2DPSK的调制与解调

合集下载

2dpsk差分相干解调原理

2dpsk差分相干解调原理

2dpsk差分相干解调原理
差分相移键控(DPSK)是一种数字通信调制技术,可以通过相位变化来传输二进制数据。

差分相干解调是一种用于接收和解码DPSK信号的方法。

下面将介绍2DPSK差分相干解调的原理。

在2DPSK中,每个二进制位被映射为一个相位状态。

相位状态的变化表示二进制数据的转换。

解调接收器在接收信号时,首先需要进行载波恢复。

这可以通过接收信号中的前一个符号和当前符号的相位差来实现。

差分相干解调中存在两个关键环节:相位差量化和符号解码。

首先是相位差量化。

接收器测量前一个符号和当前符号的相位差,并将其量化为离散的值。

这一步骤通常使用相位锁环(PLL)实现,它可以追踪并锁定接收信号的相位。

接下来是符号解码。

已经量化的相位差被用于解码二进制数据。

接收器将量化的相位差与已知的差分相移键控方案进行匹配,以确定二进制位的状态。

差分相干解调的原理在于利用差分编码的特性来提高信号的抗干扰能力。

由于差分编码仅仅依赖于相位差的变化,而不会受到绝对相位的影响,因此可以减少传输中的相位偏移导致的错误解码。

总结一下,2DPSK差分相干解调是一种用于接收和解码DPSK信号的技术。

它通过相位差量化和符号解码来恢复原始的二进制数据。

相位差量化使用相位锁环来锁定接收信号的相位,而符号解码则利用量化的相位差匹配已知的差分相移键控方案来确定二进制位的状态。

这种解调方法提高了信号的抗干扰能力,使得传输更可靠和稳定。

2dpsk差分相干解调原理

2dpsk差分相干解调原理

2DPSK差分相干解调原理
差分相干解调是一种用于解调2DPSK(2进制差分相移键控)调
制信号的方法。

在差分相干解调过程中,接收端需要知道发送端每个
码元的相位差,以便正确解调信号。

差分相干解调的原理如下:
1. 接收端接收到2DPSK调制信号,并进行适当的抽样以获得离
散的信号样本。

2. 在差分相干解调中,接收端首先需要估计接收到的信号的初
始相位。

这可以通过接收到的前一个码元和当前码元的相位差来计算。

初始相位估计可以通过与参考信号进行比较来进行。

3. 接下来,接收端将估计的初始相位应用于接收到的信号,并
将其与预期的差分相位差进行比较。

预期的差分相位差可以根据接收
到的前一个码元的相位差来计算。

4. 如果接收到的信号的相位差与预期的差分相位差相符,则接
收端认为当前码元为0;否则,认为当前码元为1。

5. 最后,接收端将解调得到的二进制码元组合起来,以获得原
始的数字信号。

差分相干解调适用于在传输过程中可能存在频偏和相位偏移的情
况下。

它能够有效地解调2DPSK调制信号,并且对于传输通道的变动
具有一定的鲁棒性。

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验

试验四2PSK2DPSK调制与解调试验实验四 2PSK/2DPSK调制与解调实验⼀、实验⽬的1.掌握绝对码、相对码的概念以及它们之间相互变换的关系和⽅法;2.了解2PSK、2DPSK的调制原理及电路的实现⽅法;3.了解2PSK、2DPSK的解调原理及电路的实现⽅法;4.了解2PSK解调存在的相位含糊问题;⼆、实验内容1.⽤⽰波器观察2PSK/2DPSK调制器信号波形与绝对码⽐较是否符合调制规律;2.⽤⽰波器观察2PSK/2DPSK相⼲解调器各点波形;3.观察相位含糊所产⽣的后果;4.加⼊噪声后,观察误码波形;三、实验仪器1.双踪⽰波器⼀台2.数字调制模块⼀块3.数字解调模块⼀块4.连接线若⼲四、实验预习1、实验箱中2PSK调制器⽤的调制⽅法是什么?2、2PSK调制器可以⽤哪两种⽅法实现?这两种⽅法得到的PSK波形有什么区别?3、画出实验板中2PSK、2DPSK调制原理框图;4、本实验中,基带信号码速率是多少?带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

