2013年中考数学阅读理解题专题复习
2013年中考数学复习专题

2013年中考数学复习专题—函数问题1. (2012湖南长沙10分)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:()() 40x25x30y250.5x30<x35⎧-≤≤⎪=⎨-≤⎪⎩.(年获利=年销售收入﹣生产成本﹣投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.【答案】解:(1)∵25≤28≤30,()()40x25x30y250.5x30<x35⎧-≤≤⎪=⎨-≤⎪⎩,∴把28代入y=40﹣x得,y=12(万件)。
答:当销售单价定为28元时,该产品的年销售量为12万件。
(2)①当25≤x≤30时,W=(40﹣x)(x﹣20)﹣25﹣100=﹣x2+60x﹣925=﹣(x﹣30)2﹣25,∴当x=30时,W最大为﹣25,即公司最少亏损25万。
②当30<x≤35时,W=(25﹣0.5x)(x﹣20)﹣25﹣100=﹣12x2+35x﹣625=﹣12(x﹣35)2﹣12.5,∴当x=35时,W最大为﹣12.5,即公司最少亏损12.5万。
综合①,②得,投资的第一年,公司亏损,最少亏损是12.5万。
2013年中考数学复习专题———提高解答题(一)

2013年中考数学复习专题———提高解答题(一)1、分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.2、已知二次函数2y x bx c=-++的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).⑴求出b,c的值,并写出此二次函数的解析式;⑵根据图象,写出函数值y为正数时,自变量x的取值范围.3、某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?4、某学校组织340名师生进行长途考察活动,带有行礼170件,计划租用甲、乙两种型号的汽车共有10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?5、如图,分别以R t A B C∆的直角边AC及斜边AB向外作等边A C D∆,等边ABE∆.已知∠BAC=30°,EF⊥AB,垂足为F,连结DF.⑴试说明AC=EF;⑵求证:四边形ADFE是平行四边形.6、如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路. 现新修一条路AC到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:414.12≈,732.13≈).A。
中考数学复习第五讲《阅读理解型问题》经典题型含答案

中考数学复习专题第五讲阅读理解型问题【要点梳理】阅读理解能力是初中数学课程的主要目标,是改变学生学习方式,实现自主探索主动发展的基础.阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致.这类问题,主要考查解题者的心理素质,自学能力和阅读理解能力,考查解题者的观察分析能力、判辩是非能力、类比操作能力、抽象概括能力、数学归纳能力以及数学语言表达能力.这就要求同学们在平时的学习活动中,逐步养成爱读书、会学习、善求知、勤动脑、会创新和独立获取新知识的良好习惯.阅读理解题型分类:题型一:考查掌握新知识能力的阅读理解题命题者给定一个陌生的定义或公式或方法,让你去解决新问题,这类考题能考查我们自学能力和阅读理解能力,能考查我们接收、加工和利用信息的能力.题型二:考查解题思维过程的阅读理解题言之有据,言必有据,这是正确解题的关键所在,是提高我们数学水平的前提.数学中的基本定理、公式、法则和数学思想方法都是理解数学、学习数学和应用数学的基础,这类试题就是为了检测我们理解解题过程、掌握基本数学思想方法和辨别是非的能力而设置的.题型三:考查纠正错误挖病根能力的阅读理解题理解知识不是拘泥于形式的死记硬背,而是要把握知识的内涵或实质,理解知识间的相互联系,形成知识脉络,从而整体地获取知识.这类试题意在检测我们对知识的理解以及认识问题和解决问题的能力.题型四:考查归纳、探索规律能力的阅读理解题对材料信息的加工提炼和运用,对规律的归纳和发现能反映出我们的应用数学、发展数学和进行数学创新的意识和能力.这类试题意在检测我们的“数学化”能力以及驾驭数学的创新意识和才能.【学法指导】解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题”,具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.【考点解析】阅读新知识,解决新问题(2017深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .【考点】4F:平方差公式;2C:实数的运算.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2阅读解题过程,模仿解题策略(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D 在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【考点】SO:相似形综合题.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB ∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).阅读探索规律,推出一般结论(2017内江)观察下列等式:第一个等式:第二个等式:第三个等式:第四个等式:按上述规律,回答下列问题:(1)请写出第六个等式:a6= = ﹣;(2)用含n的代数式表示第n个等式:an= =﹣;(3)a1+a2+a3+a4+a5+a6= (得出最简结果);(4)计算:a1+a2+…+an.【考点】37:规律型:数字的变化类.【分析】(1)根据已知4个等式可得;(2)根据已知等式得出答案;(3)利用所得等式的规律列出算式,然后两两相消,计算化简后的算式即可得;(4)根据已知等式规律,列项相消求解可得.==﹣,【解答】解:(1)由题意知,a6故答案为:,﹣;(2)a==﹣,n故答案为:,﹣;(3)原式=﹣+﹣+﹣+﹣+﹣+﹣=﹣=,故答案为:;(4)原式=﹣+﹣+…+﹣=﹣=.【真题训练】训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.参考答案:训练一:(2017浙江湖州)对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如:5⊗2=2×5﹣2=8,(﹣3)⊗4=2×(﹣3)﹣4=﹣10.(1)若3⊗x=﹣2011,求x的值;(2)若x⊗3<5,求x的取值范围.【考点】C6:解一元一次不等式;2C:实数的运算;86:解一元一次方程.【分析】(1)根据新定义列出关于x的方程,解之可得;(2)根据新定义列出关于x的一元一次不等式,解之可得.【解答】解:(1)根据题意,得:2×3﹣x=﹣2011,解得:x=2017;(2)根据题意,得:2x﹣3<5,解得:x<4.训练二:(2017日照)阅读材料:在平面直角坐标系xOy中,点P(x0,y)到直线Ax+By+C=0的距离公式为:d=.例如:求点P(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为 4 ;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.【考点】FI:一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C到直线3x+4y+5=0的距离,求出⊙C上点P到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P1(3,4)到直线3x+4y﹣5=0的距离d==4,故答案为4.(2)∵⊙C与直线y=﹣x+b相切,⊙C的半径为1,∴C(2,1)到直线3x+4y﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C(2,1)到直线3x+4y+5=0的距离d==3,∴⊙C上点P到直线3x+4y+5=0的距离的最大值为4,最小值为2,∴S△ABP 的最大值=×2×4=4,S△ABP的最小值=×2×2=2.训练三:(2017山东临沂)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.【分析】(1)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再得出∠AEC=45°,即可得出等腰直角三角形,即可;(判断∠ADE=∠ABC也可以先判断出点A,B,C,D四点共圆)(2)先判断出∠ADE=∠ABC,即可得出△ACE是等腰三角形,再用三角函数即可得出结论.【解答】解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+CD=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.【点评】此题是几何变换综合题,主要考查了全等三角形的判定,四边形的内角和,等腰三角形的判定和性质,解本题的关键是构造全等三角形,是一道基础题目.训练四:(2017滨州)观察下列各式: =﹣;=﹣;=﹣;…请利用你所得结论,化简代数式: +++…+(n≥3且n为整数),其结果为.【考点】6B:分式的加减法.【分析】根据所列的等式找到规律=(﹣),由此计算+ ++…+的值.【解答】解:∵ =﹣,=﹣,=﹣,…∴=(﹣),∴+++…+=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.故答案是:.训练五:(2017山东滨州)根据要求,解答下列问题:①方程x2﹣2x+1=0的解为x1=x2=1 ;②方程x2﹣3x+2=0的解为x1=1,x2=2 ;③方程x2﹣4x+3=0的解为x1=1,x2=3 ;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为1、8 ;②关于x的方程x2﹣(1+n)x+n=0 的解为x1=1,x2=n.(3)请用配方法解方程x2﹣9x+8=0,以验证猜想结论的正确性.【考点】A6:解一元二次方程﹣配方法;A3:一元二次方程的解;A8:解一元二次方程﹣因式分解法.【分析】(1)利用因式分解法解各方程即可;(2)根据以上方程特征及其解的特征,可判定方程x2﹣9x+8=0的解为1和8;②关于x的方程的解为x1=1,x2=n,则此一元二次方程的二次项系数为1,则一次项系数为1和n的和的相反数,常数项为1和n的积.(3)利用配方法解方程x2﹣9x+8=0可判断猜想结论的正确.【解答】解:(1)①(x﹣1)2=0,解得x1=x2=1,即方程x2﹣2x+1=0的解为x 1=x2=1,;②(x﹣1)(x﹣2)=0,解得x1=1,x2=2,所以方程x2﹣3x+2=0的解为x1=1,x2=2,;③(x﹣1)(x﹣3)=0,解得x1=1,x2=3,方程x2﹣4x+3=0的解为x1=1,x2=3;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x+8=0的解为x1=1,x2=8;②关于x的方程x2﹣(1+n)x+n=0的解为x1=1,x2=n.(3)x2﹣9x=﹣8,x2﹣9x+=﹣8+,(x﹣)2=x﹣=±,所以x1=1,x2=8;所以猜想正确.故答案为x1=x2=1;x1=1,x2=2;x1=1,x2=3;x2﹣(1+n)x+n=0;。
2013届中考数学二轮专题突破《北京中考操作与探究题》复习课件(知识概括+典型例题点拨)

专题五┃ 京.
如上图所示的四边形 ABDE 的画法:(1)在线段 BC 上任 取一点 D(D 不为 BC 的中点),联结 AD;(2)画出线段 AD 的 垂直平分线 MN;(3)画出点 C 关于直线 MN 的对称点 E,联 结 DE,AE.则四边形 ABDE 即为所求.
专题五┃ 京考解读
1 a=2, -3a+m=-1,3a+m=2, (2)由题意得 解得m= 1, 0· 0· a+n=2, a+n=2, 2 n=2. 1 1 1 设点 F 的坐标是(x,y),则点 F′的坐标为 x+ , y+2, 2 2 2 1 1 x=1, 2x+2=x, 由点 F′与点 F 重合,得到 解得 y=4. 1y+2=y, 2 ∴点 F 的坐标为(1,4).
专题五┃ 京考解读
解: (1)易证四边形 DFCE 为平行四边形, 1 ∴S=3×2=6,S1= ×4×3=6. 2 易证△ADE∽△DBF,由相似三角形的面积比等于相似 3 比的平方,可得 S2= . 2 1 (2)∵S=bh,S1= ah. 2 S2 b2 b2 S2 S2 = ,∴S2=S1· 2=S1· 2= . S1 a a 4S1 4S1 (3)过 D 作 DM∥GC 交 BC 于 M, 易得△DEM≌△GFC, ∴S1=8+1=9,S2=4,由上面的结论可以得到 S=12.
专题五┃ 京考解读
解:(1)画图如下:(答案不唯一)
(2)易判定 △FGH≌△FGP≌△FNH≌△ANF≌△GHM≌△CHM≌△GBP, a ∴图中△FGH 的面积为 . 7
专题五┃ 京考解读
我们经常利用线段中点,构造三角形旋转变换,借助 “8 字全等型”解决一些图形的分割与拼接问题.
专题五┃ 京考解读 2.用面积的数量关系转化图形 例 4 [2011· 朝阳一模] 阅读并操作: 如图①,这是由十个边长为 1 的小正方形组成的一个 图形,对这个图形进行适当分割(如图②),然后拼接成新 的图形(如图③).拼接时不重叠、无空隙,并且拼接后新 图形的顶点在所给正方形网格图中的格点上(网格图中每 个小正方形边长都为 1).
