,我们就说a不能被b整除,也可以说b不整除a.2. 整除判定(1)尾数判断法能被2、5整除的数的特征:个位数字能被2或5整除;能被4、25整除的数的特征:末两位能被4或25整除;能被& 125整除的数的特征:末三位能被8或125整除.(2)截断求和法能被9、99、999及其约数整除的数的特征.(3)截断求差法能被11、101、1001及其约数整除的数的特征.(4)分解判定:一些复杂整数的整除性,例如63、72等,可以把它们分拆成互质的整数,分别验证整除性.3. 常用整除性质(1)已知 a | b、a |c,则a | b c 以及a| b c . ( b>c)(2)已知ab |ac,则b |c .(3)已知 a | bc 且a,b 1,则 a | c •(4)已知 a | c 且 b |c,贝V a, b c .4. 整除的一些基本方法:(1)分解法:①分解得到的数有整除特性;②两两互质.(2)数字谜法:①被除数的末位已知;②除数变为乘法数字谜的第一个乘数.(3)试除法:①除数比较大;②被除数的首位已知(4) 同除法:①被除数与除数同时除以相同的数;②简化后的除数有整除特性•二、质数与合数1. 质数与合数的定义质数是只能被1和自身整除的数;合数是除了1和它本身之外,还能被其它数整除的数.2. 分解质因数分解质因数是指把一个数写成质因数相乘的形式. 女口:100 225 , 28 0 235 7 •典型题型一.整除1. 基本整除问题:对各种整除的判别法要非常熟悉,尤其是9和11这种常见数字;(1)9的考点:乱切法;(2)11的考点:① 奇位和减偶位和;② 两位截断求和;③ 三位截断,奇段和减偶段和.2. 整除性质的使用;3. 整除与位值原理;4. 整除方法在数字谜中的应用.二.质数合数1. 质数合数填数字:注意2和5的特殊性;2. 判断大数是否为质数:逐一试除法;3. 末尾0的个数问题:层除法.例1. ( 1)五位数3口6口5没有重复数字,如它能被75整除,那么这个五位数可能是多少?(2)如果六位数387□匚|□能被624整除,则三个方格中的数是多少?(3)末三位是999的自然数能被29整除,这个数最小是多少?「分析」(1)75可以分解为3和25; (2)试除法解答这道题目;(3)试着把这道题目改为数字谜的形式进行解答.练习1、(1)六位数10 37 没有重复数字,如它能被36整除,那么这个六位数是多少?(2)如果六位数374□□口能被324整除,则三个方格中的数是多少?(3)末三位是999的自然数能被23整除,这个数最小是多少?例2.将自然数1, 2, 3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被36整除,那么这个自然数N是多少?「分析」36可以分解为4和9,然后分别满足N能被4和9整除,接下来就要用到整除特性了,尤其是9的整除特性如何运用是关键.练习2、将自然数1,2,3,…,依次写下去组成一个数:12345678910111213L,如果写到某个自然数N时,所组成的数恰好第一次能被45整除,那么这个自然数N是多少?例3.已知3a7 bOc是495的倍数,其中a,b,c分别代表不同的数字.请问:三位数abc 是多少?「分析」分解495=5 X 9X 11,可知只要两个三位数分别满足是5、9、11的倍数即可, 分情况讨论即可确定两个三位数分别是多少?练习3、已知aOOb 3c5是396的倍数,其中a、b、c分别代表不同的数字.请问:位数abc是多少?例4. 一个各位数字互不相同的五位数可以被9整除,去掉末两位之后形成的三位数可以被23整除,这个五位数的最小值等于多少?最大值呢?「分析」根据“去掉末两位之后形成的三位数可以被23整除”及最大值或最小值可确定五位数的前三位,然后根据9的整除特性确定其余数字.练习4、一个各位数字互不相同的四位数可以被9整除,去掉末两位之后形成的两位数可以被29 整除,这个四位数的最大值等于多少?最小值呢?例5. 72 乘以一个三位数后,正好得到一个立方数• 这个三位数最大是多少?「分析」立方数需满足所含质因数个数均为3的倍数,分解72可以确定质因数的种类, 满足上述条件基础上试数即可得出这个三位数.例6.在数列1、4、7、10、13、16、19、……中,如果前n个数的乘积的末尾0的个数比前n 1个数的乘积的末尾0的个数少3个,那么n最小是多少?