5、本实验中,2PSK 信号带宽是多少?⽤数字⽰波器如何测量?说出具体的数据读取⽅法。

6、绝/相、相/绝变换的框图?7、绝/相、相/绝变换电路是怎么实现的。

8、经过绝/相、相/绝变换后得到最终数据输出,输出的波形与原始波形对⽐是否有延迟?为什么?能否采⽤⼀种⽅法可以让波形没有延迟?9、2PSK调制能否⽤⾮相⼲解调⽅法?是否可以只看PSK波形的跳变点的状态来实现信息的判断?举例说明。

10、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的带宽设计多⼤⽐较合适?11、在接收机带通滤波器之后的PSK 波形的跳变点⽆法准确分辨,还能准确解调吗?为什么? 12、相位模糊产⽣的原因和解决⽅法? 13、画出实验板中2PSK 、2DPSK 解调器的原理框图; 14、测试接收端的各点波形,需要与什么波形对⽐,才能⽐较好的进⾏观测?⽰波器的触发源该选哪⼀种信号?为什么?15、解调电路各点信号的时延是怎么产⽣的? 16、码再⽣的⽬的是什么? 17、⽤D 触发器做时钟判决的最佳判决时间应该如何选择?解调出的信码和调制器的绝对码之间的时延是怎么产⽣的?四、实验原理1.2PSK/2DPSK 调制原理2PSK 信号是⽤载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形⽰意图如图3-9-1所⽰。

实验六 2DPSK调制解调实验

实验六  2DPSK调制解调实验

1 1 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 1 1
ˆ b n2 ˆn a
通信工程专业实验室
实验六
2DPSK调制解调实验
2DPSK信号的另一种差分解调方法如下图所示。
通信工程专业实验室
实验六
2DPSK调制解调实验
2DPБайду номын сангаасK信号调制与延迟解调过程如下
n1
1 0 0 1 0
1 0 0 0 1 1
0 1 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0
通信工程专业实验室
实验六
2DPSK调制解调实验
四、实验原理
右图为载波恢复 电路。其中: (a)为平方环电 路,(b)为科斯 塔斯环电路。这 两种电路恢复的 载波相位不可避 免地具有不确定 性。
二、PSK解调
通信工程专业实验室
12
实验六
2DPSK调制解调实验
2PSK相干解调器如下图所示。

2PSK调制与解调过程如下:
BK
2ASK 调制
2ASK
2DPSK数字调制方框图
通信工程专业实验室
实验六
2DPSK调制解调实验
四、实验原理
本单元有以下测试点及输入输出点: BS-IN 位同步信号输入点 NRZ-IN 数字基带信号输入点 CAR 2DPSK信号载波测试点 AK 绝对码测试点(与NRZ-IN相同) BK 相对码测试点 2DPSK(2PSK)-OUT 2DPSK(2PSK)信号测试点/输 出点,VP-P>0.5V

2DPSK信号调制器和解调器课程设计

2DPSK信号调制器和解调器课程设计

课程名称:通信原理课程设计设计题目:2DPSK信号调制器和解调器学生班级:学生姓名:指导教师:完成日期:2015-12-25数学与计算机学院课程设计项目研究报告目录第 1 章项 (3)1.1 项目名称 (3)1.2 开发人员 (3)1.3 指导教师 (3)第 2 章项目研究意义 (3)2.1 课程设计概述 (3)2.2 需求分析 (3)2.3 研究意义 (3)第3 章 2DPSK信号原理 (3)3.1 2DPSK的调制原理 .................................................................... 错误!未定义书签。

3.2 2DPSK的解调原理 .................................................................... 错误!未定义书签。

