4.3三角函数的图像和性质高考数学

合集下载

高中数学三角函数的图像与性质优秀课件

高中数学三角函数的图像与性质优秀课件

1
2 3
2
2
1 2
3 2
2
y cos x,x R
3 2
2
正、余弦函数的性质
y
2
sin
1 2
x
4
④周期性:形如y Asin x 或y Aco1sx 的
函数的周期T 2 .
2 1
3 2 5 3 7 4
2
2
2
2
y sin 2x 1
1
2 3 2
2 1
2
3 2
例1:已知函数y
Asin x A
0,
0,
2
,x
R
的部分图像,求函数解析式.
解:由图知A 2.
又 T 3 1 2,故T 8, 即 2 8, .
4
4
令 1 = 得= .
4
2
4
综上得,y
2sin
4
x
4
.
例2:函数f
x
Asin
x
0,
2
,x
R
的部分图像如图,则函数表达式为(
x
0
4
3
2
4
2x
0
3
2
2
2
y sin 2x
0
1
0
1
0
五点:0,0, 4 ,1, 2 ,0,
3
4
,1,,0.
1
3 2
2 1 2
2
五点作图法
例1:用“五点法”作y
2sin
1 2
x
4
,x
2
,7 2
的图像.
x
3
5
7
2
2

高中数学三角函数及反三角函数图像性质、知识点总结

高中数学三角函数及反三角函数图像性质、知识点总结

高中数学三角函数及反三角函数图像性质、知识点总结高中数学中,三角函数及反三角函数是重要的内容之一。

在学习这一部分知识时,需要掌握其图像性质以及相关的知识点。

下面将对这些内容进行总结。

一、三角函数的图像性质1. 正弦函数(sin)的图像性质:- 周期性:sin函数的周期为2π,即在每个周期内,函数的图像重复出现;- 奇函数性质:sin函数关于原点对称;- 取值范围:sin函数的取值范围为[-1,1],即函数的值始终在该区间内波动。

2. 余弦函数(cos)的图像性质:- 周期性:cos函数的周期为2π;- 偶函数性质:cos函数关于y轴对称;- 取值范围:cos函数的取值范围也为[-1,1]。

3. 正切函数(tan)的图像性质:- 周期性:tan函数的周期为π;- 奇函数性质:tan函数关于原点对称;- 无界性:tan函数的值域为实数集,即函数在某些点无界。

二、三角函数的知识点1. 基本正弦函数的性质:- 特殊角的正弦值:0°、90°、180°、270°和360°对应的正弦值分别为0、1、0、-1和0;- 正弦函数的增减性:在0°到180°的区间上,sin函数是单调递增的;- 正弦函数的奇偶性:sin(-x)=-sin(x),即sin函数关于原点对称。

2. 基本余弦函数的性质:- 特殊角的余弦值:0°、90°、180°、270°和360°对应的余弦值分别为1、0、-1、0和1;- 余弦函数的增减性:在0°到180°的区间上,cos函数是单调递减的;- 余弦函数的奇偶性:cos(-x)=cos(x),即cos函数关于y轴对称。

3. 基本正切函数的性质:- 特殊角的正切值:0°、90°、180°和270°对应的正切值分别为0、无穷大、0和无穷大;- 正切函数的周期性:tan(x+π)=tan(x),即tan函数的周期是π。

高考数学:专题二 第一讲 三角函数的图像和性质课件

高考数学:专题二 第一讲 三角函数的图像和性质课件

题型与方法
变式训练 1 已知点
Psin
第一讲
3π 3π 落在角 θ 的终边上,且 ,cos 4 4 ( D ) 5π C. 4 7π D. 4
θ∈[0,2π),则 θ 的值为 π 3π A. B. 4 4 本
讲 3π π 2 栏 目 解析 ∵sin 4 =sin 4= 2 , 开 2 3π π 2 关
答案 A
考点与考题
第一讲
3.(2012· 浙江)把函数 y=cos 2x+1 的图象上所有点的横坐标伸 长到原来的 2 倍(纵坐标不变), 然后向左平移 1 个单位长度, 再向下平移 1 个单位长度,得到的图象是
本 讲 栏 目 开 关
(
)
考点与考题
第一讲
本 讲 栏 目 开 关
解析 利用三角函数的图象与变换求解. 横坐标伸长2倍 y=cos 2x+1―――――――→ 纵坐标不变 向左平移1个单位长度 y=cos x+1――――――――――→ 向下平移1个单位长度 y=cos(x+1)+1――――――――――→
∴ω=6n(n∈N*),
∴当 n=1 时,ω 取得最小值 6.
考点与考题
第一讲
2.(2011· 天津)已知函数 f(x)=2sin(ωx+φ),x∈R,其中 ω>0, π -π<φ≤π.若 f(x)的最小正周期为 6π,且当 x= 时,f(x)取 2
本 讲 栏 目 开 关
得最大值,则 A.f(x)在区间[-2π,0]上是增函数 B.f(x)在区间[-3π,-π]上是增函数 C.f(x)在区间[3π,5π]上是减函数 D.f(x)在区间[4π,6π]上是减函数
2π 由点 M 3 ,-2在函数 f(x)的图象上得, 2π 4π 2× +φ=-2,即 sin +φ=-1. 2sin 3 3

