函数概念及其基本性质精题分解

合集下载

函数的基本性质(讲解部分)

函数的基本性质(讲解部分)

y轴 对称
奇函数 一般地,如果对于函数f(x)的定义域内任意一个x,都有 关于 f(-x)=-f(x) ,那么函数f(x)就叫做奇函数
2.奇、偶函数的性质
原点 对称
(1)奇函数在关于原点对称的区间上的单调性 相同 ,偶函数在关于原
点对称的区间上的单调性 (2)在公共定义域内,
相反 .
(i)两个奇函数的和是奇函数,两个奇函数的积是偶函数;
例3 求函数f(x)=log1 (-x2-2x+3)的单调区间.
2
解题导引 先求定义域,然后拆分函数式为y=log1 u,u=-x2-2x+3,判断单调性
2
得单调区间.
解析 由已知得-x2-2x+3>0,∴-3<x<1. ∴f(x)的定义域为{x|-3<x<1}.令u=-x2-2x+3.
∵u=-x2-2x+3在区间(-3,-1)上单调递增,在区间(-1,1)上单调递减,y=log1 u为
§3.2 函数的基本性质 (讲解部分)
考点清单
考点一 函数的单调性及最值
1.函数的单调性
(1)单调函数的定义
增函数
减函数
定义
一般地,设函数f(x)的定义域为I.区间D⊆I,如果对于任意x1,x2∈D,且x1<x2
都有① f(x1)<f(x2)
都有② f(x1)>f(x2)
函数f(x)在区间D上是③ 增函数
2
(2)∵f(x)在R上单调递减,
a-1 0,
∴0 a 1,

loga 2 (a-1) 2-2a,
2 ≤a<1.
2
∴a的取值范围为
2 2

2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。

函数与图像的基本概念与性质

函数与图像的基本概念与性质

函数与图像的基本概念与性质一、函数的概念与性质1.函数的定义:函数是两个非空数集A、B之间的对应关系,记作f:A→B。

2.函数的性质:(1)一一对应:对于集合A中的任意一个元素,在集合B中都有唯一的元素与之对应。

(2)自变量与因变量:在函数f中,集合A称为函数的定义域,集合B称为函数的值域。

对于定义域中的任意一个元素x,在值域中都有唯一的元素y与之对应,称为函数值。

(3)函数的单调性:若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)<f(x2),则称函数f在定义域上为增函数;若对于定义域中的任意两个元素x1、x2,当x1<x2时,都有f(x1)>f(x2),则称函数f在定义域上为减函数。

3.函数的分类:(1)线性函数:形如f(x)=ax+b(a、b为常数,a≠0)的函数。

(2)二次函数:形如f(x)=ax²+bx+c(a、b、c为常数,a≠0)的函数。

(3)分段函数:形如f(x)={g1(x), x∈D1}{g2(x), x∈D2}的函数,其中D1、D2为定义域的子集,且D1∩D2=∅。

二、图像的概念与性质1.函数图像的定义:函数图像是指在平面直角坐标系中,根据函数的定义,将函数的定义域内的每一个点(x, f(x))连接起来形成的图形。

2.函数图像的性质:(1)单调性:增函数的图像呈上升趋势,减函数的图像呈下降趋势。

(2)奇偶性:若函数f(-x)=-f(x),则称函数f为奇函数;若函数f(-x)=f(x),则称函数f为偶函数。

奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

(3)周期性:若函数f(x+T)=f(x),则称函数f为周期函数,T为函数的周期。

周期函数的图像具有周期性。

(4)拐点:函数图像在拐点处,曲线的斜率发生改变。

三、函数与图像的关系1.函数与图像的相互转化:通过函数的解析式,可以在平面直角坐标系中绘制出函数的图像;同时,根据函数图像的形状,可以反推出函数的解析式。

专题二 函数概念及其基本性质(必修1)

专题二 函数概念及其基本性质(必修1)

log2(2-x),2x-1,x≥的定义域为( )2,x≤0,若f(0)是f(+a,x>0.)考向1 求函数的定义域(1)(2014·(1)(2012·(1)(2014·(2015·(1)(2014·(2015·1.(2015·安徽宣城三模,3)函数f(x)=上的函数f(x)=2|x-m|-“f(x+y)=f(x)考向1 确定函数的单调性自左向右看图象是上升的自左向右看图象是下降的(1)(2014·(1)(2011·]+1(1)(2015·(2014· 1.(2015·四川泸州三模,3)下列函数中,在上单调递增.故选B.-cos x,则f(0.6) 下列函数中,既是偶函数又存在零点的是的定义域都为1)≤f(x),则需满足2a2-(-4a+x2是奇函数,且f(1)=1.若g(是奇函数,f(1)=1,得f(1)+12+f考向1 函数奇偶性的判断及其应用(1)(2013·可先对其进行化简,再利用定义进行判断,同时应注意化简前后的等价性.②所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.应用函数奇偶性可解决的四类问题及解题方法(1)(2011·(1)(2012·(2012·(1)(2012·(2012· 1.(2015·山东烟台模拟,3)下列函数中既不是奇函数也不是偶函数的是3]上的解集为x∈(-1,f(x)在区间[-5,5]上是奇函数,在区间的方程f(x)-log a(x+2)=0(a>1)恰有3个不同的实数根可转化为函数的图象有且只有三个不同的交点,时间:90分钟__分数:120分。

函数的基本性质全面版

函数的基本性质全面版

课后作业
1. 阅读教材P.30 -P.32; 2.《习案》:作业10.
思考题:
1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值.
思考题:
1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函)对任意x,y∈R,总有 f (x)+f ( y)=f (x+y),且当x>0时, f (x)<0,f (1)= 2 .
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≥M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.
讲授新课
例1 设f (x)是定义在区间[-6, 11]上的
函数. 如果f (x)在区间[-6, -2]上递减,
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最大值.
复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.