第 4 章采用的技术 .. (5)4.1 课程设计的方案设计论证 (5)4.2 重要算法的设计、流程描述或伪代码描述 ........................... 错误!未定义书签。

第5 章课程设计项目进度表 .. (6)第6 章课程设计任务分配表 (6)第7 章达到的效果 (7)7.1 程序设计思想 (7)7.2 程序最终实现结果 ................................................................... 错误!未定义书签。

第8 章源程序 ..................................................................................... 错误!未定义书签。

8.1主程序(以M文件的形式) .................................................... 错误!未定义书签。

通信原理2DPSK调制与解调实验报告

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告一. 2DPSK基本原理1.2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。

图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;∆Φ=π→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 π π 0 π π 0 π 0 0 π或:π 0 0 π 0 0 π 0 π π 02. 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。

2DPSK 信号的的模拟调制法框图如下图 1.2.1,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如下图1.2.2,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。

选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。

图1.2.2 键控法调制原理图3. 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。

(1) 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。

2DPSK调制与解调电路设计解析

长春理工大学信息综合训练课程设计报告2DPSK调制与解调电路学生姓名:学号:电话:指导教师:学院:光电工程学院课程设计时间:2014 年12 月29 日—2015年 1 月9日一、二进制差分相移键控(2DPSK )基本原理1.1 2DPSK 信号基本原理传输系统中要保证信息的有效传输就必须要有较高的传输速率和很低的误码率!为了后的较低的误码率,就得让传输的信号又较低的误码率。

在传输信号中,2PSK 信号和2ASK 及2FSK 信号相比,具有较好的误码率性能,但是,在2PSK 信号传输系统中存在相位不确定性,并将造成接收码元“0”和“1”的颠倒,产生误码。

为了保证2PSK 的优点,又不会产生误码,将2PSK 体制改进为二进制差分相移键控(2DPSK ),及相对相移键控。

2DPSK 方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。

现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。

则数字信息序列与2DPSK 信号的码元相位关系可举例表示如2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图1所示。

图1 2DPSK 信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。

如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。

所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。

定义 ∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;信号DPSK 2基带信号∆Φ=π→数字信息“1”。

则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:(0)π π 0 π π 0 π 0 0 π或:(π) 0 0 π 0 0 π 0 π π 0采用π相位后,若已接收2DPSK序列为π0πππ0ππ0,则经过解调后和逆码变换后可得基带信号,这一过程如下:2DPSK 信号:(0)π 0 π π π 0 π π 0 (π)0 π 0 0 0 π 0 0 π∆Φ : π π π 0 0 π π 0 π π π π 0 0 π π 0 π变换后序列 :(0)1 0 1 1 1 0 1 1 0 (π) 0 1 0 0 0 1 0 0 1(相对码) 基带信号 : 1 1 1 0 0 1 1 0 1 1 1 1 0 0 1 1 0 1 (绝对码) 虽然相同信噪比2DPSK信号的比2PSK稍高一点,但比2PSK要稳定得多。