高考数学重难点解析 三角函数的图像及性质

高考数学重难点解析 三角函数的图像及性质

三角函数的图像与性质【考纲说明】1.能画出y=sin x, y=cos x, y=tan x 的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最 小值、周期性、图像与x 轴交点等);3.结合具体实例,了解)sin(ϕω+=x y 的实际意义;【知识梳理】一、三角函数的图像与性质1 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k k πππ-∈Z 上在,22k k ππππ⎛⎫-+⎪⎝⎭函 数性 质2、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的性质振幅:A ;最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ; 其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

二、三角函数图像的变换1、五点法作y=Asin (ωx+ϕ)的简图: 五点取法是设t=ωx+ϕ,由t 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。

五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).2、三角函数的图像变换三角函数的图象变换有振幅变换、周期变换和相位变换等. 由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象。

高中数学:三角函数的图像与性质

高中数学:三角函数的图像与性质

高中数学:三角函数的图像与性质
高考在三角函数图象与性质的考查力度上近几年有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主.主要考查数学抽象、数学运算和逻辑推理素养.在解题过程中,要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,选择合理的解决方法,灵活地实现问题的转化。

高考数学复习讲义:三角函数的图象与性质

高考数学复习讲义:三角函数的图象与性质

2
突破点二 三角函数的性质
3
课时跟踪检测
返回
突破点一 三角函数的定义域和值域
返回
抓牢双基·自学回扣
[基本知识]
三角
余弦函数 y=
正弦函数 y=sin x
正切函数 y=tan x
函数
cos x
图象
定义 R

{ x| x∈R ,且 x
R

kπ+π2
,k∈Z
返回
三角 函数 值域
正弦函数 y=sin x
()
返回
二、填空题
1.y= 2sin x- 2的定义域为________________________.
解析:要使函数式有意义,需2sin
x-
2≥0,即sin
x≥
2 ,借 2
助正弦函数的图象(图略),可得 π4 +2kπ≤x≤34π +2kπ,k∈Z,所
以该函数的定义域是π4+2kπ,34π+2kπ(k∈Z).
换元法 asin xcos x+b(sin x±cos x)+c的三角函数,可先设t =sin x±cos x,化为关于t的二次函数求值域(最值)
返回
[集训冲关]
1.[考法一]函数y=log2(sin x)的定义域为________.
解析:根据题意知sin x>0,得x∈(2kπ,2kπ+π)(k∈Z).
(2)依题意,f(x)=sin2x+ 3cos x-34=-cos2x+ 3cos x
+14=-cos x- 232+1, 因为 x∈0,π2,所以 cos x∈[0,1],
因此当 cos x= 23时,f(x)max=1.
返回
(3)设t=sin x-cos x, 则t2=sin2x+cos2x-2sin xcos x, 即sin xcos x=1-2 t2,且-1≤t≤ 2. ∴y=-t22+t+12=-12(t-1)2+1. 当t=1时,ymax=1;当t=-1时,ymin=-1. ∴函数的值域为[-1,1]. [答案] (1)B (2)1 (3)[-1,1]

专题4.3三角函数的图象与性质(2021年高考数学一轮复习专题)