2013年中考专题复习——数与式(附答案)s

2013年中考专题复习——数与式(附答案)学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 四 总分 得分第I 卷(选择题)评卷人 得分一、选择题1.已知A 和B 都在同一条数轴上,点A 表示2-,又知点B 和点A 相距5个单位长度, 则点B 表示的数一定是( )A 、3B 、7-C 、7或3-D 、7-或3 2.估算728-的值在( ). A. 7和8之间 B. 6和7之间 C. 3和4之间 D. 2和3之间3.使代数式43--x x 有意义的x 的取值范围是( ). A .x >3 B .x ≥3 C . x >4 D .x ≥3且x ≠4 4.下列结论正确的是( )A .231x x -+的一次项系数是1B .xyz 的系数是0C .23a b c 是五次单项式D .524732x x y +-是六次三项式5.下列各数中,是有理数的是 ( )(A )7.(B )0.5. (C )2π. (D )0.151151115…(每两个5之间依次多一个1). 6.下列计算正确的是( ) A .3a +4b=7a b B .7a -3a =4C .3a +a =3a 2D .3a 2b -4a 2b=-a 2b7.桐乡市2008年元旦的最高气温为8℃,最低气温为-2℃,那么这天的最高气温比最低气温高 ( )A 、-10℃B 、-6℃C 、6℃D 、10℃ 8.在下面的四个有理数中,最小的数是( ). A.-1 B.0 C.-2 D.-1.9 9.96n 是整数,则正整数n 的最小值是 ( ) A .4 B .5 C .6 D .710.若2(2)2x x -=-,则x 的取值范围是( )A .2x >-B .2x ≥C .2≤x 且0x ≠D .2≤x第II 卷(非选择题)评卷人 得分二、填空题11.分解因式:42-a =__ _.12.“*”表示一种新运算,它的意义是)(b a ab b a +--=*,则)5()4(-*-=________. 13.分解因式39a a -=___________.14.小明写作业时不慎将墨水滴在数轴上,请根据图1中的数值,判断墨迹盖住部分的整数有 个.15.如果36a b -=,那么代数式53a b -+的值是___ ____.16.数轴上一个点到—3所表示的点的距离为4,那么这个点在数轴上所表示的数是 。
2013年中考数学复习习题集答案

习题集部分第一部分 数与代数 第一章 数与式 第1讲 实数1.B 2.A 3.D 4.D 5.B 6.D 7.3 8.<9.C 解析:0.000 021=2.1×10-5. 10.解:原式=5-1+(2-3)+1=4.11.C 解析:根据数轴表示数的方法得到a <0<b ,数a 表示的点比数b 表示的点离原点远,则-a >-b ,b -a >0,|a |>|b |.∴选项A 、B 、D 正确,选项C 不正确.故选C.12.1.6×10-6 13.2 314.解:原式=3 3-2×32-14+1=2 3+34.15.解:原式=-4+3-2×12+3=1.16.517.解:(1)19×11 12×11911⎛⎫- ⎪⎝⎭(2)1(2n -1)×(2n +1) 12×112121n n ⎛⎫- ⎪-+⎝⎭(3)a 1+a 2+a 3+a 4+…+a 100=12×113⎛⎫- ⎪⎝⎭+12×1135⎛⎫- ⎪⎝⎭+12×1157⎛⎫- ⎪⎝⎭+…+12×11199201⎛⎫- ⎪⎝⎭=12×1111111133557199201⎛⎫-+-+-- ⎪⎝⎭…+ =12×11201⎛⎫- ⎪⎝⎭=12×200201=100201. 18.2(a +b )ab 解析:∵1⊕2=2⊕1=3=2×1+2×21×2,(-3)⊕(-4)=(-4)⊕(-3)=-76=2×(-3)+2×(-4)(-3)×(-4),(-3)⊕5=5⊕(-3)=-415=2×5+2×()-35×(-3),…∴a ⊕b =2(a +b )ab.第2讲 代数式1.B 2.D 3.B 4.A5.A 解析:根据题意,x -2+(y +1)2=0,两个非负数的和为0,必须这两个数同时为0,所以得:x -2=0,y +1=0,解得x =2,y =-1,所以x -y =3.6.1 7.1.25b +a 8.5 9.n -m 10.解:由2x -1=3得,x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.11.B 解析:a 2-b 2=(a -b )·(a +b ),得到14=12·(a +b ),即可得到:(a +b )=12,所以选择B答案.12.m +43 1 解:m 2-163m -12=()m +4()m -43()m -4=m +43;当m =-1时,原式=-1+43=1.13.B 14.A15.解:A 2-B 2=(2x +y )2-(2x -y )2 =4x ·2y =8xy .16.A 解析:∵3x =4,9y =7,∴3x -2y=3x 32y =3x 9y =47.17.(-1)n a 3n -1n18.解:原式=x -y x ÷x 2-2xy +y 2x =x -y x ·x (x -y )2=1x -y .当x =2 009,y =2 010时,原式=12 009-2 010=-1.19.C 解析:根据题意得出矩形的面积是(a +1)2-(a -1)2,求出即可.矩形的面积是(a +1)2-(a -1)2=a 2+2a +1-(a 2-2a +1)=4a (cm 2).第3讲 整式与分式 第1课时 整式1.A 2.B 3.D 4.D 5.D 6.D 7.D 8.C9.(1)2 (2)2a 3 (3)-12a 4+2a10.解:原式=a 2+2ab +b 2+a 2-2ab =2a 2+b 2. 11.A 12.D13.解:原式=4a 2-4ab +b 2-b 2 =4a 2-4ab ,将a =-2,b =3代入上式得:上式=4×(-2)2-4×(-2)×3=16+24=40. 14.解:原式=a 2-b 2+2a 2=3a 2-b 2. 代入a =1,b =2,原式得3-(2)2=1.15.解:原式=4x 2-9-4x 2+4x +x 2-4x +4=x 2-5. 当x =-3时,原式=(-3)2-5=3-5=-2. 16.B17.解:由2x -y +|y +2|=0,得2x -y =0,y +2=0,∴x =-1,y =-2. 又[(x -y )2+(x +y )(x -y )]÷2x=(x 2-2xy +y 2+x 2-y 2)÷2x =x -y . ∴x -y =-1-(-2)=1.18.解:(1)4×6-52=24-25=-1;(2)答案不唯一.如n (n +2)-(n +1)2=-1;(3)成立.因为n (n +2)-(n +1)2=n 2+2n -(n 2+2n +1) =n 2+2n -n 2-2n -1=-1.19.2 解析:3·9m ·27m =3·32m ·33m =31+2m +3m =311, ∴1+2m +3m =11.解得m =2. 第2课时 因式分解1.C 2.B 3.C 4.(a +b )(a -b )5.(m -3)2 6.2x (2x -1) 7.2(x +2)(x -2) 8.2(x +1)2 9.C 10.211.解:能,因为(n +11)2-n 2=(n +11+n )(n +11-n )=11(2n +11)为11的倍数,所以可以被11整除.12.a (1-3b )2 13.ab (b +2)(b -2) 14.x (x +2)(x -6)15.D 解析:首先把x -1看做一个整体,观察发现符合完全平方公式,直接利用完全平方公式进行分解即可.(x -1)2-2(x -1)+1=(x -1-1)2=(x -2)2.16.解:原式=()x -y 2()x +y ()x -y =x -yx +y.当x =3+1,y =3-1时,原式=()3+1-()3-1()3+1+()3-1=22 3=33.17.6 解析:∵a =2,a +b =3,∴a 2+ab =a (a +b )=2×3=6. 18.-3219.(x +y )(x -y -3)20.解:等腰或直角三角形 ∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a +b )(a -b )=(a 2+b 2)(a 2-b 2), ∴c 2(a +b )(a -b )=(a 2+b 2)(a +b )(a -b ). ∵a ,b 为三角形边长,∴a +b ≠0. ∴c 2(a -b )=(a 2+b 2)(a -b ),∴a -b =0或c 2=a 2+b 2,即a =b 或c 2=a 2+b 2, ∴△ABC 是等腰或直角三角形. 21.x (x +2)(x -2) 第3课时 分式1.B 2.C 3.(1)4xab (2)a +b 4.7z 36x 2y x +3x +1 5.326.-1 7.解:x 2-1x +1÷x 2-2x +1x 2-x =(x +1)(x -1)x +1÷(x -1)2x (x -1)=x .8.解:x 2x -1+11-x =x 2-1x -1=x +1,代入求值(除x =1外的任何实数都可以).9.-1410.m -6 11.C12.解:234211x x x +⎛⎫- ⎪--⎝⎭÷x +2x 2-2x +1=3x +4-2x -2(x +1)(x -1)·(x -1)2x +2 =x +2(x +1)(x -1)·(x -1)2x +2=x -1x +1. 13.解:原式=2111(11)x x x x ⎛⎫-+ ⎪++-⎝⎭())(·x +1x -1 =x x +1·x +1x -1=xx -1. 当x =2时,原式=2.14.解:原式=a -2a 2-1÷(a +1)(a -1)-2a +1a +1=a -2a 2-1÷a 2-2a a +1=a -2(a +1)(a -1)×a +1a (a -2) =1a 2-a. ∵a 是方程x 2-x =6的根,∴a 2-a =6.∴原式=16.15.解:原式=a (b +1)(b +1)(b -1)+b -1(b -1)2=a b -1+1b -1=a +1b -1. 由b -2+36a 2+b 2-12ab =0, 得b -2+(6a -b )2=0,∴b =2,6a =b ,即a =13,b =2.∴a +1b -1=13+12-1=43. 16.解:由x 2-3x -1=0知x ≠0,则x 2-1=3x ,两边同除以x 得x -1x=3.原式=21x x ⎛⎫- ⎪⎝⎭+2=1117.-4 解析:由xy x +y=-2,得x +y xy =-12,裂项得1y +1x =-12.同理1z +1y =43,1x +1z =-43.所以,1y +1x +1z +1y +1x +1z =-12+43-43=-12,1z +1y +1x =-14.于是xy +yz +zx xyz =1z +1y +1x =-14,所以xyzxy +yz +zx=-4.第4讲 二次根式1.C 2.B 3.D 4.C 5.A 6.3 3 7.2 2 8.4949.710.解:原式=3×33-1+2 2-2+1=2+1.11.C12.B13.C解析:由m=1+2,n=1-2,得m+n=2,mn=-1,则m2+n2-3mn=(m+n)2-5mn=22-5×(-1)=9=3.故选C.14.5解析:先将20n化为最简二次根式,即20n=2 5n,因此要使5n是整数,正整数n的最小值为5.15.D 16.解:原式=-212⎛⎫⎪⎝⎭+1-(3 2-3)+3188⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=4+1-3 2+3-1=7-3 2.17.D解析:因为x-2y+9与|x-y-3|互为相反数,所以x-2y+9=0,|x-y-3|=0.可得290,30x yx y-+=⎧⎨--=⎩⇒15,12xy=⎧⎨=⎩⇒x+y=27.18.-2解析:∵1+x-(y-1)1-y=0,∴1+x+(1-y)1-y=0.又∵由被开方数为非负数的二次根式有意义的条件,得1-y≥0,∴根据算术平方根为非负数的性质,要使两个非负数之和等于0,必须这两个数同时为0,即1+x=0,1-y=0,即x=-1,y=1.∴x2 011-y2 011=(-1)2 011-12 011=-2.19.A解析:首先根据二次根式有意义的条件求出x的值,然后代入式子求出y的值,最后求出2xy的值.根据二次根式被开方数必须是非负数的条件,要使y=2x-5+5-2x-3在实数范围内有意义,必须250,520xx-≥⎧⎨-≥⎩⇒x=52.∴y=-3.∴2xy=2·52·(-3)=-15.第二章方程与不等式第1讲方程与方程组第1课时一元一次方程与二元一次方程组1.A 2.D 3.B 4.A 5.4 6.1,1 xy=⎧⎨=-⎩7.20 000-3x=5 0008.