2DPSK调制与解调 matlab

%- 2DPSK 调制与解调%---------------------------------------------------%>>>>>>>>>>>>>>>>>>参数初始化>>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------fs = 3600000;%采样频率为36000赫兹Time_Hold_On = 1/1200;%一个时钟周期为1200分之1,对应比特率为1200bpsNum_Unit = fs * Time_Hold_On;%一个时钟周期内的采样点个数High_Level = ones ( 1, Num_Unit );%高电平(全1序列)Low_Level = zeros ( 1, Num_Unit );%低电平(全0序列)w = 1800;%载波角频率1800HzA = 1;%载波幅值%---------------------------------------------------%>>>>>>>>>>>>>>>>>>信号初始化>>>>>>>>>>>>>>>%---------------------------------------------------Sign_Set = [0,1,1,0,1,0,0,1];%原始序列Lenth_Of_Sign = length ( Sign_Set );%原始序列长度Sign_Sett = ones(1,Lenth_Of_Sign+1);%差分变换后的序列,初始化为长度为原始序列长度+1的全1序列(第一个码元为1)sign_orign = zeros ( 1, Num_Unit * (Lenth_Of_Sign+1) );%初始化基带信号为全0序列sign_result = zeros ( 1, Num_Unit * (Lenth_Of_Sign+1) );%初始化接收到的基带信号为全0序列st = zeros ( 1, Num_Unit *( Lenth_Of_Sign+1) );%初始化调制后的信号为全0序列t = 0 : 1/fs : Time_Hold_On * (Lenth_Of_Sign +1)- 1/fs;%信号采样时间点result=zeros(1,Lenth_Of_Sign+1);%初始化接收到的序列resultt=zeros(1,Lenth_Of_Sign);%初始化差分解调后的序列%---------------------------------------------------%>>>>>>>>>>>求差分编码>>>>>>>>>>>>%---------------------------------------------------for I = 2 : Lenth_Of_Sign+1 %差分变换后的序列第一个值为1,从第2个开始计算Sign_Sett(I)= xor(Sign_Sett(I-1),Sign_Set(I-1));%用异或运算求差分码end%---------------------------------------------------%>>>>>>>>>>>产生基带信号>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Sign+1 %考虑差分变换后序列中每一个值if Sign_Sett(I) == 1sign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = High_Level; %序列值为1,基带信号为高电平elsesign_orign( (I-1)*Num_Unit + 1 : I*Num_Unit) = Low_Level; %序列值为0,基带信号为低电平endend%---------------------------------------------------%>>>>>>>>>>>>>>>>>>调制部分>>>>>>>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Sign+1 %考虑差分变换后序列中每一个值if Sign_Sett(I) == 1st( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) + ( pi / 2 ) );%序列值为1,相位调制为π/2elsest( (I-1)*Num_Unit + 1 : I*Num_Unit) = A * cos ( 2 * pi * w * t( (I-1)*Num_Unit + 1 : I*Num_Unit ) );%序列值为0,相位调制为0endendfiguresubplot ( 2,1,1 )plot(t, sign_orign);axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 2), - (A / 2), A + (A / 2) ] );title ( '原始信号' );grid %画出基带信号subplot ( 2, 1, 2 );plot ( t, st );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 2), - 3*(A / 2), 3*(A / 2) ] );title ( '调制后的信号' );grid %画出相位调制后的信号%---------------------------------------------------%>>>>>>>>>>>>>>>>>>相干解调>>>>>>>>>>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------dt = st .* cos ( 2 * pi * w * t ); %相干相乘figureplot ( t, dt );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 2), - 3*(A / 2), 3*(A / 2) ] );title ( '相干相乘后的波形' );grid%--------------------------------------------------- %>>>>>>>>>>>>>>>>>>>低通滤波部分>>>>>>>>>>>>>>>>>>>>%---------------------------------------------------[N,Wn] = buttord( 2*pi*1500, 2*pi*3400,3,25,'s'); %临界频率采用角频率表示,计算低通滤波器参数[b,a]=butter(N,Wn,'s'); %产生N阶低通巴特沃斯滤波器[bz,az]=impinvar(b,a,fs); %映射为数字的dt = filter(bz,az,dt); %将相干相乘后的信号进行滤波figureplot ( t, dt );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 2), - 3*(A / 2), 3*(A / 2) ] );title ( '低通滤波后的波形' );grid%---------------------------------------------------%>>>>>>>>>>>>>抽样判决& 逆码变换部分>>>>>>>>>>>>>>>%---------------------------------------------------for I = 1 : Lenth_Of_Sign+1if dt((2*I-1)*Num_Unit/2) < 0.25 %在时钟周期中间采样,由于相干相乘后信号幅值变为1/2,所以判决门限为0.25sign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = High_Level;elsesign_result( (I-1)*Num_Unit + 1 : I*Num_Unit) = Low_Level;end%由于相干相乘后得到的信号变为原来的负数,所以进行逆码变换endfigureplot ( t, sign_result );axis( [ 0 , Time_Hold_On *( Lenth_Of_Sign + 2), - 3*(A / 2), 3*(A / 2) ] );title ( '逆码变换后的波形' );grid%---------------------------------------------------%>>>>>>>>>>>序列生成与差分还原>>>>>>>>>>>>%---------------------------------------------------for I=1: Lenth_Of_Sign+1result(I)=sign_result(I* Num_Unit)%将接收到的信号生成(差分)序列endfor I = 1 : Lenth_Of_Signresultt(I)= xor(result(I),result(I+1)) %将接收到的差分序列还原为原序列endwindow=boxcar(length(st)); %矩形窗nfft=1024;[Pxx,f]=periodogram(st,window,nfft,fs); %求功率谱密度plot(f,10*log10(Pxx));。