专题 三角函数的图象与性质一、题型全归纳题型一 三角函数的定义域【题型要点】三角函数定义域的求法(1)以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域. (2)转化为求解简单的三角不等式来求复杂函数的定义域.【例1】(2020·昆山一中模拟)1.函数y =lg(3tan x -3)的定义域为 .【答案】:Z k k k ∈⎪⎭⎫⎝⎛++,2,6ππππ【解析】:要使函数y =lg(3tan x -3)有意义,则3tan x -3>0,即tan x >33.所以π6+k π<x <π2+k π,k ∈Z . 【例2】函数y =cos x -12的定义域为 .【答案】 ⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ【解析】 要使函数有意义,则cos x -12≥0,即cos x ≥12,解得-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎭⎬⎫⎩⎨⎧∈+≤≤+-Z k k x k x ,2323ππππ. 题型二 三角函数的单调性命题角度一 确定三角函数的单调性(单调区间)【题型要点】求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.【易错提醒】要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定要先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.【例1】(2020·广东省七校联考)函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是( ) A.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,342,322ππππ B.Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡+-,344,324ππππ D.Z k k k ∈⎪⎭⎫ ⎝⎛+-,344,324ππππ 【解析】:由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎪⎭⎫⎝⎛-62πx 的单调递增区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,342,322ππππ,故选B. 【例2】.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎪⎭⎫⎝⎛24ππ,单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |【解析】A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递增,故A正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎪⎭⎫ ⎝⎛24ππ,时,2x ∈⎪⎭⎫⎝⎛ππ,2,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cos x 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.命题角度二 利用三角函数的单调性比较大小利用单调性比较大小的方法:首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.【例3】已知函数f (x )=2sin ⎪⎭⎫⎝⎛+3πx ,设a =⎪⎭⎫⎝⎛7πf ,b =⎪⎭⎫⎝⎛6πf ,c =⎪⎭⎫⎝⎛3πf ,则a ,b ,c 的大小关系是( ) A .a <c <b B .c <a <b C .b <a <cD .b <c <a【解析】 a =⎪⎭⎫⎝⎛7πf =2sin 10π21,b =⎪⎭⎫⎝⎛6πf =2sin π2=2,c =⎪⎭⎫⎝⎛3πf =2sin 2π3=2sin π3, 因为y =sin x 在⎥⎦⎤⎢⎣⎡20π,上单调递增,且π3<10π21<π2,所以c <a <b .命题角度三 已知三角函数的单调区间求参数【题型要点】已知函数单调性求参数——明确一个不同,掌握两种方法(1)明确一个不同:“函数f (x )在区间M 上单调”与“函数f (x )的单调区间为N ”两者的含义不同,显然M 是N 的子集.(2)抓住两种方法.已知函数在区间M 上单调求解参数问题,主要有两种方法:一是利用已知区间与单调区间的子集关系建立参数所满足的关系式求解;二是利用导数,转化为导函数在区间M 上的保号性,由此列不等式求解.【例4】(2020·湖南师大附中3月月考)若函数f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx 在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,则正数ω的最大值为( ) A.18 B.16 C.14D .13【解析】 法一:因为f (x )=23sin ωx cos ωx +2sin 2ωx +cos 2ωx =3sin 2ωx +1在区间⎥⎦⎤⎢⎣⎡2323-ππ,上单调递增,所以⎩⎨⎧-3ωπ≥-π2,3ωπ≤π2.解得ω≤16,所以正数ω的最大值是16.故选B.法二:易知f (x )=3sin 2ωx +1,可得f (x )的最小正周期T =πω,所以⎩⎨⎧-π4ω≤-3π2,π4ω≥3π2,解得ω≤16.所以正数ω的最大值是16.故选B.命题角度四 利用三角函数的单调性求值域(最值)【题型要点】1.三角函数值域的求法 (1)利用y =sin x 和y =cos x 的值域直接求.(2)把所给的三角函数式变换成y =A sin(ωx +φ)+b (或y =A cos(ωx +φ)+b )的形式求值域. (3)把sin x 或cos x 看作一个整体,将原函数转换成二次函数求值域. (4)利用sin x ±cos x 和sin x cos x 的关系将原函数转换成二次函数求值域. 2.换元法求三角函数的值域(最值)的策略(1)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值). (2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例5】 (2019·高考全国卷Ⅱ)函数f (x )=sin ⎪⎭⎫⎝⎛+32πx -3cos x 的最小值为 . 【解析】 f (x )=sin(2x +3π2)-3cos x =-cos 2x -3cos x =1-2cos 2x -3cos x =-2243cos ⎪⎭⎫ ⎝⎛+x +178,因为cosx ∈[-1,1],所以当cos x =1时,f (x )取得最小值,f (x )min =-4.【例6】(2020·河北省中原名校联盟联考)若函数f (x )=3sin ⎪⎭⎫⎝⎛+10πx -2在区间⎥⎦⎤⎢⎣⎡a ,2π上单调,则实数a 的最大值是 .