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为y m3.根据题意,得5,13800.y xx y=⎧⎨+=⎩解得2300,11500.xy=⎧⎨=⎩答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.9.1解析:由于-2x m-1y3与12xn y m+n是同类项,所以有1,3,m nm n-=⎧⎨=+⎩由m-1=n,得-1=n-m.所以(n-m)2 012=(-1)2 012=1.10.C解析:把2,1xy=⎧⎨=⎩代入8,1,mx nynx my+=⎧⎨-=⎩得⎩⎪⎨⎪⎧2m+n=8,2n-m=1,解得⎩⎪⎨⎪⎧m=3,n=2.所以2m-n=6-2=4,4的算术平方根是2.故选C.11.1 10012.解:原方程组可化为⎩⎪⎨⎪⎧4x-y=5,①3x+2y=12,②①×2+②,得11x=22,∴x=2.把x=2代入①,得y=3.∴方程组的解为⎩⎪⎨⎪⎧x=2,y=3.13.解:(1)当x=1时,y=1+1=2,∴b=2.(2)⎩⎪⎨⎪⎧x=1,y=2.(3)∵直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b),∴当x=1时,y=m+n=b=2.∴当x=1时,y=n+m=2,∴直线l3:y=nx+m也经过点P.14.解:这天萝卜的单价是x元/斤,排骨的单价是y元/斤.根据题意,得⎩⎪⎨⎪⎧3x+2y=45,31+50%x+21+20%y=36.解得⎩⎪⎨⎪⎧x=3,y=18.答:这天萝卜、排骨的单价是3元/斤、18元/斤.15.解:⎩⎪⎨⎪⎧x-y=2,①x2-2xy-3y2=0,②方程①变形为y=x-2.③把③代入②,得x2-2x(x-2)-3(x-2)2=0.整理,得x2-4x+3=0.解这个方程,得x1=1,x2=3.将x1=1,x2=3代入③,分别求得y1=-1,y2=1.所以原方程组的解为⎩⎪⎨⎪⎧x1=1,y1=-1或⎩⎪⎨⎪⎧x2=3,y2=1.16.B解析:关于x,y的二元一次方程组⎩⎪⎨⎪⎧x+y=5k,x-y=9k,得⎩⎪⎨⎪⎧x=7k,y=-2k.将之代人方程2x+3y =6,得k=34.第2课时分式方程1.D 2.D 3.B 4.C 5.C6.1解析:原方程求解,得x=1或-1.经检验,x=-1是原方程的增根,所以x=1是原方程的根.7.2 200元解析:设条例实施前此款空调的售价为x元,由题意列方程,得10 000x(1+10%)=10 000x-200,解得x=2 200元.8.解:方程两边同时乘以(x+1)(x-1),得2+(x -1)=(x +1)(x -1).解得x =2或-1. 经检验:x =-1是方程的增根. ∴原方程的解为x =2.9.解:由题意列方程,得3-x 2-x -1x -2-=3,解得x =1.经检验x =1是原方程的根.10.解:设一片国槐树叶一年的平均滞尘量为x 毫克,则一片银杏一年的平均滞尘量为(2x -4)毫克,根据题意,得1 0002x -4=550x .解得x =22.经检验,x =22是方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.11.A 解析:∵a ⊕b =1b -1a ,∴2⊕(2x -1)=12x -1-12=1.∴12x -1=32,解得x =56.检验,合适.故选A.12.0 解析:去分母,得2-x -m =2(2-x ),解得x =6-m 3.由原方程有增根,所以6-m3=2,解得∴m =0.13.解:设文学书的单价是x 元/本,则科普书的单位为(x +4)元/本.依题意,得12 000x +4=8 000x .解得x =8.经检验x =8是方程的解,并且符合题意. ∴科普书的单价为:x +4=12(元).∴去年购进的文学书和科普书的单价分别是8元和12元. 15.解:(1)设商铺标价为x 万元,则:按方案一购买,则可获投资收益(120%-1)×x +x ×10%×5=0.7x .投资收益率为0.7xx×100%=70%.按方案二购买,则可获投资收益(120%-0.85)×x +x ×10%×(1-10%)×3=0.62x .投资收益率为0.62x0.85x×100%≈72.9%.∴投资者选择方案二所获得的投资收益率更高. (2)由题意,得0.7x -0.62x =5. 解得x =62.5(万元).∴甲投资了62.5万元,乙投资了53.125万元. 14.解:设该校九年级学生有x 人.根据题意,得 1 936x ×0.8=1 936x +88, 整理,得0.8(x +88)=x . 解得x =352.经检验x =352是原方程的解. 答:这个学校九年级学生有352人.16.解:设B 车间每天生产x 件,则A 车间每天生产1.2x .由题意,得4 400x +1.2x+4 400x =20.解得x =320.经检验x =320 是原方程的根.A 车间每天生产的件数=1.2x =320×1.2=384(件).答:A 车间每天生产384件,B 车间每天生产320件. 第3课时 一元二次方程1.C 2.C 3.D 4.B 5.C 6.B7.B 解析:∵关于x 的一元二次方程x 2+2x -a =0有两个相等的实数根,∴Δ=22+4a =0.解得a =-18.c >9 9.289(1-x )2=256 10.解:(x -3)2+4x (x -3)=0, 因式分解,得(x -3)(x -3+4x )=0, 整理,得(x -3)(5x -3)=0. 于是得x -3=0或5x -3=0.解得x 1=3,x 2=35.11.D 解析:x 1+x 2=-2a =3,a =-32;x 1x 2=b =1.12.B 13.314.-1 解析:将原代数式去括号,因式分解,整理, 得(a -b )(a +b -2)+ab . ①由一元二次方程根与系数关系,得a +b =2,ab =-1, ①式=0-1=-1.15.解:(1)设每千克核桃应降价x 元.根据题意,得(60-x -40)⎝⎛⎭⎫100+x2×20=2 240. 化简,得x 2-10x +24=0,解得x 1=4,x 2=6. 答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.16.解:设AB =x m ,则BC =(50-2x ) m. 根据题意可,得x (50-2x )=300. 解得x 1=10,x 2=15.当x =10时,BC =50-10-10=30>25, 故x 1=10(不合题意,舍去).答:可以围成AB 的长为15米,BC 为20米的矩形.17.D 解析:由题意,得⎩⎨⎧(2k +1)2-4k >0,2k +1≥0,k ≠0.解得-12≤k <12且k ≠0.18.4 解析:∵α,β是一元二次方程x 2+3x -7=0的两个根,∴α+β=-3,α2+3α=7.∴α2+4α+β=α2+3α+α+β=7-3=4.故α2+4α+β的值为4.19.10 解析:解方程x 2-6x +8=0,得x 1=2,x 2=4. ∴三角形的三条边的长只能是4,4,2 .∴该三角形的周长是10. 第2讲 不等式与不等式组1.B 2.C 3.B 4.B 5.2<x <3 6.m ≤27.m >2 解析:由第一象限点的坐标的特点可得⎩⎪⎨⎪⎧m >0,m -2>0.解得m >2.8.-1,0,1 解析:解原不等式组,得-32<x ≤1,所以x 取-1,0,1.9.解:⎩⎪⎨⎪⎧3x -2<x +2, ①8-x ≥1-3(x -1). ②由不等式①,得x <2, 由不等式②,得x ≥-2.∴不等式组的解集为-2≤x <2.10.解:(1)牛奶盒数为(5x +38)盒.(2)根据题意,得⎩⎪⎨⎪⎧5x +38-6(x -1)<5,5x +38-6(x -1)≥1.∴不等式组的解集为39<x ≤43. ∵x 为整数,∴x 取40,41,42,43.答:该敬老院至少有40名老人,最多有43名老人.11.A 解析:由题意得,点M 关于x 轴对称的点的坐标为(1-2m,1-m ).又∵M (1-2m ,m -1)关于x 轴的对称点在第一象限,∴⎩⎪⎨⎪⎧1-2m >0,1-m >0.解得⎩⎪⎨⎪⎧m <12,m <1. 在数轴上表示为.故选A.12.B 解析:设购进这种水果a 千克,进价为y 元/千克,这种水果的售价在进价的基础上应提高x ,则售价为(1+x )y 元/千克.由题意,得0.9a (1+x )y -ayay ×100%≥20%.解得x ≥13.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.13.a <4 解析:⎩⎪⎨⎪⎧2x >3x -3, ①3x -a >5. ②由①得,x <3,由②得,x >5+a3.∵此不等式组有实数解, ∴5+a 3<3,解得a <4.14.解:(1)设甲票价为4x 元,则乙为3x 元. ∴3x +4x =42,解得x =6.∴4x =24,3x =18.∴甲、乙两种票的单价分别是24元、18元. (2)设甲票有y 张,根据题意,得 ⎩⎪⎨⎪⎧24y +18(36-y )≤750,y >15. 解得15<y ≤17.∵x 为整数,∴y =16或17.∴有两种购买方案:甲种票16张,乙种票20张;甲种票17张,乙种票19张.15.解:⎩⎨⎧x 2+x +13>0, ①x +5a +43>43(x +1)+a . ②解不等式①,得x >-25.解不等式②,得x <2a .由该不等式有实数解,得该不等式组的解集为-25<x <2a .又由该不等式恰有两个整数解,得1<2a ≤2.解得12<a ≤1.∴实数a 的取值范围为12<a ≤1.16.解:(1)设有x 人生产A 种板材,则有(210-x )人生产B 种板材.根据题意列方程,得 48 00060x =24 00040(210-x ). 化简,得6x =8(210-x ). 解得x =120.经检验x =120是原方程的解.生产B 种板材的人数为210-x =210-120=90(人).(2)设生产甲型板房m 间,则生产乙型板房为(400-m )间.根据题意,得 ⎩⎪⎨⎪⎧108m +156(400-m )≤48 000,61m +51(400-m )≤24 000.解得300≤m ≤360. 设400间板房能居住的人数为W .则有 W =12m +10(400-m ),W =2m +4 000.∵k =2>0,∴当m =360时,W 最大值=2×360+4 000=4 720(人). 答:这400间板房最多能安置4 720人. 17.a <418.解:(1)(2 420+1 980)×13%=572(元).(2)①设冰箱采购x 台,则彩电采购(40-x )台.根据题意,得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x )≤85 000,x ≥56(40-x ).解不等式组,得18211≤x ≤2137.因为x 为整数,所以x =19或20或21. 方案一:冰箱购买19台,彩电购买21台; 方案二:冰箱购买20台,彩电购买20台; 方案一:冰箱购买21台,彩电购买19台. ②设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x ) =20x +3 200.∵k =20>0,∴y 随x 的增大而增大.∴当x =21时,y 最大=20×21+3 200=3 620. 第三章 函数第1讲 函数与平面直角坐标系 1.B 2.B 3.C 4.B 5.B6.B 解析:顶点A 的坐标是(-2,3),△ABC 向右平移4个单位后得到△A 1B 1C 1的顶点A 1的坐标是(2,3),△A 1B 1C 1关于x 轴对称图形△A 2B 2C 2的顶点A 2的坐标是(2,-3).7.C 解析:根据以原点O 为位似中心,图形的坐标特点得出,对应点的坐标应乘以-2,故点A 的坐标是(1,2),则点A ′的坐标是(-2,-4).8.C 9.C 10.(-1,-2) 11.(1,3)12.⎝⎛⎭⎫72,0 解析:如下图D37,取B (3,-1)关于x 轴的对称点为B ′,则B ′的坐标为(3,1).作直线AB ,它与x 轴的交点即为所求的点M .使用待定系数法求得直线AB 的解析式为y =-2x +7,令y =0,得-2x +7=0,解得x =72,所以点M 的坐标为⎝⎛⎭⎫72,0.图D3713.210 解析:如图可知,每个拐角形阴影部分的面积等于两个正方形面积的差,其面积分别为:22-12,42-32,62-52,…,202-192,因此其面积和为:2+1+4+3+6+5+…+20+19=20×(1+20)2=210. 14.(16,1+3) 解析:可以求得点A (-2,-1-3),则第一次变换后点A 的坐标为A 1(0,1+3),第二次变换后点A 的坐标为A 2(2,-1-3),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+3).15.