2PSK及2DPSK信号调制解调实验

2PSK及2DPSK信号调制解调实验一、实验目的1. 掌握利用systemview进行仿真的方法;2. 掌握2PSK调制解调的基本原理;3. 掌握2DPSK调制解调的基本原理。

二、实验仪器电脑,systemview5.0软件三、实验原理1. 调制原理2PSK方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式。

就是根据数字基带信号的两个电平(或符号)使载波相位在两个不同的数值之间切换的一种相位调制方法。

两个载波相位通常相差180度,此时成为反向键控(PSK),也称为绝对相移方式。

绝对相移方式存在一个缺点。

我们看到,如果采用绝对相移方式,由于发送端是以某一个相位作基准的,因而在接收端也必须有这样一个固定基准相位作参考。

如果这个参考相位发送变化(0相位变π相位或π相位变0相位),则恢复得数字信息就会发送0变为1或1变为0,从而造成错误的恢复。

考虑到实际通信时参考基准相位的随机跳变(温度漂移或噪声引起)是可能的,而且在通信过程中不易被发觉。

比如,由于某种突然的干扰,系统中的分频器可能发生状态的转移、锁相环路的稳定状态也可能发生转移。

这时,采用2PSK方式就会在接收端得到完全相反的恢复。

这种现象,常称为2PSK方式的“倒π”现象。

为此,实际中一般不采用2PSK方式,而采用一种所谓的相对(差分)移相(2DPSK)方式。

2DPSK方式是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

即用前后两个码元之间的相差来表示码元的值“0”和“1”。

例如,假设相差值“π”表示符号“1”,相差值“0”表示符号“0”。

因此,解调2DPSK信号时并不依赖于某一固定的载波相位参考值,只要前后码元的相对相位关系不破坏,则只要鉴别这个相差关系就可正确恢复数字信息,这就避免了2PSK中的倒π现象发生。