【解析】:法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎥⎦⎤⎢⎣⎡5752ππ,上单调递减,所以a 的最大值为7π5.法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10,而f (x )在⎥⎦⎤⎢⎣⎡a ,2π上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5.题型三 三角函数的周期性与奇偶性【题型要点】(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的最小正周期为2πω,函数y =A tan(ωx +φ)(ω>0)的最小正周期为πω求解.【例1】(2020·湖北宜昌联考)已知函数y =2sin(ωx +θ)(0<θ<π)为偶函数,其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,则( ) A .ω=2,θ=π2 B .ω=12,θ=π2 C .ω=12,θ=π4D .ω=2,θ=π4【答案】因为函数y =2sin(ωx +θ)的最大值为2,且其图象与直线y =2的某两个交点的横坐标分别为x 1,x 2,|x 2-x 1|的最小值为π,所以函数y =2sin(ωx +θ)的最小正周期是π. 由2πω=π得ω=2.因为函数y =2sin(ωx +θ)为偶函数,所以θ=π2+k π,k ∈Z . 又0<θ<π,所以θ=π2,故选A.【例2】(2020·石家庄市质量检测)设函数f (x )=sin ⎪⎭⎫ ⎝⎛-+4πϕωx ⎪⎭⎫⎝⎛<>2,0πϕω的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎪⎭⎫⎝⎛20π,上单调递增 B .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递减 C .f (x )在⎪⎭⎫⎝⎛20π,上单调递减 D .f (x )在⎪⎭⎫⎝⎛22-ππ,上单调递增 【解析】:.f (x )=sin ⎪⎭⎫⎝⎛-+4πϕωx ,因为f (x )的最小正周期为π,所以ω=2,所以f (x )=sin ⎪⎭⎫ ⎝⎛-+42πϕx .f (-x )=f (x ),即f (x )为偶函数,所以φ-π4=k π+π2(k ∈Z ),所以φ=k π+3π4(k ∈Z ).因为|φ|<π2,所以φ=-π4,所以f (x )=-cos 2x ,所以f (x )在⎪⎭⎫ ⎝⎛20π,上单调递增,在⎪⎭⎫⎝⎛02-,π上单调递减,故选A. 题型四 三角函数的对称性【题型要点】对称中心的求解思路和方法(1)思路:函数y =A sin(ωx +φ)图象的对称轴和对称中心可结合y =sin x 图象的对称轴和对称中心求解. (2)方法:利用整体代换的方法求解,令ωx +φ=k π+π2,k ∈Z ,解得x =(2k +1)π-2φ2ω,k ∈Z ,即对称轴方程;令ωx +φ=k π,k ∈Z ,解得x =k π-φω,k ∈Z ,即对称中心的横坐标(纵坐标为0).对于y =A cos(ωx +φ),y =A tan(ωx +φ),可以利用类似方法求解(注意y =A tan(ωx +φ)的图象无对称轴).【例1】(2020·北京西城区模拟)函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是( )A.⎪⎭⎫⎝⎛13,π B.⎪⎭⎫ ⎝⎛012,π C.⎪⎭⎫ ⎝⎛0125,π D .⎪⎭⎫⎝⎛012-,π 【解析】 由题意可得2πω=π,所以ω=2,可得f (x )=A sin(2x +φ),再由函数图象关于直线x =π3对称,故⎪⎭⎫ ⎝⎛3πf =A sin ⎪⎭⎫⎝⎛+ϕπ32=±A ,故可取φ=-π6. 故函数f (x )=A sin ⎪⎭⎫⎝⎛-62πx ,令2x -π6=k π,k ∈Z , 可得x =k π2+π12,k ∈Z ,故函数的对称中心为⎪⎭⎫⎝⎛+0122,ππk ,k ∈Z . 所以函数f (x )图象的一个对称中心是⎪⎭⎫⎝⎛012,π. 【例2】已知函数f (x )=|sin x ||cos x |,则下列说法错误的是( )A .f (x )的图象关于直线x =π2对称B .f (x )的周期为π2C .(π,0)是f (x )的一个对称中心D .f (x )在区间⎥⎦⎤⎢⎣⎡24ππ,上单调递减【解析】:f (x )=|sin x ||cos x |=|sin x cos x |=12·|sin 2x |,则⎪⎭⎫ ⎝⎛2πf =12|sin π|=0,则f (x )的图象不关于直线x =π2对称,故A 错误;函数周期T =12×2π2=π2,故B 正确;f (π)=12|sin 2π|=0,则(π,0)是f (x )的一个对称中心,故C 正确;当x ∈⎥⎦⎤⎢⎣⎡24ππ,时,2x ∈⎥⎦⎤⎢⎣⎡ππ,2,此时sin 2x >0,且sin 2x 为减函数,故D 正确.题型五 三角函数的图象与性质的综合问题【题型要点】解决三角函数图象与性质综合问题的方法先将y =f (x )化为y =a sin x +b cos x 的形式,然后用辅助角公式化为y =A sin(ωx +φ)的形式,再借助y =A sin(ωx +φ)的性质(如周期性、对称性、单调性等)解决相关问题.【例1】 已知函数f (x )=2sin ⎪⎭⎫⎝⎛-42πx . (1)求函数的最大值及相应的x 值的集合;(2)求函数f (x )的图象的对称轴方程与对称中心.【解析】:(1)当sin ⎪⎭⎫⎝⎛-42πx =1时,2x -π4=2k π+π2,k ∈Z , 即x =k π+3π8,k ∈Z ,此时函数取得最大值为2;故f (x )的最大值为2,使函数取得最大值的x 的集合为⎭⎬⎫⎩⎨⎧∈+=Z k k x x ,83ππ(2)由2x -π4=π2+k π,k ∈Z ,得x =3π8+12k π,k ∈Z .即函数f (x )的图象的对称轴方程为x =3π8+12k π,k ∈Z .由2x -π4=k π,k ∈Z 得x =π8+12k π,k ∈Z ,即对称中心为⎪⎭⎫⎝⎛+0,28ππk k ∈Z . 【例2】已知函数f (x )=sin(2π-x )·sin ⎪⎭⎫⎝⎛x -23π-3cos 2x + 3.(1)求f (x )的最小正周期和图象的对称轴方程;(2)当x ∈⎣⎡⎦⎤0,7π12时,求f (x )的最小值和最大值. 【解析】 (1)由题意,得f (x )=(-sin x )(-cos x )-3cos 2x +3=sin x cos x -3cos 2x +3=12sin 2x -32(cos 2x +1)+3=12sin 2x -32cos 2x +32=sin ⎪⎭⎫ ⎝⎛3-2πx +32, 所以f (x )的最小正周期T =2π2=π;令2x -π3=k π+π2(k ∈Z ),则x =k π2+5π12(k ∈Z ),故所求图象的对称轴方程为x =k π2+5π12(k ∈Z ).