讲授新课
函数最大值概念:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:

最全函数概念及基本性质知识点总结及经典例题

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质一、函数的概念(1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.(2)函数的三要素:定义域、值域和对应法则.注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( )⑪3)5)(3(1+-+=x x x y ,52-=x y ;⑫111-+=x x y ,)1)(1(2-+=x x y ;⑬x x f =)(,2)(x x g =;⑭()f x =()F x =⑮21)52()(-=x x f ,52)(2-=x x f 。

A .⑪、⑫B .⑫、⑬ C .⑭D .⑬、⑮ 2:求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()635-=x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f ,131><x x 或 ④对数函数的真数大于零0,log )(>=x x x f a ,当对数或指数函数的底数中含变量时,底数须大于零且不等于1。

如:()212()log 25f x x x =-+⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.如:)2(log 22x y --=⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.如:()[]()x f x f 28,2,的定义域是的定义域为822≤≤x⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.例:求函数()())1lg(lg x k x x f -+-=的定义域。

函数的概念及两大基本性质


o
x
o
1
x
例:试画出函数f(x)=x2+1的图象,并 根据图象回答下列问题:
(1)比较f(-2),f(1),f(3)的大小; (2)若0<x1<x2,试比较f(x1),f(x2) 的大小.
画下列函数图象:
(1)y = 2x + 1
x ∈{ 1,2,3 }
x1 x2 x3
解:
y
3 y 5 7
y
o
x
2、二次函数的图象 一条抛物线 是 __________________
如 y = x 2 + 2x o x
y
3、反比例函数的图象 双曲线 是 __________________
如 y=
1 x
o
x
函数图象
(1)将自变量的一个值x0作为横坐标,相应的 函数值f(x0)作为纵坐标,就得到坐标平面上 的一个点(x0,f(x0));
= -2x -4
当 -5 < x ≤ 1 时,
y = ( x + 5 ) -( x -1 ) = 6 当 x >1 时, y = ( x + 5 ) + ( x -1 ) = 2x + 4 -5 o 1 x 6
(4)y = | x 2 + 2x -8 |
解:当 x2 + 2x -8 ≥ 0 即 x ≤ -4 或 x ≥ 2 时 y = x 2 + 2x -8 = ( x + 1) 2 -9 当 x 2 + 2x -8 < 0 即 -4< x < 2 时 y = -( x 2 + 2x -8 ) = - ( x + 1) 2 + 9 -4 o 2 x

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!

初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。

4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。

第三章 函数的概念与性质(习题课 函数的概念及其表示的综合应用)-讲练课件(人教A019必修第一册)


2
1
x

= 3x + 1 ,则 f 2 = ___________.
3
>
m
<
>
/m
<
(2)二次函数 f x = ax 2 + bx + c a, b ∈ , a ≠ 0 满足条件:①当 x ∈ 时, f x 的图象关于
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
直线 x = −1 对称;② f 1 = 1 ;③ f x 在 上的最小值为0.求函数 f x 的解析式.
值域.对于 f x = ax + b + cx + d (其中 a , b , c , d 为常数,且 a ≠ 0 )型的函数常用
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
>
m
<
>
/m
<
换元法.
返回至目录
针对训练3.(1) 函数 f x =
A. [0,1]
[解析] ∵
x2
1

函数的概念及基本性质


例 3、 已知 A = B = {1,2,3} , 映射 f : A → B 满足 f [ f ( x )] = f ( x ) 则这样的映射 f 的个数是 。
类题 : 已知 A = b = { 1 ,2 ,3 ,4 ,5 }, 映射 f : A → B 满足 :f 则这样的映射 f 的个数为 .
0 .5
类题 : 已知二次函数
f ( x ) = ax
2
+ bx ( a , b 为常数 , 且 a ≠0 ) .
满足条件 f ( 2 ) = 0 , 且方程 f ( x ) = x 有两个相同的实根 ( 1 )求 f ( x )的解析式 ; ( 2 )是否存在实数
m , n ( m < n ), 使得 f ( x )的定义域 、
+ f(x
2
)
例 6: 若 f(x)=
2
x + 2 ax - a
2
- 1的定义域为
R , 则 a 的取值范围为
类题 1 : 已知函数 f ( x ) = log a ( ax (1) (2) 若a = 1 2
2
+ 2 x + 1 ).
, 求函数 f ( x )的定义域 ; R , 求实数 a 的取值范围 .
对应关系完全一致,则这两
、 图像法 和列表法.
如果在函数的定义域内,对于自变量 x 的不同取值区间,有不同的 对应关系,这样的函数通常叫做分段函数.
例 1、 已知 A = { x | 0 ≤ x ≤ 2 }, B = {y | 1 ≤ y ≤ 2 }, 则下图中能表示 从 A 到 B 的映射的是 ( )
1、基本初等函数的值域求法; 2、一般求值域基本思路。
图 象
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档