2. 解调原理2PSK信号是恒包络信号,因此2PSK信号的解调必须采用相干解调。

但如何得到同频同相的载波是个关键问题。

2DPSK的调制与解调

2DPSK的调制与解调成都学院(成都大学)课程设计报告二维PSK调制解调仿真系统设计摘要:二进制差分相移键控简称2dpsk。

它是数据通信中最常用的一种调制方式,这种方式的优点是简单,易于实现。

与2psk的波形不同,2dpsk波形的同一相位并不对应相同的数字信息符号,而前后码元的相对相位才唯一确定信息符号。

调制解调技术是实现现代通信的重要手段,研究数字通信调制解调理论,提供有效的调制方式,有着重要意义。

本文主要研究了利用system view软件进行二维PSK调制解调的系统设计。

首先,介绍了2DPSK调制解调的基本理论和仿真软件。

然后建立仿真模型,并对仿真结果进行分析。

关键词:2DPSK;调制解调;通信系统i成都大学课程设计报告目录第一章导论一1.1课题研究背景及意义..........................................................11.2systemview软件介绍..........................................................11.3研究内容....................................................................2第2章2dpsk的调制解调原理 (3)2.12dpsk调制原理32.22DPSK三路解调原理2.2.1采用极性比较法解调模块................................................32.2.2采用差分相干解调模块.. (4)第三章基于Systemview 6的仿真分析3.1产生2dpsk的调制模块........................................................63.22dpsk的解调模块. (7)3.2.1使用极性比较法的解调模块73.2.2使用差分相干解调模块8第4章结论........................................................................11参考文献 (1)2二、成都学院(成都大学)课程设计报告第一章导言1.1课题研究背景及意义二进制差分相移键控,称为二进制相对相位调制,记录为2DPSK。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计(论文)题目:2DPSK的调制与解调姓名学号班级学院指导教师目录摘要 (2)第1章2DPSK原理介绍 (3)1.1 2DPSK的基本原理: (3)1.2 2DPSK的调制原理: (4)1.3 2DPSK的解调原理: (5)1.3.1 极性比较法: (7)1.3.2 相位比较法: (7)第2章系统仿真 (8)2.1.1 2DPSK调制解调系统的总体设计 (8)2.1.2 具体设计 (9)第3章结论 (14)参考文献 (15)2DPSK调制与解调摘要在现代通信技术中,因为基于数字信号的数据传输优于模拟信号的传输,所以数字信号的传输显得越来越重要。

虽然近距离时我们可以利用数字基带信号直接传输,但是进行远距离传输时必须将基带信号调制到高频处。

为了使数字信号能够在信道中传输,要求信道应具有高通形式的传输特性。

然而,在实际信道中,大多数信道具有带通传输特性,数字信号不能直接在这种带通传输特特性的信道中传输,因此,必须用数字信号对载波进行调制,产生各种已调信号。

我们通常采用数字键控的方法来实现数字调制信号,所以又将其称为键控法。

当调制信号采用二进制数字信号时,这种调制就被称为二进制数字调制。

最常用的二进制数字调制方式有二进制振幅键控、二进制移频键控和二进制移相键控。

其中二进制移相键控又包括两种方式:绝对移相键控(2PSK)和相对(差分)移相方式(2DPSK )。

在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,就产生了二进制移相键控,即所谓的绝对移相键控(2PSK)。

虽然绝对移相键控的实现方法较为简单,但是却存在一个缺点,即我们所说的倒“ ”现象。

因此,在实际中一般不采用2PSK 方式,而采用2DPSK方式对数字信号进行调制解调。

本文主要讨论关于2DPSK 的调制解调。

并将其与MATLAB结合进行研究和仿真。

第1章 2DPSK 原理介绍1.1 2DPSK 的基本原理:说到2DPSK ,就不得不说一下二进制移相键控(2PSK )。

所谓二进制移相键控(2PSK )方式是指受键控的载波相位按基带脉冲而改变的一种数字调制方式。

即若发送二进制符号0则载波初始相位取0,若发送二进制符号1 则载波初始相位取π,如图1所示(假设一个码元用一个周期的正弦波表示)。

这种移相通常被称为绝对移相方式,如果采用绝对移相方式,由于发送端是以某一个相位作基准的,因而在接收系统中也必须有这样一个固定基准相位作参考。

如果这个参考相位发生变化(0相位变π相位或π相位变0相位),则恢复的数字信息就会由0变为1或由1变为0,从而造成错误。

这种现象常称为2PSK 方式的“倒π”现象或“反向工作”现象。

为此实际中一般采用一种所谓的差分移相键控(2DPSK )方式。

2DPSK 方式是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。

例如,假设相位值用相位偏移ϕ∆表示(ϕ∆定义为本码元初相与前一码元初相之差),设编码结果如图2.1所示。

这样就避免了2PSK 中的倒π现象。

产生2DPSK 信号时,先将输入的绝对码转换成相对码,然后再用相对码用二进制绝对移相方式对载波进行调相。

2DPSK 方式是用前后相邻码元的载波相对相位变化来表示数字信息。

即本码元初相与前一码元初相之差。

假设前后相邻码元的载波相位差为ϕ∆,可定义一种数字信息与ϕ∆之间的关系为:⎩⎨⎧=∆”表示数字信息“”表示数字信息“1,0,0πϕ下面将为大家介绍一下2DPSK 的调制与解调原理。

1.2 2DPSK 的调制原理:众所周知2PSK 调制是将传输的数字码元“1”用初始相位为180°的正弦波表示,而数字码元“0”用初始相位为0°的正弦波表示。

若设()t a 是传输数字码元的绝对码,则2PSK 已调信号在任一个码元时间T 内的表达式为()()[]()01,sin 或=+=t a t a ct A t s ω (1)若将传输数字码元的绝对码()t a 先进行差分编码得相对码()t b ,其差分编译码如下: 差分编码为 ()()()T t b t a t b -⊕= (2) 差分译码为 ()()()T t b t b t a -⊕= (3) 再将相对码()t b 进行2PSK 调制,则所得到的即是2DPSK 已调信号,其在任一码元时间T 内的表达式为()()[]()01,sin 或=+=t b t b ct A t s πω (4)差分编码移相2DPSK 在数字通信系统中是一种重要的调制方式,其抗噪性能和信道频带利用率均优于移幅键控(ASK )和移频键控(FSK ),因而在实际的数据传输系统中得到广泛的应用。

2DPSK 调制解调系统的原理框图如图2.2所示。

图2.1 相对移相示例2DPSK 调制原理是指载波的相位受数字信号的控制而改变,通常用相位0°来表示“1”,而用180°来表示“0”。

差分移相键控2DPSK 信号的参考相位不是未调波的相位,而是相邻的前一位码元的载波相位。

2DPSK 信号的产生只需要在二相调制前加一套相对码变换电路就可以实现,2DPSK 的调制方框图见图2.3,其中()t S 为载波,()t Eo 为已调信号。

1.3 2DPSK 的解调原理:基于DFT 的2DPSK 解调算法:实际中接收到的2DPSK 信号在经过带通滤波后,由于码元跳变处的高频分量被过滤掉,滤波后的2DPSK 信号波形分为稳定区和过渡区,码元中间部分是稳定区,前、后部分为过渡区。

稳定区内的信号基本无损失,波形近似为正弦波,而过渡区内的波形则不是正弦波,并且幅度明显降低。

调制信息基本上只存在于码元稳定区。

从上述分析出发,可以得到基于DFT 的数字解调方案。

具体解调方法:对每个码元稳定区内的采样点按照公式(5)做DFT :Eo(t)S(t)图2.3 2DPSK 的调制方框图图2.2 2DPSK 调制解调系统原理框图n k x NI N k k /2cos 11π∑== n k xN Q N k k /2sin 11π∑== (5)其中,n 代表每个载波周期的采样点个数,N 代表做DFT 时使用的稳定区内的采样点个数(通常取多个载波整周期)。

然后,提取出前后码元的相位跳变信息T ϕ来进行解调判决:计算()I Q /arctan =ϕ, 并根据Q 和I 的正负情况确定T ϕ的取值范围。

把本码元的相位记为b ϕ,前一码元的相位记为a ϕ,则()m od 2πϕϕϕϕd a b T +-= (6) 其中d ϕ是进行了位同步点调整时附加的相位。

可见,在每个码元周期只需要计算一次相位值即本码元的相位,然后相减得到跳变相位,就可以依据判决条件恢复原始数据,而不需要像文献中所提到的对每个码元要随着窗函数的移动多次计算谱值,因而大大减轻了计算量,非常适合于软件无线电的数字化实时解调。