(1)△ABC 如图D38 14(2)直角三角形 解析:(1)因为点A 的坐标为(1,2),所以点A 关于y 轴的对称点B 的坐标为(-1,2),关于原点的对称点C 的坐标为(-1,-2).连AB ,BC ,AC ,作△ABC.图D38设AB 交y 轴于D 点,如图D38, D 点坐标为(0,2), ∵OD ∥BC ,∴△ADO ∽△ABC . ∴S △ADO S △ABC =AD 2AB 2=14. (2)∵ab ≠0,∴a ≠0,且b ≠0, ∴点A 不在坐标轴上, ∴AB ∥x 轴,BC ⊥x 轴. ∴∠ABC =90°.∴△ABC 是直角三角形.16.解:(1)∵四边形ONEF 是矩形, ∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为⎝⎛⎭⎫2,32. (2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴⎩⎨⎧ 1+x 2=-1+324+y 2=2+12,解得,⎩⎪⎨⎪⎧x =1y =-1.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴⎩⎨⎧ -1+x 2=1+322+y 2=4+12,解得,⎩⎪⎨⎪⎧x =5y =3.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴⎩⎨⎧3+x 2=-1+121+y 2=2+42,解得,⎩⎪⎨⎪⎧x =-3y =5.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).17.D 解析:过小正方形的一个顶点D 3作FQ ⊥x 轴于点Q ,过点A 3作A 3F ⊥FQ 于点F . ∵正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3, ∴∠B 3C 3E 4=60°,∠D 1C 1E 1=30°,∠E 2B 2C 2=30°,∴D 1E 1=12D 1C 1=12,∴D 1E 1=B 2E 2=12,∴cos30°=B 2E 2B 2C 2=12B 2C 2,解得:B 2C 2=33.∴B 3E 4=36,cos30°=B 3E 4B 3C 3.解得:B 3C 3=13.则D 3C 3=13.根据题意得出: ∠D 3C 3Q =30°,∠C 3D 3Q =60°,∠A 3D 3F =30°,∴D 3Q =12×13=16,FD 3=D 3A 3·cos30°=13×32=36.则点A 3到x 轴的距离FQ =D 3Q +FD 3=16+36=3+16.第2讲 一次函数1.D 2.D 3.D 4.A 5.D 6.C 7.B 8.减小 9.210.解:(1)120×150=18 000(元). (2)由图象知,y 与x 之间的函数是一次函数.设函数关系式为:y =kx +b (k ≠0).将(205,1 000),(275,1 280)两点坐标代入得:⎩⎪⎨⎪⎧ 205k +b =1 000,275k +b =1 280,解得⎩⎪⎨⎪⎧k =4,b =180.则y 与x 之间的函数关系式为y =4x +180.11.B 解析:∵函数图象经过二、四象限,∴m -1<0,解得m <1.故选B.12.B 解析:∵一次函数y =mx +|m -1|的图象过点(0,2),∴|m -1|=2,∴m -1=2或m -1=-2,解得m =3或m =-1,∵y 随x 的增大而增大,∴m >0,∴m =3.13.B 解析:由函数图象可知,当x <2时y 1<y 2.14.-8 解析:∵y =kx +b 的图象与正比例函数y =2x 的图象平行,∴k =2.∵y =kx +b 的图象经过点A (1,-2),∴2+b =-2,解得b =-4,∴kb =2×(-4)=-8. 15.解:(1)y =(1-0.5)x -(0.5-0.2)(200-x ) =0.8x -60(0≤x ≤200);(2)根据题意得:30×(0.8x -60)≥2 000,解得x ≥15813.故小丁每天至少要卖159份报纸才能保证每月收入不低于2 000元.16.⎝⎛⎭⎫75,-65 解析:如图D39,当AB 最短时AB ⊥直线y =2x -4,设直线与x 轴、y 轴的交点分别为点C ,D ,过点B ,作BE ⊥AC 于E ,易知△ABC ∽△DOC ,对应线段成比例,即CA CD =BCOC,AC =3,易求OC =2,CD =2 5,可以求出BC =35 5,又有△ABC ∽△BEC ,根据EC BC =BCAC,可求出CE =35,所以点B 的横坐标为2-35=75,代入表达式中就可以求出点B 的纵坐标为-65.所以点B 的坐标为⎝⎛⎭⎫75,-65. 图D3917.解:(1)当售价定为每件30元时,一个月可获利: (30-20)×[105-5(30-25)]=800(元).(2)设售价为每件x 元时,一个月的获利为y 元 由题意得:y =(x -20)[105-5(x -25)] =-5x 2+330x -4 600 =-5(x -33)2+845当x =33时,y 的最大值是845.故当售价定为每件33元时,一个月获利最大,最大利润是845元. 18.解:(1)设商家购买彩电x 台,则购买洗衣机(100-x )台. 由题意,得2 000x +1 000(100-x )=160 000, 解得x =60.则100-x =40(台),所以,商家可以购买彩电60台,洗衣机40台. (2)设购买彩电a 台,则购买洗衣机为(100-2a )台. 根据题意,得 ⎩⎪⎨⎪⎧2 000a +1 600a +1 000(100-2a )≤160 000,100-2a ≤a , 解得3313≤a ≤37.5,因为a 是整数,所以a =34,35,36,37. 因此,共有四种进货方案.设商店销售完毕后获得利润为w 元.则w =(2 200-2 000)a +(1 800-1 600)a +(1 100-1 000)(100-2a )=200a +10 000. ∴w 随a 的增大而增大. ∴当a =37时,w 最大值=200×37+10 000=17 400(元), 所以商店获得的利润最大为17 400元.19.解:将(-1,1)代入y =kx +3,得1=-k +3,所以k =2.所以2x +3<0.解得x <-32.20.解:(1)(2 420+1 980)×13%=572(元).(2)设冰箱采购x 台,则彩电采购(40-x )台,根据题意得 ⎩⎪⎨⎪⎧2 320x +1 900(40-x )≤85 000,x ≥56(40-x ), 解不等式组得18211≤x ≤2137,因为x 为整数,所以x =19,20,21,方案一:冰箱购买19台,彩电购买21台, 方案二:冰箱购买20台,彩电购买20台, 方案一:冰箱购买21台,彩电购买19台, 设商场获得总利润为y 元,则y =(2 420-2 320)x +(1 980-1 900)(40-x ) =20x +3 200∴当x =21时,y 最大值=20×21+3 200=3 620(元).∴商场购买冰箱21台,彩电19台时获利最大,最大利润是3 620元. 第3讲 反比例函数 1.B 2.D3.A 解析:将y =k x 代入y =x +2中,得k x =x +2,由于函数y =kx与y =x +2的图象没有交点,则kx=x +2无解,得出k 的值. 4.C 解析:∵直线y =ax (a ≠0)与双曲线y =kx(k ≠0)的图象均关于原点对称,∴它们的另一个交点坐标与(2,6)关于原点对称.∴它们的另一个交点坐标为:(-2,-6).5.A 解析:先根据反比例函数的图象经过第一、三象限得到关于m 的不等式,求出m 的取值范围即可.∵双曲线y =m -1x的图象经过第一、三象限,∴m -1>0.∴m >1.6.B 解析:双曲线与直线的交点坐标适合两者的解析式,利用y =2x +1可以求出交点坐标为(-1,-1),进而求出k =1.7.C 解析:由矩形的面积知xy =9,可知它的长x 与宽y 之间的函数关系式为y =9x(x >0),是反比例函数图象,且其图象在第一象限.故选C.8.A 解析:由图象观察可知,一次函数与反比例函数相交于点(-2,-2)、(1,4)两点,进一步观察当-2<x <0时,一次函数的函数值大于反比例函数的函数值即y 1>y 2;当x >1时,一次函数的函数值大于反比例函数的函数值即y 1>y 1,因此A 满足条件.9.-2 解析:根据图象上的点满足函数解析式,即-2=k1,所以k =-2.10.-311.解:(1)∵点A (m,6)、B (n,3)在函数y =6x的图象上,∴m =1,n =2.∴A (1,6),B (2,3).∴⎩⎪⎨⎪⎧ k +b =6,2k +b =3.∴⎩⎪⎨⎪⎧k =-3,b =9.∴一次函数的解析式为y =-3x +9. (2)由图象知:1<x <2.12.A 解析:由反比例函数的增减性可知,当x <0时,y 随x 的增大而增大,所以当x 1<x 2<0时,0<y 1<y 2.又C (x 3,y 3)在第四象限,则y 3<0,所以y 3<y 1<y 2.故选A.13.C 14.-5<x <-1或x >0 15.-416.解:(1)在y 1=k 1x +1中,当x =0时,y =1, ∴点A 的坐标为(0,1). 设B 点的坐标为(b,0) 由△AOB 的面积为1,得 12b ×1=1,∴b =2.∴点B 的坐标为(2,0) 又∵点B 在一次函数y 1=k 1x +1的图象上,有0=2k 1+1,∴k 1=-12.∴一次函数的解析式为y 1=-12x +1.由点M 在一次函数y 1=k 1x +1的图象上,点M 纵坐标为2,得2=-12x +1,解得x =-2,点M 坐标为(-2,2).代入y 2=k 2x 中,得2=k 1-2.∴k 1=-4.∴反比例函数的解析式的解析式为y 2=-4x.由图象可知,点N 坐标为(4,-1)y 1>y 2时x 的取值范围为x <-2或0<x <4.17.三 k >0 解:(1)根据反比例函数图象与性质得到:双曲线y =kx的一支在第一象限,则k>0,得到另一支在第三象限;(2)∵梯形AOBC 的边OB 在x 轴的正半轴上,AC ∥OB ,BC ⊥OB ,而点C 的坐标标为(2,2),∴A 点的纵坐标为2,E 点的横坐标为2,B 点坐标为(2,0),把y =2代入y =k x 得x =k2;把x =2代入y =k x 得y =k2,∴A 点的坐标为⎝⎛⎭⎫k 2,2,E 点的坐标为⎝⎛⎭⎫2,k 2. ∴S 阴影=S △ACE +S △OBE =12×⎝⎛⎭⎫2-k 2×⎝⎛⎭⎫2-k 2+12×2×k 2=18k 2-12k +2=18(k -2)2+32. 当k -2=0,即k =2时,S 阴影部分最小,最小值为32;∴E 点的坐标为(2,1),即E 点为BC 的中点.∴当点E 在BC 的中点时,阴影部分的面积S 最小.(3)设D 点坐标为⎝⎛⎭⎫a ,k a ,∵OD OC =12,∴OD =DC ,即D 点为OC 的中点.∴C 点坐标为⎝⎛⎭⎫2a ,2k a ,把y =2k a 代入y =k x 得x =a2,确定A 点坐标为⎝⎛⎭⎫a 2,2k a ,∵S △OAC =2,∴12×⎝⎛⎭⎫2a -a 2×2k a =2,解得k =43.双曲线的解析式为y =43x . 18.解:(1)510-200=310(元).(2)p =200x,∴p 随x 的增大而减小.(3)购x 元(200≤x <400),在甲商场的优惠额是100元,乙商场的优惠额是x -0.6x =0.4x . 当0.4x <100,即200≤x <250时,选甲商场优惠; 当0.4x =100,即x =250时,选甲乙商场一样优惠; 当0.4x >100,即250<x <400时,选乙商场优惠;19.解:(1)把A (2,3)代入y 2=mx,得m =6.把A (2,3),C (8,0)代入y 1=kx +b ,得⎩⎪⎨⎪⎧3=2k +b ,0=8k +b ,解得⎩⎪⎨⎪⎧k =-12,b =4.∴这两个函数的解析式为:y 1=-12x +4,y 2=6x.(2)由题意得⎩⎨⎧y =-12x +4,y =6x,解得⎩⎪⎨⎪⎧ x 1=6,y 1=1或⎩⎪⎨⎪⎧x 2=2,y 2=3.∴当x <0或2<x <6时,y 1>y 1.20.解:(1)设反比例函数解析式为y =kx,将(25,6)代入解析式得,k =150.所以y =150x(x ≥15).将y =10代入解析式得,10=150x.x =15.故A (15,10),则正比例函数解析式为y =150x(x ≥15).设正比例函数解析式为y =nx ,将A (15,10)代入上式即可求出n 的值,n =23.则正比例函数解析式为y =23x (0≤x ≤15).(2)150x=2,解之得x =75(分钟).答:从药物释放开始,师生至少在75分钟内不能进入教室. 