「分析」末尾0 的个数决定于2和5的对数,有一对2、5就可以确定一个0,而题目数列中2的个数一定多于5的个数,所以只要使数列中数字满足有三个质因数5即可.数学王国里的一颗明珠一一梅森素数早在公元前300多年,古希腊数学家欧几里得就开创了研究2p1的先河,他在名著《几何原本》第九章中论述完美数时指出:如果2P 1是素数,则(2p- 1)2(P1)是完美数(Perfect number).1640年6月,费马在给马林梅森的一封信中写道:“在艰深的数论研究中,我发现了三个非常重要的性质.我相信它们将成为今后解决素数问题的基础”.这封信讨论了形如2P1的数(其中p为素数).梅森在欧几里得、费马等人的有关研究的基础上对2P1作了大量的计算、验证工作,并于1644年在他的《物理数学随感》一书中断言:对于p=2 , 3, 5, 7, 13 ,17, 19, 31, 67, 127, 257时,2p1是素数;而对于其他所有小于257的数时,2p1是合数.前面的7个数(即2, 3, 5, 7, 13, 17和19)属于被证实的部分,是他整理前人的工作得到的;而后面的4个数(即31, 67, 127和257)属于被猜测的部分. 不过,人们对其断言仍深信不疑.虽然梅森的断言中包含着若干错误,但他的工作极大地激发了人们研究2p1型素数的热情,使其摆脱作为“完美数”的附庸的地位.梅森的工作是素数研究的一个转折点和里程碑.由于梅森学识渊博,才华横溢,为人热情以及最早系统而深入地研究2p1型的数,为了纪念他,数学界就把这种数称为“梅森数”;并以Mp记之(其中M为梅森姓名的首字母),即Mp 2p1 .如果梅森数为素数,则称之为“梅森素数”(即2p1 型素数).2300多年来,人类仅发现47个梅森素数.由于这种素数珍奇而迷人,因此被人们誉为数海明珠”.自梅森提出其断言后,人们发现的已知最大素数几乎都是梅森素数;因此,寻找新的梅森素数的历程也就几乎等同于寻找新的最大素数的历程.作业1.五位数3口0口5没有重复数字,如它能被225整除,那么这个五位数是多少?2. (1)已知六位数2口01口2是99的倍数,那么这个六位数是多少?(2)已知六位数19 49 是72的倍数,那么这个六位数是多少?3. 201 202 203 L 500的末尾有多少个连续的0?4. 两个连续自然数的乘积是1190,这两个数中较小的是多少?5. 太上老君炼仙丹,第一次炼一丹,第二次炼三丹,第三次炼五丹,第四次炼七丹,…,颗颗炼成不老长生丹.然后装入金葫芦,每个葫芦六十丹,恰装满葫芦若干.已知丹数不足千,问共炼多少颗仙丹?第十五讲数论综合提高一例7.答案:(1) 30675、38625、39675; (2) 504; (3) 26999详解:(1)据分解法可知,75能分成25与3,满足是25的倍数,末两位要是25的倍数,即后一个空填2或7,填2时,没有重复数字又是3的倍数,所以只能是38625,填7时,满足条件是30675或39675,所以答案是30675、38625、39675.(2)将六位数补成387999 , 387999除以624余495,所以387999减去495的差387504 一定是624的倍数,所以答案是504.(3)改成竖式的数字谜,29乘以某某某答案后三位是999,填完整就是29乘以931 等于26999.例&答案:36详解:要是36的倍数,只要是4和9的倍数即可.9的整除特性是乱切法就可以,所以一位数的时候我们截成一位,两位数就截成两位,几位数就截成几位,所以有1+2+3+…+ N是9的倍数,即N N 1是9的倍数,即N或N 1是9的倍数,所以2满足条件的N是8、9、17、18、26、27、35、36,写到36时,第一次满足是4的倍数,所以N最小是36.例9.答案:865详解:495 5 9 11,即只要满足是5、9、11的倍数即可•对肓,不论a取哪一个一位数都不可能是11和5的倍数,所以b0C 一定是11和5的倍数,即是605.于是307是9的倍数,所以a是8,所以a、b、c组成的三位数是865.例10 . 答案:13806、94365详解:最小且数字不同,则前三位只能是138,再根据9的整除特性,所以最小是13806 ;最大且数字不同,则前三位只能是943,再根据9的整除特性,所以最大是94365. 例11 . 答案:648例12 . 答案:83详解:这是一个首项为1,公差为3的等差数列,由题意知第n 1个数应为125的倍数,即3n 1 125k,可知k取2时符合要求,此时n为83.