(2)当0≤x ≤7π12时,-π3≤2x -π3≤5π6,由函数图象(图略)可知,-32≤sin ⎪⎭⎫ ⎝⎛3-2πx ≤1,即0≤sin(2x -π3)+32≤2+32. 故f (x )的最小值为0,最大值为2+32.二、高效训练突破 一、选择题1.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎪⎭⎫⎢⎣⎡20π, B.⎥⎦⎤⎝⎛ππ,2 C.⎪⎭⎫⎢⎣⎡23ππ, D .⎥⎦⎤ ⎝⎛ππ223, 【解析】:法一:由题意得⎩⎪⎨⎪⎧tan x ≥0,-cos x ≥0,x ∈[0,2π],x ≠k π+π2,k ∈Z ,所以函数y 的定义域为⎪⎭⎫⎢⎣⎡23ππ,.故选C.法二:当x =π时,函数有意义,排除A ,D ;当x =5π4时,函数有意义,排除B.故选C.2.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0B .3C .-1D .-2【解析】:因为f (b )=tan b +sin b +1=2,即tan b +sin b =1. 所以f (-b )=tan(-b )+sin(-b )+1=-(tan b +sin b )+1=0.3.已知函数f (x )=cos 2x +sin 2⎪⎭⎫ ⎝⎛+6πx ,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-12【解析】:.f (x )=1+cos 2x 2+1-cos ⎝⎛⎭⎫2x +π32=12+12cos 2x +12-12⎝⎛⎭⎫cos 2x cos π3-sin 2x sin π3=14cos 2x +34sin 2x +1=12sin⎪⎭⎫ ⎝⎛+62πx +1,则f (x )的最小正周期为π,最小值为-12+1=12,最大值为12+1=32. 4.(2020·福州市第一学期抽测)已知函数f (x )=sin 2x +2sin 2x -1在[0,m ]上单调递增,则m 的最大值是( ) A.π4 B.π2 C.3π8D .π【解析】:由题意,得f (x )=sin 2x -cos 2x =2sin⎪⎭⎫ ⎝⎛4-2πx ,由-π2+2k π≤2x -π4≤π2+2k π(k ∈Z ), 解得-π8+k π≤x ≤3π8+k π(k ∈Z ),当k =0时,-π8≤x ≤3π8,即函数f (x )在⎥⎦⎤⎢⎣⎡838-ππ,上单调递增.因为函数f (x )在[0,m ]上单调递增,所以0<m ≤3π8,即m 的最大值为3π8,故选C.5.若⎪⎭⎫⎝⎛08,π是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( ) A .2 B .4 C .6D .8【解析】:因为f (x )=sin ωx +cos ωx =2sin ⎪⎭⎫ ⎝⎛+4πωx ,由题意,知⎪⎭⎫ ⎝⎛8πf =2sin ⎪⎭⎫ ⎝⎛+48πωπ=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6. 6.关于函数y =tan(2x -π3),下列说法正确的是( )A .是奇函数B .在区间(0,π3)上单调递减C .(π6,0)为其图象的一个对称中心 D .最小正周期为π【解析】:函数y =tan(2x -π3)是非奇非偶函数,A 错;在区间(0,π3)上单调递增,B 错;最小正周期为π2,D错;由2x -π3=k π2,k ∈Z 得x =k π4+π6,当k =0时,x =π6,所以它的图象关于(π6,0)中心对称,故选C.7.(2020·武汉市调研测试)已知函数f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在区间⎪⎭⎫ ⎝⎛80π,上单调递增,则ω的最大值为( ) A.12 B .1 C .2D .4【解析】:法一:因为x ∈⎪⎭⎫ ⎝⎛80π,,所以ωx +π4∈⎪⎭⎫ ⎝⎛+484πωππ,,因为f (x )=2sin ⎪⎭⎫ ⎝⎛+4πωx 在⎪⎭⎫ ⎝⎛80π,上单调递增,所以ωπ8+π4≤π2,所以ω≤2,即ω的最大值为2,故选C.法二:将选项逐个代入函数f (x )进行验证,选项D 不满足条件,选项A 、B 、C 满足条件f (x )在⎪⎭⎫⎝⎛80π,上单调递增,所以ω的最大值为2,故选C.8.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( ) A .当k =1,a =2时,f (sin A )<f (cos B ) B .当k =1,a =2时,f (cos A )>f (sin B ) C .当k =2,a =1时,f (sin A )>f (cos B ) D .当k =2,a =1时,f (cos A )>f (sin B )【解析】:A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin⎪⎭⎫ ⎝⎛-B 2π=cos B ,cos A <cos ⎪⎭⎫ ⎝⎛-B 2π=sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误; 当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cos B ),f (cos A )>f (sin B ),故C 错误,D 正确.9.已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .4【解析】:函数f (x )=sin ωx +3cos ωx =2sin ⎪⎭⎫ ⎝⎛+3πωx . 由f (α)=2,f (β)=2,且|α-β|的最小值是π2,所以函数f (x )的最小正周期T =π2,所以ω=2ππ2=4.10.(2020·江西八所重点中学联考)已知函数f (x )=2sin(ωx +φ)⎪⎭⎫⎝⎛<<<2,10πϕω的图象经过点(0,1),且关于直线x =2π3对称,则下列结论正确的是( )A .f (x )在⎥⎦⎤⎢⎣⎡3212ππ,上是减函数 B .若x =x 0是f (x )图象的对称轴,则一定有f ′(x 0)≠0 C .f (x )≥1的解集是⎥⎦⎤⎢⎣⎡+32,2πππk k ,k ∈Z D .f (x )图象的一个对称中心是⎪⎭⎫⎝⎛03-,π 【解析】:由f (x )=2sin(ωx +φ)的图象经过点(0,1),得sin φ=12,又|φ|<π2,所以φ=π6,则f (x )=2sin⎪⎭⎫ ⎝⎛+6πωx .因为f (x )的图象关于直线x =2π3对称,所以存在m ∈Z 使得2π3ω+π6=m π+π2,得ω=3m 2+12(m ∈Z ),又0<ω<1,所以ω=12,则f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx .令2n π+π2≤12x +π6≤2n π+3π2,n ∈Z ,得4n π+2π3≤x ≤4n π+8π3,n ∈Z ,故A 错误;若x =x 0是f (x )图象的对称轴,则f (x )在x =x 0处取得极值,所以一定有f ′(x 0)=0,故B 错误;由f (x )≥1得4k π≤x ≤4k π+4π3,k ∈Z ,故C 错误;因为⎪⎭⎫ ⎝⎛-3πf =0,所以⎪⎭⎫⎝⎛03-,π是其图象的一个对称中心,故D 正确.