第4讲 二次函数1.D 2.A 3.D 4.C 5.D 6.D 7.C 8.A 9.(1,-4) 10.-1<x <3 11.解:(1)画图(如图D40).图D40(2)当y <0时,x 的取值范围是x <-3或x >1. (3)平移后的图象所对应的函数关系式为y =-12(x -2)2+2⎝⎛⎭⎫或写成y =-12x 2+2x . 12.C 13.D 14.D 15.D 16.解:(1)10+x 500-10x(2)设月销售利润为y 元.根据题意, 得y =(10+x )(500-10x ), 整理得y =-10(x -20)2+9 000当x =20时,y 有最大值9 000(元),此时篮球的售价为:20+50=70(元). 答:8 000元不是最大利润,最大利润是9 000元,此时篮球售价应为70元. 17.解:(1)∵抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0), ∴⎩⎪⎨⎪⎧ 9a -3b +3=0,a -b +3=0,解得⎩⎪⎨⎪⎧a =1,b =4. ∴抛物线的解析式为:y =x 2+4x +3.(2)由(1)知,抛物线解析式为:y =x 2+4x +3, ∵令x =0,得y =3,∴C (0,3).∴OC =OA =3,则△AOC 为等腰直角三角形.∴∠CAB =45°.∴cos ∠CAB =22.在Rt △BOC 中,由勾股定理得:BC =12+32=10. 如图D41所示,连接O 1B ,O 1C ,由圆周角定理得:∠BO 1C =2∠BAC =90°. ∴△BO 1C 为等腰直角三角形.∴⊙O 1的半径O 1B =22BC =22×10= 5.图D41图D42(3)抛物线y =x 2+4x +3=(x +2)2-1,∴顶点P 坐标为(-2,-1),对称轴为x =-2.又∵A (-3,0),B (-1,0),可知点A ,B 关于对称轴x =2对称.如图D42所示:由圆及抛物线的对称性可知:点D ,点C (0,3)关于对称轴对称, ∴D (-4,3).又∵点M 为BD 中点,B (-1,0),∴M ⎝⎛⎭⎫-52,32. ∴BM =⎣⎡⎦⎤-52-(-1)2+⎝⎛⎭⎫322=322. 在△BPC 中,B (-1,0),P (-2,-1),C (0,3),由两点间的距离公式得:BP =2,BC =10,PC =2 5. ∵△BMN ∽△BPC ,∴BM BP =BN BC =MN PC ,即3 222=BN 10=MN2 5. 解得:BN =3210,MN =3 5.设N (x ,y ),由两点间的距离公式可得:⎩⎨⎧(x +1)2+y 2=⎝⎛⎭⎫32102,⎝⎛⎭⎫x +522+⎝⎛⎭⎫y -322=(35)2,解之得,⎩⎨⎧ x 1=72,y 1=32,⎩⎨⎧x 2=12,y 2=-92.∴点N 的坐标为⎝⎛⎭⎫72,-32或⎝⎛⎭⎫12,-92. 18.(1)证明:∵二次函数y =mx 2+nx +p 图象的顶点横坐标是2,∴抛物线的对称轴为x =2,即-n2m=2,化简得:n +4m =0.(2)解:∵二次函数y =mx 2+nx +p 与x 轴交于A (x 1,0),B (x 2,0),x 1<0<x 2,∴OA =-x 1,OB =x 2;x 1+x 2=-n m ,x 1·x 2=pm.令x =0,得y =p ,∴C (0,p ).∴OC =|p |.由三角函数定义得:tan ∠CAO =OC OA =|p |-x 1=-|p |x 1,tan ∠CBO =OC OB =|p |x 2.∵tan ∠CAO -tan ∠CBO =1,即-|p |x 1-|p |x 2=1,化简得:x 1+x 2x 1·x 2=-1|p |.将x 1+x 2=-n m ,x 1·x 2=pm 代入得:-n m p m=-1|p |,化简得:n =p|p |=±1.由(1)知n +4m =0,∴当n =1时,m =-14;当n =-1时,m =14.∴m ,n 的值为:m =14,n =-1(此时抛物线开口向上)或m =-14,n =1(此时抛物线开口向下).(3)解:由(2)知,当p >0时,n =1,m =-14,∴抛物线解析式为:y =-14x 2+x +p .联立抛物线y =-14x 2+x +p 与直线y =x +3解析式得到:-14x 2+x +p =x +3,化简得:x 2-4(p -3)=0.∵二次函数图象与直线y =x +3仅有一个交点, ∴一元二次方程根的判别式等于0,即△=02+16(p -3)=0,解得p =3.∴抛物线解析式为:y =-14x 2+x +3=-14(x -2)2+4.当x =2时,二次函数有最大值,最大值为4.∴当p >0且二次函数图象与直线y =x +3仅有一个交点时,二次函数的最大值为4. 19.解:(1)当m =3时,y =-x 2+6x .令y =0得-x 2+6x =0,解得,x 1=0,x 2=6. ∴A (6,0).当x =1时,y =5.∴B (1,5).∵抛物线y =-x 2+6x 的对称轴为直线x =3,且B ,C 关于对称轴对称,∴BC =4. (2)过点C 作CH ⊥x 轴于点H (如图D43) 由已知得,∠ACP =∠BCH =90°, ∴∠ACH =∠PCB .又∵∠AHC =∠PBC =90°,∴△ACH ∽△PCB . ∴AH CH =PB BC. ∵抛物线y =-x 2+2mx 的对称轴为直线x =m ,其中m >1,且B ,C 关于对称轴对称, ∴BC =2(m -1).∵B (1,2m -1),P (1,m ),∴BP =m -1.又∵A (2m,0),C (2m -1,2m -1),∴H (2m -1,0). ∴AH =1,CH =2m -1,∴12m -1=m -12()m -1,解得m =32.图D43图D44(3)存在.∵B ,C 不重合,∴m ≠1.当m >1时,BC =2(m -1),PM =m ,BP =m -1, ①若点E 在x 轴上如图D43, ∵∠CPE =90°,∴∠MPE +∠BPC =∠MPE +∠MEP =90°,PC =EP . ∴△BPC ≌△MEP ,∴BC =PM ,即2(m -1)=m ,解得m =2. 此时点E 的坐标是(2,0).②若点E 在y 轴上如图D44,过点P 作PN ⊥y 轴于点N ,易证△BPC ≌△NPE ,∴BP =NP =OM =1,即m -1=1,解得,m =2. 此时点E 的坐标是(0,4).当0<m <1时,BC =2(1-m ),PM =m ,BP =1-m , ①若点E 在x 轴上如图D45, 易证△BPC ≌△MEP ,∴BC =PM ,即2(1-m )=m ,解得,m =23.此时点E 的坐标是(43,0).图D45图D46②若点E 在y 轴上如图D46,过点P 作PN ⊥y 轴于点N ,易证△BPC ≌△NPE , ∴BP =NP =OM =1,即1-m =1,∴m =0(舍去). 综上所述,当m =2时,点E 的坐标是(0,2)或(0,4),当m =23时,点E 的坐标是⎝⎛⎭⎫43,0. 20.解:(1)在y =-38x 2-34x +3中,令y =0,即-38x 2-34x +3=0,解得x 1=-4,x 2=2.∵点A 在点B 的左侧,∴A ,B 点的坐标为A (-4,0),B (2,0).(2)由y =-38x 2-34x +3得,对称轴为x =-1.在y =-38x 2-34x +3中,令x =0,得y =3.∴OC =3,AB =6,S ΔACB =12AB ·OC =12×6×3=9.在Rt △AOC 中,AC =OA 2+OC 2=42+32=5,∴sin ∠OCA =45.设△ACD 中AC 边上的高为h ,则有12AC ·h =9,解得h =185.如图D47,在坐标平面内作直线平行于AC ,且到AC 的距离h =185,这样的直线有2条,分别是L 1和L 2,则直线与对称轴x =-1的两个交点即为所求的点D.图D47设L 1交y 轴于点E ,过点C 作CF ⊥L 1于点F ,则CF =h =185,∴CE =CF sin ∠CEF =CFsin ∠OCA =18545=92.设直线AC 的解析式为y =kx +b , 将点A (-4,0),点C (0,3)坐标代入,得⎩⎪⎨⎪⎧-4k +b =0,b =3,解得⎩⎪⎨⎪⎧k =34,b =3.∴直线AC 解析式为y =34x +3.直线L 1可以看做直线AC 向下平移CE 长度单位⎝⎛⎭⎫92个长度单位而形成的, ∴直线L 1的解析式为y =34x +3-92=34x -32.则D 1的纵坐标为34×()-1-32=-94.∴D 1⎝⎛⎭⎫-1,-94. 同理,直线AC 向上平移92个长度单位得到L 2,可求得D 2⎝⎛⎭⎫-1,274. (3)如图D48,以AB 为直径作⊙F ,圆心为F .过E 点作⊙F 的切线,这样的切线有2条.图D48连接FM ,过M 作MN ⊥x 轴于点N .∵A (-4,0),B (2,0),∴F (-1,0),⊙F 半径FM =FB =3. 又FE =5,则在Rt △MEF 中,ME =52-32=4,sin ∠MFE =45,cos ∠MFE =35.在Rt △FMN 中,MN =FN ·sin ∠MFE =3×45=125,FN =FM ·cos ∠MFE =3×35=95,则ON =45,∴M 点坐标为⎝⎛⎭⎫45,125.直线l 过M ⎝⎛⎭⎫45,125,E (4,0),设直线l 的解析式为y =k 1x +b 1,则有⎩⎪⎨⎪⎧45k +b =125,4k +b =0,解得⎩⎪⎨⎪⎧k =-34,b =3.∴直线l 的解析式为y =-34x +3.同理,可以求得另一条切线的解析式为y =34x -3.综上所述,直线l 的解析式为y =-34x +3或y =34x -3.第二部分 空间与图形 第四章 三角形与四边形 第1讲 相交线和平行线1.B 2.C 3.C 4.A 5.C 6.B 7.D 8.121° 9.98 10.35 11.360 12.解:∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行). ∴∠3=∠4=75°(两直线平行,内错角相等). 13.A 14.B15.解:(1)2 (2)6 (3)12 (4)(n -1)n (5)4 030 05616.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°.(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α.(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°.(4)∠MON 的大小等于∠AOB 的一半,与∠BOC 的大小无关. 17.解:(1)∵m ∥n ,∴点C ,P 到直线n 间的距离与点A ,B 到直线m 间的距离相等. 又∵同底等高的三角形的面积相等,∴图D49(1)中符合条件的三角形有:△CAB 与△P AB 、△BCP 与△APC ,△ACO 与△BOP . (2)∵m ∥n ,∴点C ,P 到直线n 间的距离是相等的.∴△ABC 与△P AB 的公共边AB 上的高相等. ∴总有△P AB 与△ABC 的面积相等.(1)(2)图D49(3)如图D49(2)连接EC ,过点D 作直线DM ∥EC 交BC 的延长线于点M ,连接EM ,线段EM 所在的直线即为所求的直线.第2讲 三角形 第1课时 三角形1.C 2.D 3.B 4.B 5.D 6.B 7.C 8.A 9.3 10.证明:∵BD ⊥AC ,CE ⊥AB , ∴∠ADB =∠AEC =90°. 在△ABD 和△ACE 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ADB =∠AEC ,AB =AC ,∴△ABD ≌△ACE (AAS).∴BD =CE .11.证明:∵AD =EB ,∴AD -BD =EB -BD ,即AB =ED . 又∵BC ∥DF ,∴∠CBD =∠FDB . ∴∠ABC =∠EDF .又∵∠C =∠F ,∴△ABC ≌△EDF .∴AC =EF .12.解:(1)如果①②,那么③;如果①③,那么②; (2)若选择如果①②,那么③. 证明:∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AB +BC =BC +CD ,即AC =DB . 在△ACE 和△DBF 中, ⎩⎪⎨⎪⎧∠E =∠F ,∠A =∠D ,AC =DB ,∴△ACE ≌△DBF (AAS).∴CE =BF . 若选择如果①③,那么②.证明:∵AE ∥DF ,∴∠A =∠D . 在△ACE 和△DBF 中,⎩⎪⎨⎪⎧∠E =∠F ,∠A =∠D ,EC =FB ,∴△ACE ≌△DBF (AAS).∴AC =DB .∴AC -BC =DB -BC ,即AB =CD . 13.解:∵∠CMD =90°,∴∠CMA +∠DMB =90°. 