练习:练习1、答案:(1) 105372; (2) 220、544 或868; (3) 20999练习2、答案:35练习3、答案:548或908简答:即a00b 3c5要分别被4、9和11整除,由a00b与3c5整除特性且a、b、c代表不同数字可知^0b与3c5分别要被(4、9)与11整除,所以可求得abc是548或908.练习4、答案:最小值是2907;最大是8793作业6. 答案:38025简答:能被225整除,即能分别被9和25整除,所以可得该五位数为38025.7. 答案:(1) 260172 ; (2) 197496简答:(1)设该六位数为2a01b2,其为99的倍数,即2a 1 b2能被99整除,又a、b为个位数,所以易知 a 6, b 7,所以该六位数为260172 ; (2)能被72整除,即能分别被8和9整除,所以可得该六位数为197496.8. 答案:75简答:500!所含0的个数减去200!所含0的个数即可,答案为75.9. 答案:34简答:易知3421190 352,所以可估算出所求的数为34.10. 答案:900简答:前n次共炼制n2颗仙丹,且n2是60的倍数,所以n含有质因数2、3和5,于是当n 235 30时,n2900为所求答案.。
第二讲 因数与倍数(2)
特征数—3、9
练一练:
1. 2. 75、1213、4673、9396、98172中,3的倍数有几个, 9的倍数有几个? 写出下列各式的余数 2345÷4;3245÷2;3362÷3;3007÷8;3456÷5; 既是2的倍数,又是3的倍数的最小三位数是多少? 既是5的倍数,又是3的倍数的最大三位数是多少? 四位数6A2B能被2,3,5整除,这样的四位数有几个?
3. 4. 5.
答案:3,2
1,1,2,7,1
102
990
3
奇数和偶数
奇数偶数的一些性质
相邻的两个奇数或偶数,相差2; 奇数个连续偶数或连续奇数的和,它们的平 均数即是中间数; 奇数±奇数=偶数,偶数±偶数=偶数, 奇数±偶数=奇数,偶数±奇数=奇数, 加减法中,相同为偶,不同为奇; 奇数×奇数=奇数,偶数×偶数=偶数, 奇数×偶数=偶数,偶数×奇数=偶数, 乘法中,有偶为偶,无偶为奇; 偶数个奇数相加和是偶数,奇数个奇数相加 和是奇数,任意个偶数相加和是偶数。
解:5,6,7;18
练一练: 某QQ群里的四位小朋友,他们的年龄恰好一个比 一个大1岁,且他们的年龄的乘积是5040,他们的 年龄分别是多少?
7岁、8岁、9岁、10岁
巩固提高
例三: 3个不同的质数,它们的和是40,这三个质数分别 是多少? 练一练: 两个质数的和是2001,这两个质数的积是多少? 7个连续质数,从大到小排列为a、b、c、d、e、f、 g,已知它们的和是偶数,那么c是多少?
(1)翻1-6;2-7;2-5,7;(2)不能
整数 质数和合数
d.既不是质数又不是合数
数位
千 亿 位 百 十 亿 亿 位 位 亿级 百 亿 十 亿 亿 位 千 百 十 万 万 万 位 位 位 万级 万 位 千 位 百 位 十 个 位 位
个级 百 十 个
千 亿
计数单位 亿 千 百 十 万 千 万 万 万
例题
判断题: 1、个、十、百、千是个级。 2、1是个的计数单位。 3、十万后面到亿。 4、个级里面有:个、十、百、千。 5、每个数位都有计数单位。
整数质数和合数质数和合数什么是质数和合数质数和合数的概念质数和合数ppt100以内的质数和合数最小质数和最小合数质数和合数有哪些质数和合数课件质数和合数的定义
数的知识点归纳
一、整数(质数和合数、因数、倍 数)【例题】 二、 数位【例题】
三、小数【例题】
四、分数(百分数) 五、比
整数
1.像…-3 ,-2,-1,0,1,2,3,…这样的数称为整数。 在整数中大于0的数称为正整数,小于0的数称为负整数。正 整数、0、负整数统称为整数。 2.读法:从高位到低位,一级一级地读,每一级末尾的0 都不读出来,其它数位连续有几个0都只读一个零。 3.写法:从高位到低位,一级一级地写,哪一个数位上一 个单位也没有,就在那个数位上写0。 4.我们在数物体的时候,用来表示物体个数的0,1,2, 3……叫做自然数。 一个物体也没有,用0表示。0也是自然 数。0是最小的自然数,没有最大的自然数,自然数的个数 是无限的。 5.任何非0自然数都是由若干个“1”组成,所以自然数的基 本单位是“1”。
例题