选D.二、填空题1.比较大小:sin ⎪⎭⎫ ⎝⎛18-π sin ⎪⎭⎫⎝⎛10-π. 【解析】:因为y =sin x 在⎥⎦⎤⎢⎣⎡02-,π上为增函数且-π18>-π10>-π2,故sin ⎪⎭⎫ ⎝⎛18-π>sin ⎪⎭⎫⎝⎛10-π. 2.已知函数f (x )=4sin⎪⎭⎫ ⎝⎛3-2πx ,x ∈[-π,0],则f (x )的单调递增区间是 . 【解析】:由-π2+2k π≤2x -π3≤π2+2k π(k ∈Z ),得-π12+k π≤x ≤5π12+k π(k ∈Z ),又因为x ∈[-π,0],所以f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡127--ππ,和⎥⎦⎤⎢⎣⎡012-,π 3.设函数f (x )=cos ⎪⎭⎫ ⎝⎛6-πωx (ω>0).若f (x )≤⎪⎭⎫ ⎝⎛4πf 对任意的实数x 都成立,则ω的最小值为 . 【解析】:由于对任意的实数都有f (x )≤⎪⎭⎫⎝⎛4πf 成立,故当x =π4时,函数f (x )有最大值,故⎪⎭⎫⎝⎛4πf =1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin =23. 4.若函数y =cos ⎪⎭⎫ ⎝⎛+6πωx (ω∈N *)图象的一个对称中心是⎪⎭⎫⎝⎛06,π,则ω的最小值为 . 【解析】:由题意知πω6+π6=k π+π2(k ∈Z )∈ω=6k +2(k ∈Z ),又ω∈N *,所以ωmin =2.5.(2020·无锡期末)在函数∈y =cos|2x |;∈y =|cos 2x |;∈y =cos⎪⎭⎫ ⎝⎛+62πx ;∈y =tan 2x 中,最小正周期为π的所有函数的序号为 .【解析】:∈y =cos|2x |=cos 2x ,最小正周期为π;∈y =cos 2x ,最小正周期为π,由图象知y =|cos 2x |的最小正周期为π2;∈y =cos⎪⎭⎫ ⎝⎛+62πx 的最小正周期T =2π2=π;∈y =tan 2x 的最小正周期T =π2.因此∈∈的最小正周期为π.6.已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .【解析】:由函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,可得ωπ-π6=k π+π2,k ∈Z ,所以ω=k +23,又ω∈(1,2),所以ω=53,从而得函数f (x )的最小正周期为2π53=6π5.三 解答题1.已知函数f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎥⎦⎤⎢⎣⎡44-ππ,时,f (x )≥-12. 【解析】:(1)f (x )=3cos⎪⎭⎫ ⎝⎛3-2πx -2sin x cos x =32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin ⎪⎭⎫ ⎝⎛+32πx ,所以T =2π2=π. (2)证明:令t =2x +π3,因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6,因为y =sin t 在⎥⎦⎤⎢⎣⎡26-ππ,上单调递增,在⎥⎦⎤⎢⎣⎡652ππ,上单调递减,且sin ⎪⎭⎫⎝⎛6-π<sin 5π6, 所以f (x )≥sin ⎪⎭⎫⎝⎛6-π=-12,得证. 2.已知f (x )=2sin⎪⎭⎫ ⎝⎛+62πx +a +1. (1)求f (x )的单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡20π,时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合.【解析】:(1)f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,可得k π-π3≤x ≤k π+π6,k ∈Z , 所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (2)当x =π6时,f (x )取得最大值4,即⎪⎭⎫⎝⎛6πf =2sin π2+a +1=a +3=4,所以a =1. (3)由f (x )=2sin ⎪⎭⎫ ⎝⎛+62πx +2=1,可得sin⎪⎭⎫ ⎝⎛+62πx =-12, 则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z ,即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z ,又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.3.已知函数f (x )=sin(ωx +φ)⎪⎭⎫⎝⎛<<320πϕ的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎪⎪⎭⎫⎝⎛236,π,求f (x )的单调递增区间.【解析】:由f (x )的最小正周期为π,则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).所以sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 已知上式对∈x ∈R 都成立,所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为⎪⎭⎫ ⎝⎛6πf =32,所以sin⎪⎭⎫ ⎝⎛+⨯ϕπ62=32,即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎪⎭⎫ ⎝⎛+32πx ,由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ), 故f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ).4.已知函数f (x )=sin ⎪⎭⎫⎝⎛x -2πsin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.【解】:(1)f (x )=cos x sin x -32(2cos 2x -1)=12sin 2x -32cos 2x =sin⎪⎭⎫ ⎝⎛3-2πx . 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),所以当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.所以x 1+x 2=56π,则x 1=56π-x 2,所以cos(x 1-x 2)=cos ⎪⎭⎫ ⎝⎛22-65x π=sin ⎪⎭⎫ ⎝⎛3-22πx ,又f (x 2)=sin⎪⎭⎫ ⎝⎛3-22πx =23,故cos(x 1-x 2)=23.。