又∵∠CAM =90°,∴∠CMA +∠ACM =90°. ∴∠ACM =∠DMB . 又∵CM =MD ,∴Rt △ACM ≌Rt △BMD ,∴AC =BM =3. ∴他到达点M 时,运动时间为3÷1=3(s). 答:这个人运动了3 s. 14.13 15.D16.7 解析:因为△ABC 折叠,使点C 与点A 重合,折痕为DE ,所以EC =AE ,故△ABE 的周长为AB +BE +AE =AB +BE +EC =AB +BC =3+4=7.17.解:(1)①结论:BD =CE ,BD ⊥CE . ②结论:BD =CE ,BD ⊥CE .理由如下:∵∠BAC =∠DAE =90°,∴∠BAD -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE . 在△ABD 与△ACE 中,∵⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE .∴BD =CE .延长BD 交AC 于点F ,交CE 于点H . 在△ABF 与△HCF 中,∵∠ABF =∠HCF ,∠AFB =∠HFC , ∴∠CHF =∠BAF =90°.∴BD ⊥CE .(2)结论:乙.AB ∶AC =AD ∶AE ,∠BAC =∠DAE =90°. 18.(1)证明:在Rt △AFD 和Rt △CEB 中, ∵AD =BC ,AF =CE ,∴Rt △AFD ≌Rt △CEB . (2)解:∵∠ABH +∠CBE =90°,∠ABH +∠BAH =90°,∴∠CBE =∠BAH . 又∵AB =BC ,∠AHB =∠CEB =90°, ∴△ABH ≌△BCE .同理,得△ABH ≌△BCE ≌△CDG ≌△DAF . ∴S 正方形ABCD =4S △ABH +S 正方形HEGF=4×12×2×1+1×1=5.(3)解:由(1),知△AFD ≌△CEB ,故h 1=h 3, 由(2),知△ABH ≌△BCE ≌△CDG ≌△DAF , ∴S 正方形ABCD =4S △ABH +S 正方形HEGF=4×12(h 1+h 2)·h 1+h 22 =2h 21+2h 1h 2+h 22.第2课时 等腰三角形与直角三角形 1.C 解析:分顶角为40°或底角为40°两种情况. 2.B 3.C 4.A5.D 解析:∠B =∠EFC =90°-∠CEF =40°. 6.B 7.2 8.59.如果三角形三条边的边长a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形 10.解:∵在Rt △BDC 中,∠BDC =45°,BD =10 2, ∴BC =CD =10. ∵∠C =90°,AB =20,∴∠A =30°.11.(1)解:∵AB =AC ,∴∠B =∠C =30°. ∵∠C +∠BAC +∠B =180°, ∴∠BAC =180°-30°-30°=120°. ∵∠DAB =45°,∴∠DAC =∠BAC -∠DAB =120°-45°=75°. (2)证明:∵∠DAB =45°, ∴∠ADC =∠B +∠DAB =75°.∴∠DAC =∠ADC . ∴DC =AC .∴DC =AB . 12.解:(1)AC ⊥BD .∵△DCE 由△ABC 平移而成,∴BE =2BC =6,DE =AC =3,∠E =∠ACB =60°.∴DE =12BE .∴BD ⊥DE .∵∠E =∠ACB =60°,∴AC ∥DE .∴BD ⊥AC . (2)在Rt △BED 中,∵BE =6,DE =3,∴BD 2=BE 2-DE 2=62-32,解得BD =3 3. 13.C 14.10+2 13 15.解:(1)如图D50:图D50(2)2 55 5 (3)直角 10 (4)1216.49217.解:(1)(x +0.7)2+22=2.52, 0.8,-2.2(舍去),0.8. (2)①不会是0.9米,若AA 1=BB 1=0.9,则A 1C =2.4-0.9=1.5, B 1C =0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25, ∵A 1C 2+B 1C 2≠A 1B 1 2 , ∴该题的答案不会是0.9米. ②有可能.设梯子顶端从A 处下滑x 米,点B 向外也移动x 米, 则有(x +0.7)2+(2.4-x )2=2.52, 解得:x =1.7或x =0(舍去).∴当梯子顶端从A 处下滑1.7米时,点B 向外也移动1.7米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等.第3讲 四边形与多边形第1课时 多边形与平行四边形 1.B 2.A 3.C 4.C 5.300° 6.3 7.4 8.6 9.5 10.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD .∴∠P AE =∠PCF .∵点P 是□ABCD 的对角线AC 的中点, ∴P A =PC .在△P AE 和△PCE 中,⎩⎪⎨⎪⎧∠P AE =∠PCF ,P A =PC ,∠APE =∠CPF ,∴△P AE ≌△PCE (ASA).∴AE =CF .11.解:添加的条件是BE =DF .证明如下: ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC . ∵BE =DF ,∴AF =CE , 即AF =CE ,AF ∥CE .∴四边形AECF 是平行四边形. 12.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°. ∵AD ∥BC ,∴∠ADE =∠FBC ,在Rt △AED 和Rt △CFB 中, ∵⎩⎪⎨⎪⎧∠EAD =∠FCB ,∠ADE =∠FBC ,AE =CF ,∴Rt △AED ≌Rt △CFB .∴AD =BC .又∵AD ∥BC ,∴四边形ABCD 是平行四边形. 13.B14.证明:(1)∵四边形ABCD 是平行四边形, ∴∠DAB =∠BCD .∴∠EAM =∠FCN . 又∵AD ∥BC ,∴∠E =∠F . 在△AEM 与△CFN 中,。
2013年中考专题复习——数与式(附答案)trt
2013年中考专题复习——数与式(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题1.对有理数a 、b ,有如下的判断:( )(1)若︱a ︱=︱b ︱,则a=b. (2)若a=-b ,则2)(a -= b 2(3)若︱a ︱﹥b ,则︱a ︱﹥︱b ︱(4)若︱a ︱﹤︱b ︱,则a ﹤b其中正确的个数( )A 、1B 、2C 、3D 、42.绝对值大于2而小于5的所有正整数之和为( )A 、7B 、8C 、9D 、103.下列各数中,最小的数是( )A .-2B .0C .21D .2 4.若4a b +=,则222a ab b ++的值为( )A 、8B 、16C 、2D 、45.下列各对数不.是互为倒数的是( ) A 、-1与-1 B 、2.5与52 C 、53-与35- D 、2与21- 6.估算348+的值( )A 、在7和8间B 、在8和9之间C 、在9和10之间D 、在10和11之间7.大于-2.5小于3的整数有( )个A 、3个B 、4个C 、5个D 、6个8.下列说法错误的是( )A .81的平方根是3±B .(-1)2010是最小的正整数C .两个无理数的和一定是无理数D .实数与数轴上的点一一对应9.下列等式不成立的是( )A 、66326=⋅B 、428=÷C 、D 、228=-10.2010年我国总人口约为l 370 000 000人,该人口数用科学记数法表示为( )A .110.13710⨯B .91.3710⨯C .813.710⨯D .713710⨯ 二、填空题11.定义一种运算:x ※y=))((y x y x -+,如:4※3=(4+3)(4-3)=7,则3※(5※4)= 。
12.一个数的平方等于这个数的立方,这个数是________.13.估算13的近似值等于 .(精确到十分位)14.._____________x 5-3_____,__________x 5-3的差是与的和是与x x15.11的相反数为 .16.某地12月中旬的一天中午气温为-5℃,晚6时气温下降了8℃,则晚6时气温为 __ ____℃.三、计算题 17.先化简,再求值:)3123()31(22122y x y x x +-+--,其中x=1,y=-118.(1)求x 值: 2542=x(2)求x 值:027.0)7.0(3=-x四、解答题19.小明在计算A-2(ab+2bc-4ac )时,由于马虎,将“A -”写成了“A+”,得到的结果是3ab-2ac+5bc 。
2013年中考数学试题10专题汇编
2013年中考数学试题10专题汇编2013中考全国100份试卷分类汇编与圆有关的计算1、(2013年武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=°,∠ECD=°,⊙B的半径为R,则的长度是()A.B.C.D.答案:B解析:由切线长定理,知:PE=PD=PC,设∠PEC=z°所以,∠PED=∠PDE=(x+z)°,∠PCE=∠PEC=z°,∠PDC=∠PCD=(y+z)°,∠DPE=(180-2x-2z)°,∠DPC=(180-2y-2z)°,在△PEC中,2z°+(180-2x-2z)°+(180-2y-2z)°=180°,化简,得:z=(90-x-y)°,在四边形PEBD中,∠EBD=(180°-∠DPE)=180°-(180-2x-2z)°=(2x+2z)°=(2x+180-2x-2y)=(180-2y)°,所以,弧DE的长为:=选B。
2、(2013年黄石)已知直角三角形的一条直角边,另一条直角边,则以为轴旋转一周,所得到的圆锥的表面积是A.B.C.D.答案:A解析:得到的是底面半径为5cm,母线长为13cm的圆锥,底面积为:25,侧面积为:,所以,表面积为3、(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()A.πB.πC.πD.π考点:扇形面积的计算;钟面角.分析:从9点到9点30分分针扫过的扇形的圆心角是180°,利用扇形的面积公式即可求解.解答:解:从9点到9点30分分针扫过的扇形的圆心角是180°,则分针在钟面上扫过的面积是:=π.故选:A.点评:本题考查了扇形的面积公式,正确理解公式是关键.4、(2013达州)如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为()A.200π米B.100π米C.400π米D.300π米答案:A解析:CF=300,OF=,所以,∠COF=30°,∠COD=60°,OC=600,因此,弧CD的长为:=200π米5、(2013•攀枝花)一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60°B.90°C.120°D.180°考点:圆锥的计算.分析:要求其圆心角,就要根据弧长公式计算,首先明确侧面展开图是个扇形,即圆的周长就是弧长.解答:解:设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故选D.点评:主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.6、(2013•眉山)用一圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是()A.1cmB.2cmC.3cmD.4cm考点:圆锥的计算.分析:利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.解答:解:设此圆锥的底面半径为r,由题意,得2πr=,解得r=2cm.故选B.点评:本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.7、(2013•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是()A.90°B.120°C.150°D.180°考点:圆锥的计算.3718684分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,然后设正圆锥的侧面展开图的圆心角是n°,利用弧长的计算公式即可求解.解答:解:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr,解得:n=180.故选D.点评:正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.8、(12-4圆的弧长与扇形面积•2013东营中考)如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长a为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.B.C.D.8.A.解析:由题意得,树叶形图案的周长为两条相等的弧长,所以其周长为.9、(2013•嘉兴)如图,某厂生产横截面直径为7cm的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为45°,则“蘑菇罐头”字样的长度为()A.cmB.cmC.cmD.7πcm考点:弧长的计算.分析:根据题意得出圆的半径,及弧所对的圆心角,代入公式计算即可.解答:解:∵字样在罐头侧面所形成的弧的度数为45°,∴此弧所对的圆心角为90°,由题意可得,R=cm,则“蘑菇罐头”字样的长==π.故选B.点评:本题考查了弧长的计算,解答本题关键是根据题意得出圆心角,及半径,要求熟练记忆弧长的计算公式.10、(2013山西,1,2分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是(B)A.-B.-C.π-D.π-【答案】B【解析】扇形BEF的面积为:S1==,菱形ABCD的面积为SABCD=,如右图,连结BD,易证:△BDP≌△BCQ,所以,△BCQ与△BAP的面积之和为△BAD的面积为:,因为四边形BPDQ的面积为,阴影部分的面积为:-。
2013届全国中考数学3年中考2年模拟之热点题型:7.1阅读理解题pdf版
专 题 拓 展
7 . 1 阅读理解题
根据实际问题中所提供的图表信息 表中获取解题信息的问题. 图表信息题大致有以下几种类型: 图象信息型、 图 的不同方式, 题型特点 形信息型 、 统计表型等 . 阅读理解型问题, 一般篇幅较长, 涉及内容丰富, 构思新颖 命题趋势 一般分为两个部分: 一是阅读材料, 二是考查内容. 它要求 别致, 学生根据阅读获取的信息回答问题. 提供的阅读材料主要包括: 阅读理解题是近几年频频出现在中考试卷中的一类新题 一个新的数学概念的形成和应用过程, 或一个新的数学公式的 不仅考查学生的阅读能力, 而且综合考查学生的数学意识和 型, 数学综合应用能力, 推导与应用; 二是提供新闻背景材料, 甚至是生活背景的一段对 尤其是侧重于考查学生的数学思维能力和 话; 三是提供一份蕴涵丰富信息的图象或者统计图、 表格. 主要 创新意识, 此类题目能够帮助考生实现从模仿到创造的思想过 程, 要求学生通过阅读这些内容丰富的材料, 考查学生的观察能力、 符合学生的认知规律, 其图文并茂, 清新悦目的形式也受学 读图能力、 数据收集能力以及获取信息并处理、 加工信息的能 生欢迎, 是中考的热点题目之一, 今后的中考试题有进一步加强 力, 从而得到通过解题提高能力的目的中收集信息, 处理信息, 的趋势. 以解决现实问题. 图表信息题是指从图象、 图形、 统计图及统计
1 3 因此, 将直线 沿图中所示由点 犆 到点 犈 的方向平移 . 3 狔= 4狓+ 2 ( ) 过点 犇 作狔 轴的垂线, 两条垂 到第一次与⊙犗 有公共点, 即与 ⊙犗 在第二象限内相切的位置 2 ①过点 犆 作狓 轴的垂线, 连接 犆 如图 ( ) , 当点 在点 的左上方且使 , 切点即为所求点 线交于点 犕, 时 犇. 4 犆 犇 犈. 点 犆 与点 犇 的 “ 非常距离 ” 最小. 犆 犕犇 是等腰直角三角形时, △ 作犈 设直线狔= 3狓+ 犘⊥ 狓 轴于点犘. 3与狓 轴, 狔 轴分别交 4 3 理由如下: 记此时点 犆 所在位置的坐标为 狓 当点 , 狓 3 . 0 0+ 可求得 犎犗= , , 4 犌. 4 犌 犗= 3 犌犎= 5 . 于点 犎、 非常距离” 的最小值是 ②点 犃 与点犅 的“
2013版中考总复习数学(人教版 全国通用)专题讲练 专题一 图表信息(含解析)
专题一图表信息图表信息问题主要考查学生收集信息和处理信息的能力.解答这类问题时要把图表信息和相应的数学知识、数学模型相联系,要结合问题提供的信息,灵活运用数学知识进行联想、探索、发现和综合处理,准确地使用数学模型来解决问题.这种题型命题广泛,应用知识多,是近几年各地中考的一种新题型,也是今后命题的热点,考查形式有选择题、填空题、解答题.考向一表格信息问题表格信息问题涉及知识点比较广泛,主要有统计、方程(组)、不等式(组)、函数等.解答时关键要根据表格提供的信息,建立相应的数学模型.【例1】2011年4月25日,全国人大常委会公布《中华人民共和国个人所得税法修正案(草案)》,向社会公开征集意见.草案规定,公民全月工薪不超过3 000元的部分不必纳税,超过3 000元的部分为全月应纳税所得额.此项税款按下表分段累进.(1)李工程师的月工薪为8 000元,则他每月应当纳税多少元?(2)若某纳税人的月工薪不超过10 000元,他每月的纳税金额能超过月工薪的8%吗?若能,请给出该纳税人的月工薪范围;若不能,请说明理由.分析:(1)由于当工资为8 000元时,应该纳税,而且应该按照三个级别分别纳税;(2)由于工资为10 000元时,要分三种情况进行讨论:①工资小于等于4 500元;②工资大于4 500元但小于等于7 500元;③工资大于7 500元小于10 000元.解:(1)李工程师每月纳税:1 500×5%+3 000×10%+(8 000-7 500)×20%=75+300+100=475(元)(2)设该纳税人的月工薪为x元,则当x≤4 500时,显然纳税金额达不到月工薪的8%.当4 500<x≤7 500时,由1 500×5%+(x-4 500)×10%>8%x,得x>18 750,不满足条件.当7 500<x≤10 000时,由1 500×5%+3 000×10%+(x-7 500)×20%>8%x,解得x>9 375,故9 375<x≤10 000.答:若该纳税人月工薪大于9 375元且不超过10 000元时,他的纳税金额能超过月工薪的8%.方法归纳本题涉及的数学思想是分类思想.解题时分类讨论是解决问题的关键.考向二图象信息问题图象信息问题涉及的知识点主要是函数问题.解答时要注意分析图象中特殊“点”反映的信息.【例2】在一条直线上依次有A,B,C三个港口,甲、乙两船同时分别从A,B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1,y2(km),y1,y2与x的函数关系如图所示.(1)填空:A ,C 两港口间的距离为__________ km ,a =__________;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.分析:根据函数图象,容易发现A ,B ,C 三港口位置示意图如下:图象中点P 表示当甲到达B 港口后再经过一段时间,甲、乙二船与B 港口的距离相等,因此可以有两种解法,一种是利用函数解析式来求交点坐标;另一种则是利用追及问题一般方法来解,设甲船追上乙船时,用了t 小时,则可知甲船t 小时比乙船多行了30 km ,由图容易知道甲、乙两船的速度分别是60 km/h,30 km/h ,于是可列方程60t =30t +30轻松求解.对于第(3)小题,应该通过分类讨论来解决问题.解:(1)120 2(2)由点(3,90)求得,y 2=30x .当x >0.5时,由点(0.5,0),(2,90)求得y 1=60x -30.当y 1=y 2时,60x -30=30x ,解得x =1.此时y 1=y 2=30.所以点P 的坐标为(1,30).该点坐标的意义为:两船出发1 h 后,甲船追上乙船,此时两船离B 港的距离为30 km. 求点P 的坐标的另一种方法:由图可得,甲的速度为300.5=60(km/h), 乙的速度为903=30(km/h). 则甲追上乙所用的时间为3060-30=1(h). 此时乙船行驶的路程为30×1=30(km).所以点P 的坐标为(1,30).(3)①当x ≤0.5时,由点(0,30),(0.5,0)求得,y 1=-60x +30.依题意,(-60x +30)+30x ≤10.解得x ≥23,不合题意. ②当0.5<x ≤1时,依题意,30x -(60x -30)≤10.解得x ≥23.所以23≤x ≤1. ③当x >1时,依题意,(60x -30)-30x ≤10.解得x ≤43.所以1<x ≤43. 综上所述,当23≤x ≤43时,甲、乙两船可以相互望见. 方法归纳 本题涉及数形结合、分类讨论的数学思想.解题的关键是确定三个港口的位置.难点是对P 点的含义理解.考向三 图表综合问题图表综合问题主要分布于统计之中.解题时注意将图表中的信息综合在一起分析解答.【例3】某市“希望”中学为了了解学生“大间操”的活动情况,在七、八、九年级的学生中,分别抽取相同数量的学生对“你最喜欢的运动项目”进行调查(每人只能选一项).调查结果的部分数据如下表(图)所示,其中七年级最喜欢跳绳的人数比八年级多5人,九年级最喜欢排球的人数为10.九年级学生最喜欢的运动项目人数统计图请根据统计表(图)解答下列问题:(1)本次调查抽取了多少名学生?(2)补全统计表和统计图,并求出“最喜欢跳绳”的学生占抽样总人数的百分比;(3)该校共有学生1 800人,学校想对“最喜欢踢毽”的学生每4人提供一个毽子,那么学校在“大间操”时至少应提供多少个毽子?分析:(1)因为三个年级都抽取了相同数量的学生,所以只需算出一个年级抽取的学生数即可;(2)根据(1)补充完整表格与统计图;(3)至少应提供的毽子个数=该校学生总人数乘以最喜欢踢毽人数所占的比例再除以4.解:(1)10÷20%=50(人),50×3=150(人).(2)排球九年级学生最喜欢的运动项目人数统计图“最喜欢跳绳”的学生占抽样总人数的百分比为22%.(3)14+13+15150×1 800÷4=126(个). 方法归纳 本题考查了统计图、统计表及根据样本估计总体,也是考查统计知识常见题型.解题时读懂图表并将图表信息综合考虑是关键.一、选择题1.某住宅小区6月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是( )A .30吨B .31吨C .32吨D .33吨2.(2011浙江台州)如图,反比例函数y =m x的图象与一次函数y =kx +b 的图象交于点M ,N ,已知点M 的坐标为(1,3),点N 的纵坐标为-1,根据图象信息可得关于x 的方程m x=kx +b 的解为( )A .-3,1B .-3,3C .-1,1D .3,-1二、填空题3.上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为__________.4.某村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%三、解答题5.2012年5月20日是第23个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物质量的最大值.6.如图①,A,B,C三个容积相同的容器之间有阀门连接,从某一时刻开始,打开A 容器阀门,以4升/分的速度向B容器内注水5分钟,然后关闭,接着打开B容器阀门,以10升/分的速度向C容器内注水5分钟,然后关闭.设A,B,C三个容器内的水量分别为y A,y B,y C(单位:升),时间为t(单位:分).开始时,B容器内有水50升,y A,y C与t的函数图象如图②所示.请在0≤t≤10的范围内解答下列问题:图① 图② (1)求t =3时,y B 的值;(2)求y B 与t 的函数关系式,并在图②中画出其函数图象;(3)求y A :y B :y C =2:3:4时t 的值.7.某企业为重庆计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y 1(元)与月份x (1≤x ≤9,且x 取整数)y 2(元)与月份x (10≤x ≤12,且x 取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y 1与x 之间的函数关系式,根据如图所示的变化趋势,直接写出y 2与x 之间满足的一次函数关系式;(2)若去年该配件每件的售价为1 000元,生产每件配件的人力成本为50元,其他成本30元,该配件在1至9月的销售量p 1(万件)与月份x 满足关系式p 1=0.1x +1.1(1≤x ≤9,且x 取整数),10至12月的销售量p 2(万件)与月份x 满足关系式p 2=-0.1x +2.9(10≤x ≤12,且x 取整数),求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其他成本没有变化,该企业将每件配件的售价在去年的基础上提高a %,与此同时每月销售量均在去年12月的基础上减少0.1a %.这样,在保证每月上万件配件销量的前提下,完成1至5月的总利润1 700万元的任务,请你参考以下数据,估算出a 的整数值.(参考数据:992=9 801,982=9 604,972=9 409,962=9 216,952=9 025)参考答案专题提升演练1.C 根据平均数公式可得这5天平均每天的用水量是30+32+36+28+345=32(吨). 2.A 把M 点的坐标代入y =m x ,求得m =3,所以得y =3x ,再把y =-1代入y =3x求得x =-3,故关于x 的方程m x=kx +b 的解为x =-3,或1. 3.431.76 cm 由图可知,正六边形的对角线长为60 cm ,则其半径为30 cm ,边心距为15 3 cm ,故所需胶带长度至少为153×12+20×6≈431.76(cm).4.0.54-0.002n (填0.5+[9-(n -2)×0.5]×0.4%)关键是要理解付款的方式,第一年还掉3万元后,第二年付0.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n 年都是要还0.5万元和剩下的[9-(n -2)·0.5]万元的利息,可列式:0.5+[9-(n -2)×0.5]×0.4%,化简可知第n 年应还款(0.54-0.002n )万元.5.解:(1)400×5%=20(克).答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得:x +4x +20+400×40%=400,∴x =44,∴4x =176.答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y 克,则所含碳水化合物的质量为(380-5y )克,∴4y +(380-5y )≤400×85%,∴y ≥40,∴380-5y ≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为n 克,则n ≥(1-85%-5%)×400,∴n ≥40,∴4n ≥160,∴400×85%-4n ≤180,∴所含碳水化合物质量的最大值为180克.6.解:(1)当t =3时,y B =50+4×3=62(升).(2)根据题意,当0≤t ≤5时,y B =50+4t .当5<t ≤10时,y B =70-10(t -5)=-10t +120.y B 与t 的函数图象如图所示.图②(3)根据题意,设y A =2x ,y B =3x ,y C =4x . 2x +3x +4x =50+60+70.解得x =20.∴y A =2x =40,y B =3x =60,y C =4x =80.由图象可知,当y A =40时,5≤t ≤10,此时y B =-10t +120,y C =10t +20.∴-10t +120=60,解得t =6.10t +20=80,解得t =6.∴当t =6时,y A :y B :y C =2:3:4.7.解:(1)y 1与x 之间的函数关系式为y 1=20x +540,y 2与x 之间满足的一次函数关系式为y 2=10x +630.(2)去年1至9月时,销售该配件的利润w =p 1(1 000-50-30-y 1)=(0.1x +1.1)(1 000-50-30-20x -540)=(0.1x +1.1)(380-20x )=-2x 2+16x +418=-2(x -4)2+450,(1≤x ≤9,且x 取整数)∵-2<0,1≤x ≤9,∴当x =4时,w 最大=450(万元);去年10至12月时,销售该配件的利润w =p 2(1 000-50-30-y 2) =(-0.1x +2.9)(1 000-50-30-10x -630)=(-0.1x +2.9)(290-10x )=(x -29)2,(10≤x ≤12,且x 取整数) 当10≤x ≤12时,∵x <29,∴自变量x 增大,函数值w 减小, ∴当x =10时,w 最大=361(万元),∵450>361,∴去年4月份销售该配件的利润最大,最大利润为450万元.(3)去年12月份销售量为:-0.1×12+2.9=1.7(万件),今年原材料的价格为:750+60=810(元),今年人力成本为:50×(1+20%)=60(元),由题意,得5×[1 000(1+a %)-810-60-30]×1.7(1-0.1a %)=1 700,设t =a %,整理,得10t 2-99t +10=0,解得t =99±9 40120, ∵972=9 409,962=9 216,而9 401更接近9 409,∴9 401≈97.∴t 1≈0.1或t 2≈9.8,∴a 1≈10或a 2≈980.∵1.7(1-0.1a %)≥1,∴a 2≈980舍去,∴a ≈10.答:a 的整数值为10.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
1 2012年中考数学阅读理解题专题复习 1、我们常用的数是十进制数,计算机程序使用的是二进制数 (只有数码0和1),它们两者之间可以互相换算,如将(101)2, (1011)2换算成十进制数应为:
5104212021)101(0122
1121212021)1011(01232 按此方式,将二进制(1001)2换算成十进制数的结果是_______________.
2、刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(b,a)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-2,-3)放入其中,得到实数是 .
3、因为cos30°=3 2 ,cos210°=﹣ 3 2 ,所以cos210°=cos(180°+30°)=﹣cos30°=﹣ 3 2 ,因为cos45°= 2 2 ,cos225°=﹣2 2 ,所以cos225°=cos(180°+45°)=
﹣2 2 ,猜想:一般地,当α为锐角时,有cos(180°+α)=﹣cosα,由此可知cos240°的值等于 .
4、先阅读下列材料,然后解答问题: 材料1:从三张不同的卡片中选出两张排成一列,有6种不同的排法,抽象成数学问题 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
2 就是从3个不同的元素中选取2个元素的排列,排列数记为23326A。 一般地,从n个不同的元素中选取m个元素的排列数记作mnA。 (1)(2)(3)(1)mnAnnnnnm (m≤n)
例:从5个不同的元素中选取3个元素排成一列的排列数为:3554360A。 材料2:从三张不同的卡片中选取两张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数为 2332321C。 错误!未找到引用源。例:从6个不同的元素选3个元素的组合数为:36
65420321C
。
问:(1)从某个学习小组8人中选取3人参加活动,有多少种不同的选法? (2)从7个人中选取4人,排成一列,有多少种不同的排法?
5、阅读理解:我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为(x1+x22,y1+y22). 观察应用: (1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为 ; (2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4
关于点A的对称点P5处,„.则P3、P8的坐标分别为 , ; 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
3 6、关于三角函数有如下的公式:
利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如 根据上面的知识,你可以选择适当的公式解决下面实际问题:
如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α为60°,底端C点的俯角β为75°,此时直升飞机与建筑物CD的水平距离BC为42米,求建筑物CD的高。
7、符号“abcd”称为二阶行列式,规定它的运算法则为:abadbccd,请你根据上述规定求出下列等式中x的值. 2111111xx 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
4 8、阅读理解:对于任意正实数a、b,∵2()ab≥0, ∴2aabb≥0,∴ab≥2ab,只有当a=b时,等号成立.
结论:在ab≥2ab(a、b均为正实数)中,若ab为定值p,则a+b≥2p,只有当a=b时,a+b有最小值2p.
根据上述内容,回答下列问题: 若m>0,只有当m= 时,1mm有最小值 . 思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b. 试根据图形验证ab≥2ab,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线xy12(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状. 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
5 9、为了求20083222221的值,可令S=20083222221,则2S=200943222222 ,因此2S-S=122009,所以20083222221=
122009仿照以上推理计算出20093255551的值是( )
A.152009 B.152010 C.4152009 D.4152010
10、阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)ykxbk的图象为直线1l,一次函数222(0)ykxbk的图象为直线2l,若12kk,且12bb,我们就称直线1l与直线2l互相平行. 解答下面的问题: (1)求过点(1,4)P且与已知直线21yx平行的直线l的函数表达式,并画出直线l 的图象; (2)设直线l分别与y轴、x轴交于点A、B,如果直线m:(0)ykxtt与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式. y
x O
2 4 6 2 4
6
-2
-2 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
6 11、阅读下列材料,然后回答问题. 在进行二次根式运算时,我们有时会碰上如3223531、、一样的式子,其实我们还可以将其进一步化简: 335355555
; (Ⅰ)
22363333
(Ⅱ)
2222312(31)3131(31)(31)(3)1(). (Ⅲ)
以上这种化简的步骤叫做分母有理化. 231还可以用以下方法化简:
22231(3)1(31)(31)3131313131
. (Ⅳ)
(1)请用不同的方法化简253. ①参照(Ⅲ)式得253=___________________________________________. ②参照(Ⅳ)式得253=___________________________________________. (2)化简:11113153752121nn…. 惠州市学大信息技术有限公司 Huizhou XueDa Century Education Technology Ltd.
7 12、先阅读下列材料,然后解答问题: 从ABC,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取
2个元素组合,记作2332C321.
一般地,从m个元素中选取n个元素组合,记作:(1)(1)C(1)321nmmmmnnn 例:从7个元素中选5个元素,共有5776543C2154321种不同的选法. 问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.
13、阅读下列材料,并解决后面的问题. 材料:一般地,n个相同的因数a相乘:nnaaaa记为个.如23=8,此时,3叫做以
2为底8的对数,记为38log8log22即. 一般地,若0,10baaban且,则n叫做以a为底b的对数,记为813.loglog4如即nbb
aa,则4叫做以3为底81的对数,记为
)481log(81log33即.
问题:(1)计算以下各对数的值:(3分) 64log16log4log222 .
(2)观察(1)中三数4、16、64之间满足怎样的关系式?64log16log4log222、、 之间又满足怎样的关系式?(2分)
(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2分) 0,0,10loglogNMaaNMaa且
(4)根据幂的运算法则:mnmnaaa以及对数的含义证明上述结论.(3分)