当调频信号不包括载波分量时,必须采用相干解调,2DPSK 的解调可采用两种方法。

其一是极性比较法,然后再用码变换器变为绝对码。

另外还有一种实用的方法叫做差分相干解调法,二者的原理框图分别如图2.4,图2.5。

图2.4 极性比较法解调图2.5 差分相干解调法1.3.1 极性比较法:信号可以采用相干解调方式(极性比较法),其原理框图见图2.4。

其解调原理是:对2DPSK 信号进行相干解调,恢复出相对码,再通过码反变换器变换为绝对码,从而恢复出发送的二进制数字信息。

在解调过程中,若相干载波产生180°相位模糊,解调出的相对码将产生倒置现象,但是经过码反变换器后,输出的绝对码不会发生任何倒置现象,从而解决了载波相位模糊度的问题。

1.3.2 相位比较法:2DPSK信号也可以采用差分相干解调方式(相位比较法),其原理框图见图2.5。

其解调原理是:直接比较前、后码元的相位差,从而恢复发送的二进制数字信息。

由于解调的同时完成了码反变换作用,故解调器中不需要码反变换器。

由于差分相干解调方式不需要专门的相干载波,因此是一种非相干解调方法。

第2章系统仿真2.1.1 2DPSK调制解调系统的总体设计总体设计:MATLAB提供了通信系统工具箱Communication Blockset。

本文采用“自底向上”设计方式,先完成每个模块的底层设计,封装成子系统,再用其搭建通信系统仿真的总体框图。

通信系统设计的总体框图如图3.1所示。

图3.1 2DPSK仿真系统总体框图通信仿真系统子模块设计:(1)信号产生模块:采用BernoulliBinarator模型产生一组值为0 或 1 的随机二进制数据,作为通信仿真系统的数字基带信号输入。

(2)差分编码模块:选择差分编码器,将信号源产生的数字基带信号进行差分编码。

(3)2DPSK调制模块:对双极性不归零码进行绝对调相,产生信道中传输的2DPSK信号。

(4)信道模块:为模拟井下复杂通信环境对井下短程通信的影响,信道模块加入高斯白噪声(AWGNChannel),即在输入信号中叠加高斯白噪声,为简单起见,假设信号在信道传输中没有时间或相位的延迟。

(5)接收及解调模块:2DPSK信号的解调采用载波相干解调。

解调用的相干载波可以用科斯塔斯环等方法直接从接收的信号中恢复,本文为方便起见,直接用与载波同频同相的正弦信号作为载波同步输出的相干载波.解调后的信号经相关接收,抑制与载波无关的噪声及干扰,使其在指定的抽样判决时刻有最大的信噪比。

(6)抽样判决模块:为无失真地恢复输入信号,解调后的基带信号必须要经过抽样判决器的判决。

由于本文假设没有传输延迟,其抽样判决的位同步定时脉冲可用一个脉冲源替代。

实际的通信系统中,调制信号在信道中的传输存在传输延迟时间,此时可以直接从接收的数字信号中提取位同步定时信号,这种方法在数字通信系统中得到了最广泛的应用。

MATLAB系统提供的模型库中没有现成的抽样判决器供选用,笔者利用MATLAB提供的S函数编写了相应的抽样判决函数供使用。

(7)差分解码模块:差分译码器把抽样判决输出的相对码转换成绝对码,需要注意的是,差分编码器和差分解码器的初始状态应该一致。

(8)比较和显示模块:一是输入数字基带信号与解码恢复信号的比较和显示,二是输入基带信号与恢复信号之间误码率的分析与显示。

2.1.2 具体设计应用Matlab软件中的Simulink进行可视化设计。

系统实现的是2DPSK调制解调系统的动态仿真,其结果如图3.2所示。

2DPSK调制解调系统的组成:信号源、2DPSK调制解调子系统、输出结果。

图3.2 2DPSK调制解调系统框图该图为实际的simulink仿真图,即具体的仿真框图一、调制器调制器采用数字调制方式。

它是由晶体振荡器、分频器、差分编码和调相电路组成。

晶体振荡器产生11.0592MHz的方波信号,该信号经9%、64%分频电路后分别产生调制器和解调器所需的19.2kHz载波信号 2.4kHz时钟信号。

相关文档
最新文档