高三复习课件-三角函数的图像和性质


D. 3+2
(2)求函数 y=sinx+cosx+sinxcosx 的值域.
解析:(1) f(x)=(1+ 3tanx)cosx=cosx+ 3sinx
=2sinx+π6,∵0≤x<π2,∴ f(x)max=2.故选 B. (2)y=sinxcosx+sinx+cosx
sinx+cosx2-1

2
5.函数 y=1-2sinxcosx 的最小正周期
为( )
A.12π
B.π
C.2π
D.4π
6.(2011 年山东高考)若函数 f(x)=sinωx(ω>0)在区间[0,π3]上单调
递增,在区间[π3,π2]上单调递减,则 ω=(
)
A.3
B.2
3 C.2
2 D.3
解析:f(x)=sinωx 在[0,π3]递增,在[π3,π2]递减,
问题探究1:所有的周期函数都有最小正 周期吗?
函 数
y=sinx
y=cosx
y=tanx
图 象


R

R
{x|x≠π2+kπ,k∈
值 域
{y|-1≤y≤1}
{y|-1≤y≤1}
R
函数 y=sinx
y=cosx
y=tanx
[-π2+2kπ,π2
[(2k-1)π, +2kπ]上递
单调性
增,k∈Z;[π2 +2kπ,32π+
求函数 y=Asin(ωx+φ)的单调区间时,若 ω 为负数,应先用诱导公 式把 x 的系数化为正数,再求解.
在研究三角函数的性质时通常犯以下错误:(1)若需把解析式化简, 要注意等价变形,即不能改变 x 的取值范围;若题目中出现 tanx 时,还 要保证函数自身有意义,即 x≠π2+kπ(k∈Z).

高三数学第二轮复习三角函数的图像与性质ppt课件.ppt


直于 x 轴的直线, 对称中心为图象与 x 轴的交点).
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
[2k5.单+ 2调, 性2k:+y=3s2in]x(k在[Z2)k上-单2调, 2递k减+2;
注 一般说来, 某一周期函数解析式加绝对值或平方, 其周期 性是: 弦减半、切不变.

前 热 采用PP管及配件:根据给水设计图配置好PP管及配件,用管件在管材垂直角切断管材,边剪边旋转,以保证切口面的圆度,保持熔接部位干净无污物

1.给出四个函数:
(A)y=cos(2x+π/6) (B)y=sin(2x+π/6)
要特别注意, 若由 或向右平移应平移 |
y=s| i个n(单x位) 得. 到
y=sin(x+)
的图象,
则向左
采用PP管及配件:根据给水设计图配 置好PP管及配 件,用 管件在 管材垂 直角切 断管材 ,边剪 边旋转 ,以保 证切口 面的圆 度,保 持熔接 部位干 净无污 物
二、三角函数图象的性质
1.正弦函数 y=sinx(xR) 是奇函数, 对称中心是 (k, 0)(kZ), 对 对称称轴 中是 心直 是线(kx+=k2,+0)2(k(kZZ),);对余称弦轴函是数直y线=coxs=xk(x(kR)Z是)(偶正函, 数余,
1、 解:(1) m n 2 3sin xcos x 2cos2 x
作函数
y
2
s
in(1
x
3
)
的图象,并说明图象可
由函数 y sin x 的图象经过怎样的变换得到.

§4.3 三角函数的图象与性质


于点( x0 ,0) 中心对称.
( ) 设 f( x) =
4cos
ωx-
π 6
sin ωx - cos ( 2ωx + π) , 其 中 ω
>0.
(1)求函数 y = f(x)的值域;
[ ] (2)若 f(x)在区间
- 32π,
π 2
上为增函数,求 ω 的最大值.
( ) 解析 (1)f(x)= 4

(2) (2019 成都七中 1 月月考,14) 如图为一弹簧振子作简 谐运动的图象,横轴表示振动的时间,纵轴表示振动的位移,则 这个振子振动的一个函数解析式是 .
解析
( 1) 由
T 4

11 12
π-
2 3
π=
π 4
,得


π,

T=
2π ,∴
ω
ω = 2,∴
f( x) =
对称性
对称轴:x = kπ+
π 2
( k∈Z) ;
对称中心:( kπ,0) ( k∈Z)
周期
2π
单调性
单调增区间:
[ ] 2kπ-
π 2
,2kπ+
π 2
( k∈Z) ;
单调减区间:
[ ] 2kπ+
π 2
,2kπ+
3π 2
( k∈Z)
奇偶性
奇函数
[ -1,1]
对称轴:x = kπ( k∈Z) ;
( ) 对称中心:
换,设


ωx+φ,由


0,
π 2
3π ,π, ,2π

来求出相
应的
x,通过列
表、计算得出五点坐标,描点连线后得出图象.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 三角函数三 三角函数的图像和性质【考点阐述】正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角. 【考试要求】(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A 、ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx 表示. 【考题分类】(一)选择题(共21题)1.(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π==2.(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.3.(海南宁夏卷理1)已知函数y=2sin(ωx+φ)(ω>0)在区间[0,2π]的图像如下:那么ω=( )A. 1B. 2C. 1/2D. 1/3解:由图象知函数的周期T π=,所以2ω=4.(海南宁夏卷文11)函数()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】:∵()221312sin 2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭∴当1sin 2x =时,()m ax 32f x =,当sin 1x =-时,()min 3f x =-;故选C;【高考考点】三角函数值域及二次函数值域【易错点】:忽视正弦函数的范围而出错。

【全品备考提示】:高考对三角函数的考查一直以中档题为主,只要认真运算即可。

5.(湖南卷理6)函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( ) A.12C.32【答案】C【解析】由1cos 21()sin 2sin(2)2226xf x x x π-=+=+-,52,42366x x πππππ≤≤⇒≤-≤m ax 13()1.22f x ∴=+=故选C. 6.(江西卷理6文10)函数tan sin tan sin y x x x x =+--在区间3(,)22ππ内的图象是【解析】D. 函数2tan ,tan sin tan sin tan sin 2sin ,tan sin x x x y x x x x x x x <⎧=+--=⎨≥⎩当时当时7.(江西卷文6)函数sin ()sin 2sin2x f x x x =+是A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数 【解析】A sin()()()sin()2sin2x f x f x x x --==--+ (4)()(2f x f x f xππ+=≠+ 8.(全国Ⅰ卷理8)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位【解析】.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数sin 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像.AB-CD-9.(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三角函数的化简,主要应用了与的关系,同时还考查了二倍角公式和函数的奇偶性和利用公式法求周期。

∵---,∴== ,为奇函数。

∴答案为-10.(全国Ⅰ卷文9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( ) A .向左平移π6个长度单位 B .向右平移π6个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位5y=co s (x +)=sin (+x +)=sin (x +)32365y sin x C6πππππ解析:本题主要考查了三角函数的图象变换及互余转化公式:∵∴可由=向左平移得到∴答案为11.(全国Ⅱ卷理8)若动直线x a =与函数()s i n f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1 BCD .2【答案】B【解析】在同一坐标系中作出x x f sin )(1=及x x g cos )(1=在]2,0[π的图象,由图象知,当43π=x ,即43π=a 时,得221=y ,222-=y ,∴221=-=y y MN【高考考点】三角函数的图象,两点间的距离 【备考提示】函数图象问题是一个常考常新的问题12.(全国Ⅱ卷文10)函数x x x f cos sin )(-=的最大值为( ) A .1 B . 2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题 13.(四川卷理10)设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( )(A)()01f = (B)()00f = (C)()'01f = (D)()'00f =【解】:∵()()sin f x x ωϕ=+是偶函数∴由函数()()sin f x x ωϕ=+图象特征可知0x =必是()f x 的极值点, ∴()'00f= 故选D【点评】:此题重点考察正弦型函数的图象特征,函数的奇偶性,函数的极值点与函数导数的关系; 【突破】:画出函数图象草图,数形结合,利用图象的对称性以及偶函数图象关于y 轴对称的要求,分析出0x =必是()f x 的极值点,从而()'00f =;14.(天津卷理3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是(A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数解析:()cos 2f x x =-是周期为π的偶函数,选B .15.(天津卷理9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos,72sinπππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos )(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-=因为2472πππ<<,所以220cossin1tan7772πππ<<<<,所以b a c <<,选A .16.(天津卷文6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R ,B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,解析:选C,132sin sin()sin(2)33y x y x y x πππ=−−−−−−→=+−−−−−−−→=+向左平移个单位横坐标缩短到原来的倍.17.(天津卷文9)设5sin 7a π=,2cos7b π=,2tan 7c π=,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<解析:2sin 7a π=,因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,选D . 18.(浙江卷理5文7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4 解析:本小题主要考查三角函数图像的性质问题。

原函数可化为:])20[)(232cos(ππ,∈+=x x y =sin ,[0,2].2xx π∈作出原函数图像,截取[0,2]x π∈部分,其与直线21=y 的交点个数是2个.19.(浙江卷文2)函数2(sin cos )1y x x =++的最小正周期是 (A )2π(B )π (C )32π (D )2π解析:本小题主要考查正弦函数周期的求解。

原函数可化为:sin 22y x =+,故其周期为2.2T ππ==20.(重庆卷理10)函数f(x)02x π≤≤) 的值域是(A )[-02] (B)[-1,0] (C )0] (D )0]解:特殊值法, sin 0,cos 1x x ==则f(x)1=-淘汰A ,令=26(sin 1)cos 4x x -+=当时sin 1x =-时3cos 2x =所以矛盾()f x ≠C , D21.(重庆卷文12)函数f (x≤x ≤2π)的值域是(A)[-11,44] (B)[-11,33] (C)[-11,22] (D)[-22,33] 【答案】C【解析】本小题主要考查函数值域的求法。

令(13)t t =≤≤,则22216(5)sin 16t x --=,当0x π≤≤时,9s i n 4x ==,1()4442f x t===≤=当且仅当t =时取等号。

相关文档
最新文档