填空题: 1、在0.8到0.9之间有( )个小数。 2、0.89是( )小数。 3、0.999……是( )小数。 4、0.98765432123……是( )小数。 5、0.36是()小数。
因数、倍数、质数、合数(复习)(课件)五年级下册数学人教版
10的倍数有:10,20,30,40,50,60,70,80,90…… 6和10的公倍数是:30、60、90…… 6和10的最小公倍数是:30。
两个数的公倍数都是它们最小公倍数的倍数。
利用分解质因数的方法,用短除法可以比较简便 地求出两个数的最小公倍数。
公倍数:几个数公有的倍数 叫做这几个数的公倍数。
公因数:几个数公有的因 数叫做这几个数的公因数。 公因数一定是正整数。
公因数和最大公因数:
几个数公有的因数,叫做这几个数的公因数;其 中最大的一个,叫做这几个数的最大公因数。几个数 的最小公因数都是1。
12的因数是:1、12、2、6、3、4; 18的因数是:1、18、2、9、3、6; 12和18的公因数是:1、2、3、6; 12和18的最大公因数是:6。
数。(m、n不相等)
A、a B、4a C、m + n D、mn
(2)李简六年级两班共68名同学排成4行,如果前三行的人数
都是奇数,那么第4行人数是( B )。
A、偶数 B、奇数 C、无法确定
(3)用几个长6cm、宽4cm的长方形可拼成一个边长为(D )
cm的正方形。
A、10 B、15
C 、16 D、12
下面说法对吗?说说理由。 1、在13÷4=3……1中,13是4的倍数。(×)
2、因为3×6=18,所以18是倍数,3和6是 因数。(×)
3、 6既是6的因数,也是6的倍数。(√)
4、36÷9=4,所以36是倍数,9是因数。( × )
5、1.5÷3=0.5,1.5是3和0.5的倍数。( × )
6、12的倍数只有12,36,48。( × )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业 5月4日 班级 姓名 成绩 一、填空 1、在自然数范围内,最小的质数是( ),最小的合数是( ),最小的奇数是( ),最小的偶数是( ),最小的自然数是( )。 2、在小于20的自然数中,奇数有( ),偶数有( );质数有( ),合数有( ),既不是质数又不是合数的是( );3的倍数有( ),含有因数5的数有( )。 3、一个数的最小倍数是24,这个数的因数有( ) 4、在1、23、4、5、15、45、65、90、270中,( )是45的因数,( )是15的倍数,( )是( )和( )公因数,( )是( )和( )的公倍数。 5、42的因数有( ),这些因数中,( )是素数,( )是合数。 6、能被3和5同时整除的最大两位数是( );是2的约数,又是3的倍数,还能被5整除的最小三位数是( ),把它分解质因数是( )。 7、在1至10之间的十个数中,( )和( )两个数既是合数又是互质数;( )和( )两个数既是质数又是互质数;( )和( )一个是质数,一个是合数,它们都成互质关系。 8、20以内的三个最大质数的和是三个最小质数的和的( )倍。 9、一个两位数,它能既是3的倍数,又是5的倍数,而且个位上是0,这个数最小是( )。 10、用5、7、8、0拼成一个四位数,使它是2的倍数,这个数可以是
( ),使它是5的倍数,这个数可以是( )。
11、一个三位数既能被2整除,又能被3整除,而且个位、十位上相同,
这个三位数最大是( )。
12、三个连续奇数的和是27,这三个奇数从大到小是( )、
( )、( )。
13、三个连续偶数的和是90这三个数分别是( )、( )、( )。
14、一个三位数,百位上既不是质数也不是合数,十位上是最大的奇数,
这个数又是2和3的倍数,这个三位数是( )或( )。
15、0、2、5、8四个数字组成的四位数中,能同时被3和5整除的最大的
数是( ),最小的数是( )。
16、一个能被2和3整除的四位数,它的千位上的数是奇数又是合数,它
的百位上的数不是质数也不是合数,它十位上的数是最小的质数,个位上
的数是( )。
17、两个素数,它们的差是合数,它们的和既是11的倍数,又是50以内
的偶数。写出符合上面条件的三组数:( )和( ),( )
和( ),( )和( )。
18、在 27、68、44、72、587、602、431、800中。
奇数是: 偶数是:
19. 在2、3、45、10、22、17、51、91、93、97中。
质数是: 合数是: