2015年山东省高考数学试卷(理科)
2015高考真题山东卷理科数学真题答案解析

绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A={X|X²-4X+3<0},B={X|2<X<4},则A I B=(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】(2)若复数Z满足1Zii=-,其中i为虚数为单位,则Z=(A)1-i (B)1+i (C)-1-i (D)-1+i 【答案】A【解析】(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B 【解析】(4)已知ABCD 的边长为a ,∠ABC=60o ,则·=(A )-(B )- (C ) (D )【答案】D【解析】(5)不等式|X-1|-|X-5|<2的解集是(A)(-,4)(B)(-,1)(C)(1,4)(D)(1,5)【答案】A【解析】(6)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=(A)3 (B)2 (C)-2 (D)-3【答案】B【解析】(7)在梯形ABCD中,ABC=,AD//BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A)(B)(C)(D)2【答案】C【解析】(8)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N(μ,σ²)),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.)(A)4.56% (B)13.59% (C)27.18% (D)31.74%【答案】B【解析】(9)一条光纤从点(-2,-3)射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()(A)或(B或(C)或(D)或【答案】D【解析】(10)设函数f(x)=,则满足f(f(a))=的a取值范围是()(A)[,1](B)[0,1](C)[(D)[1, +【答案】C【解析】第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年普通高等学校招生全国统一考试山东卷理科数学(2015年山东省高考理科数学)

2015年普通高等学校招生全国统一考试山东理科数学参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B ).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x|x 2﹣4x +3<0},B ={x|2<x<4},则A ∩B =( ) A .(1,3) B .(1,4) C .(2,3) D .(2,4) 答案:C 解析:A ={x|x 2﹣4x +3<0}={x|1<x<3},B ={x|2<x<4},结合数轴,知A ∩B ={x|2<x<3}. 2.若复数z 满足z 1−i=i ,其中i 为虚数单位,则z =( )A .1﹣iB .1+iC .﹣1﹣iD .﹣1+i答案:A解析:∵z1−i =i ,∴z =i(1﹣i)=i ﹣i 2=1+i .∴z =1﹣i .3.要得到函数y =sin (4x −π3)的图象,只需将函数y =sin4x 的图象( ) A .向左平移π12个单位 B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位答案:B解析:∵y =sin (4x −π3)=sin [4(x −π12)],∴只需将函数y =sin4x 的图象向右平移π12个单位即可.4.已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A .﹣32a 2 B .﹣34a 2 C .34a 2 D .32a 2答案:D解析:如图设BA⃗⃗⃗⃗⃗ =a ,BC ⃗⃗⃗⃗⃗ =B .则BD ⃗⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA ⃗⃗⃗⃗⃗ =(a +b)·a =a 2+a·b =a 2+a ·a ·cos60°=a 2+12a 2=32a 2.5.不等式|x ﹣1|﹣|x ﹣5|<2的解集是( )A .(﹣∞,4)B .(﹣∞,1)C .(1,4)D .(1,5) 答案:A解析:当x ≤1时,不等式可化为(1﹣x )﹣(5﹣x )<2,即﹣4<2,满足题意;当1<x<5时,不等式可化为(x ﹣1)﹣(5﹣x )<2,即2x ﹣6<2,解得1<x<4; 当x ≥5时,不等式可化为(x ﹣1)﹣(x ﹣5)<2,即4<2,不成立. 故原不等式的解集为(﹣∞,4). 6.已知x ,y 满足约束条件{x −y ≥0,x +y ≤2,y ≥0.若z =ax +y 的最大值为4,则a =( )A .3B .2C .﹣2D .﹣3答案:B解析:由约束条件画出可行域,如图阴影部分所示.线性目标函数z =ax +y ,即y =﹣ax +z. 设直线l 0:ax +y =0.当﹣a ≥1,即a ≤﹣1时,l 0过O (0,0)时,z 取得最大值,z max =0+0=0,不合题意;当0≤﹣a<1,即﹣1<a ≤0时,l 0过B (1,1)时,z 取得最大值,z max =a +1=4,∴a =3(舍去); 当﹣1<﹣a<0时,即0<a<1时,l 0过B (1,1)时,z 取得最大值,z max =2a +1=4,∴a =32(舍去);当﹣a ≤﹣1,即a ≥1时,l 0过A (2,0)时,z 取得最大值,z max =2a +0=4,∴a =2. 综上,a =2符合题意.7.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A .2π3B .4π3C .5π3D .2π答案:C解析:由题意可得旋转体为一个圆柱挖掉一个圆锥.V 圆柱=π×12×2=2π,V 圆锥=13×π×12×1=π3.∴V 几何体=V 圆柱﹣V 圆锥=2π﹣π3=5π3.8.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%答案:B解析:由正态分布N (0,32)可知,ξ落在(3,6)内的概率为P(μ−2σ<ξ<μ+2σ)−P(μ−σ<ξ<μ+σ)2=95.44%−68.26%2=13.59%.9.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A .﹣53或﹣35 B .﹣32或﹣23 C .﹣54或﹣45D .﹣43或﹣34答案:D解析:如图,作出点P (﹣2,﹣3)关于y 轴的对称点P 0(2,﹣3).由题意知反射光线与圆相切,其反向延长线过点P 0.故设反射光线为y =k (x ﹣2)﹣3,即kx ﹣y ﹣2k ﹣3=0.∴圆心到直线的距离d =√1+k 2=1,解得k =﹣43或k =﹣34.10.设函数f (x )={3x −1,x <1,2x ,x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[23,1] B .[0,1] C .[23,+∞)D .[1,+∞)答案:C解析:当a =2时,f (2)=4,f (f (2))=f (4)=24,显然f (f (2))=2f (2),故排除A ,B .当a =23时,f (23)=3×23﹣1=1,f (f (23))=f (1)=21=2. 显然f (f (23))=2f(23).故排除D . 综上,选C .第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.观察下列各式:C 10=40;C 30+C 31=41; C 50+C 51+C 52=42; C 70+C 71+C 72+C 73=43; ……照此规律,当n ∈N *时,C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=__________.答案:4n ﹣1解析:观察各式有如下规律:等号左侧第n 个式子有n 项,且上标分别为0,1,2,…,n ﹣1,第n 行每项的下标均为2n ﹣1.等号右侧指数规律为0,1,2,…,n ﹣1.所以第n 个式子为C 2n−10+C 2n−11+C 2n−12+…+C 2n−1n−1=4n ﹣1.12.若“∀x ∈[0,π4],tan x ≤m ”是真命题,则实数m 的最小值为__________. 答案:1解析:由题意知m ≥(tan x )max .∵x ∈[0,π4],∴tan x ∈[0,1], ∴m ≥1.故m 的最小值为1.13.执行下边的程序框图,输出的T 的值为__________.答案:116解析:初始n =1,T =1.又∫1x n d x =1n +1x n +1|01=1n +1,∵n =1<3,∴T =1+11+1=32,n =1+1=2; ∵n =2<3,∴T =32+12+1=116,n =2+1=3;∵n =3,不满足“n<3”,执行“否”,∴输出T =116.14.已知函数f (x )=a x +b (a>0,a ≠1)的定义域和值域都是[﹣1,0],则a +b =__________. 答案:﹣32解析:f (x )=a x +b 是单调函数,当a>1时,f (x )是增函数,∴{a −1+b =−1,a 0+b =0,无解.当0<a<1时,f (x )是减函数,∴{a −1+b =0,a 0+b =−1,∴{a =12,b =−2. 综上,a +b =12+(﹣2)=﹣32.15.平面直角坐标系xOy 中,双曲线C 1:x 2a −y 2b =1(a>0,b>0)的渐近线与抛物线C 2:x 2=2py (p>0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为__________. 答案:32解析:双曲线的渐近线为y =±ba x.由{y =ba x ,x 2=2py ,得A (2bp a ,2b 2p a ).由{y =−ba x ,x 2=2py ,得B (−2bp a ,2b 2p a 2). ∵F (0,p2)为△OAB 的垂心,∴k AF ·k OB =﹣1.即2b 2p a 2−p22bpa−0·(−ba )=﹣1,解得b 2a 2=54,∴c 2a 2=94,即可得e =32.三、解答题:本大题共6小题,共75分.16.(本小题满分12分)设f (x )=sin x cos x ﹣cos 2(x +π4). (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,C .若f (A2)=0,a =1,求△ABC 面积的最大值. 解:(1)由题意知f (x )=sin2x 2−1+cos(2x +π2)2=sin2x 2−1−sin2x2=sin2x ﹣12.由﹣π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得﹣π4+k π≤x ≤π4+k π,k ∈Z ;由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z .所以f (x )的单调递增区间是[−π4+kπ,π4+kπ](k ∈Z);单调递减区间是[π4+kπ,3π4+kπ](k ∈Z).(2)由f (A2)=sin A ﹣12=0,得sin A =12,由题意知A 为锐角,所以cos A =√32. 由余弦定理a 2=b 2+c 2﹣2bc cos A , 可得1+√3bc =b 2+c 2≥2bc ,即bc ≤2+√3,且当b =c 时等号成立. 因此12bc sin A ≤2+√34.所以△ABC 面积的最大值为2+√34.17.(本小题满分12分)如图,在三棱台DEF ﹣ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点. (1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小.(1)证法一:连接DG ,CD ,设CD ∩GF =O ,连接OH.在三棱台DEF ﹣ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形.则O 为CD 的中点,又H 为BC 的中点,所以OH ∥BD ,又OH ⊂平面FGH ,BD ⊄平面FGH ,所以BD ∥平面FGH.证法二:在三棱台DEF ﹣ABC 中,由BC =2EF ,H 为BC 的中点,可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形.可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点,所以GH ∥AB . 又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH.(2)解法一:设AB =2,则CF =1.在三棱台DEF ﹣ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形,因此DG ∥FC .又FC ⊥平面ABC , 所以DG ⊥平面ABC .在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点,所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G ﹣xyz. 所以G (0,0,0),B (√2,0,0),C (0,√2,0),D (0,0,1). 可得H (√22,√22,0),F (0,√2,1), 故GH ⃗⃗⃗⃗⃗⃗ =(√22,√22,0),GF ⃗⃗⃗⃗⃗ =(0,√2,1). 设n =(x ,y ,z )是平面FGH 的一个法向量, 则由{n ·GH ⃗⃗⃗⃗⃗⃗ =0,n ·GF ⃗⃗⃗⃗⃗ =0,可得{x +y =0,√2y +z =0.可得平面FGH 的一个法向量n =(1,﹣1,√2). 因为GB ⃗⃗⃗⃗⃗ 是平面ACFD 的一个法向量,GB⃗⃗⃗⃗⃗ =(√2,0,0), 所以cos <GB ⃗⃗⃗⃗⃗ ,n >=GB ⃗⃗⃗⃗⃗ ·n |GB ⃗⃗⃗⃗⃗ |·|n|√22√212. 所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.解法二:作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH. 由FC ⊥平面ABC ,得HM ⊥FC , 又FC ∩AC =C ,所以HM ⊥平面ACFD . 因此GF ⊥NH ,所以∠MNH 即为所求的角.在△BGC 中,MH ∥BG ,MH =12BG =√22, 由△GNM ∽△GCF ,可得MNFC =GMGF ,从而MN =√66.由HM ⊥平面ACFD ,MN ⊂平面ACFD ,得HM ⊥MN ,因此tan ∠MNH =HM MN=√3,所以∠MNH =60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.18.(本小题满分12分)设数列{a n }的前n 项和为S n .已知2S n =3n +3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . 解:(1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3,当n>1时,2S n ﹣1=3n ﹣1+3,此时2a n =2S n ﹣2S n ﹣1=3n ﹣3n ﹣1=2×3n ﹣1,即a n =3n ﹣1,所以a n ={3,n =1,3n−1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n>1时,b n =31﹣n log 33n ﹣1=(n ﹣1)·31﹣n . 所以T 1=b 1=13;当n>1时,T n =b 1+b 2+b 3+…+b n =13+(1×3﹣1+2×3﹣2+…+(n ﹣1)×31﹣n ),所以3T n =1+(1×30+2×3﹣1+…+(n ﹣1)×32﹣n ),两式相减,得2T n =23+(30+3﹣1+3﹣2+ (32)n )﹣(n ﹣1)×31﹣n =23+1−31−n 1−3−1﹣(n ﹣1)×31﹣n =136−6n +32×3n,所以T n =1312−6n +34×3n.经检验,n =1时也适合. 综上可得T n =1312−6n +34×3n.19.(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得﹣1分;若能被10整除,得1分. (1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望EX.解:(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为C 93=84,随机变量X 的取值为:0,﹣1,1,因此P (X =0)=C 83C 93=23,P (X =﹣1)=C 42C 93=114,P (X =1)=1﹣114−23=1142.所以X 的分布列为则EX =0×23+(﹣1)×114+1×1142=421.20.(本小题满分13分)平面直角坐标系xOy 中,已知椭圆C :x 2a2+y 2b 2=1(a>b>0)的离心率为√32,左、右焦点分别是F 1,F 2.以F 1为圆心以3为半径的圆与以F 2为圆心以1为半径的圆相交,且交点在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q.①求|OQ||OP|的值;②求△ABQ 面积的最大值.解:(1)由题意知2a =4,则a =2.又ca =√32,a 2﹣c 2=b 2,可得b =1,所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ||OP|=λ,由题意知Q (﹣λx 0,﹣λy 0).因为x 024+y 02=1,又(−λx 0)216+(−λy 0)24=1,即λ24(x 024+y 02)=1,所以λ=2,即|OQ||OP|=2. ②设A (x 1,y 1),B (x 2,y 2),将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2﹣16=0, 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=﹣8km 1+4k 2,x 1x 2=4m 2−161+4k 2.所以|x 1﹣x 2|=4√16k 2+4−m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ), 所以△OAB 的面积S =12|m||x 1﹣x 2|=2√16k 2+4−m 2|m|1+4k 2=2√(16k 2+4−m 2)m 21+4k 2=2√(4−m 21+4k2)m 21+4k 2.设m 21+4k 2=t.将y =kx +m 代入椭圆C 的方程,可得(1+4k 2)x 2+8kmx +4m 2﹣4=0, 由Δ≥0,可得m 2≤1+4k 2. ②由①②可知0<t ≤1,因此S =2√(4−t)t =2√−t 2+4t .故S ≤2√3,当且仅当t =1,即m 2=1+4k 2时取得最大值2√3. 由①知,△ABQ 面积为3S ,所以△ABQ 面积的最大值为6√3.21.(本小题满分14分)设函数f (x )=ln(x +1)+a (x 2﹣x ),其中a ∈R . (1)讨论函数f (x )极值点的个数,并说明理由; (2)若∀x>0,f (x )≥0成立,求a 的取值范围.解:(1)由题意知函数f (x )的定义域为(﹣1,+∞),f'(x )=1x +1+a (2x ﹣1)=2ax 2+ax−a +1x +1.令g (x )=2ax 2+ax ﹣a +1,x ∈(﹣1,+∞).当a =0时,g (x )=1,此时f'(x )>0,函数f (x )在(﹣1,+∞)单调递增,无极值点; 当a>0时,Δ=a 2﹣8a (1﹣a )=a (9a ﹣8).①当0<a ≤89时,Δ≤0,g (x )≥0,f'(x )≥0,函数f (x )在(﹣1,+∞)单调递增,无极值点;②当a>89时,Δ>0,设方程2ax 2+ax ﹣a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=﹣12,所以x 1<﹣14,x 2>﹣14.由g (﹣1)=1>0,可得﹣1<x 1<﹣14.所以当x ∈(﹣1,x 1)时,g (x )>0,f'(x )>0,函数f (x )单调递增, 当x ∈(x 1,x 2)时,g (x )<0,f'(x )<0,函数f (x )单调递减, 当x ∈(x 2,+∞)时,g (x )>0,f'(x )>0,函数f (x )单调递增. 因此函数有两个极值点. 当a<0时,Δ>0,由g (﹣1)=1>0,可得x 1<﹣1.当x ∈(﹣1,x 2)时,g (x )>0,f'(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f'(x )<0,函数f (x )单调递减; 所以函数有一个极值点.综上所述,当a<0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a>89时,函数f (x )有两个极值点.(2)由(1)知,①当0≤a ≤89时,函数f (x )在(0,+∞)上单调递增,因为f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意;②当89<a ≤1时,由g (0)≥0,得x 2≤0,所以函数f (x )在(0,+∞)上单调递增.又f (0)=0,所以x ∈(0,+∞)时,f (x )>0,符合题意; ③当a>1时,由g (0)<0,可得x 2>0. 所以x ∈(0,x 2)时,函数f (x )单调递减;因为f (0)=0,所以x ∈(0,x 2)时,f (x )<0,不合题意; ④当a<0时,设h (x )=x ﹣ln(x +1). 因为x ∈(0,+∞)时,h'(x )=1﹣1x +1=xx +1>0,所以h (x )在(0,+∞)上单调递增.因此当x ∈(0,+∞)时,h (x )>h (0)=0, 即ln(x +1)<x.可得f (x )<x +a (x 2﹣x )=ax 2+(1﹣a )x , 当x>1﹣1a 时,ax 2+(1﹣a )x<0, 此时f (x )<0,不合题意.综上所述,a 的取值范围是[0,1].。
2015年高考理科数学山东卷

数学(理科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分 150 分,考试时间 120 分钟. 参考公式:
x y≥0, 6.已知 x,y 满足约束条件 x y≤2, 若 z ax y 的最大值为 4,则 a= y≥0.
-------------在 --------------------此 --------------------卷 --------------------上 --------------------答 --------------------题 --------------------无 --------------------效 ---------------
( 1,4) B.
(2,3) C.
(2, 4) D.
( D. 1 i ( ) )
z 2.若复数 z 满足 =i,其中 i 为虚数单位,则 z= 1 i
A. 1 i B. 1 i C. 1 i
9.一条光线从点( 2 , 3 )射出,经 y 轴反射后与圆 ( x 3)2 ( y 2) 2 1 相切,则反射 光线所在直线的斜率为 A. 或 ( ) 14.已知函数 f ( x) a x b(a 0, a 1) 的定义域和值域都是 [1,0] ,则 a b _______.
பைடு நூலகம்
x2 y 2 3 , 左、 右焦 2 1(a b 0) 的离心率为 2 2 a b
绝密★启用前
5.不等式 | x 1 | | x 5 | 2 的解集是 A. (, 4) B. (,1) C. (1, 4) D. (1,5)
2015年普通高等学校招生全国统一考试 理科数学(山东卷)

绝密★启用前2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A={X|X²-4X+3<0},B={X|2<X<4},则A B=(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】(2)若复数Z 满足1Z i i=-,其中i 为虚数为单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i【答案】A【解析】(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】(4)已知ABCD 的边长为a ,∠ABC=60o ,则错误!未找到引用源。
.错误!未找到引用源。
=(A )- 错误!未找到引用源。
(B )- 错误!未找到引用源。
2015年高考山东理科数学试题及答案解析(K12教育文档)

(直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2015年高考山东理科数学试题及答案解析(word版可编辑修改)的全部内容。
2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C)()2,3 (D )()2,4 (2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A)1i - (B )1i + (C )1i -- (D )1i -+(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A )向左平移12π个单位(B )向右平移12π个单位(C)向左平移3π个单位(D)向右平移3π个单位 (4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则=( )(A )232a - (B )234a - (C )234a (D )232a(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞(B )(,1)-∞ (C )(1,4) (D )(1,5)(6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A )3 (B)2 (C )—2 (D )-3 (7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) (A )23π (B)43π (C )53π(D )2π (8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A )4.56% (B )13.59% (C )27.18% (D )31.74% (9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C )54-或45- (D )43-或34- (10)【2015年山东,理10】设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( ) (A )2[,1]3(B)[0,1] (C)2[,)3+∞ (D)[1,)+∞第II 卷(共100分)二、填空题:本大题共5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .(12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 .(14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += .(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12A f a ==,求ABC ∆面积.(17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC -中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .(19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数"中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得—1分;若能被10整除,得1分. (Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ ∆面积最大值.(21)【2015年山东,理21】(本题满分14分)设函数2∈.=++-,其中a Rf x x a x x()ln(1)()(Ⅰ)讨论函数()f x极值点的个数,并说明理由;(Ⅱ)若0∀>,()0xf x≥成立,求a的取值范围.2015年普通高等学校招生全国统一考试(山东卷)数学(理科)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2015年山东,理1】已知集合2{|430}x x x -+<,{|24}B x x =<<,则A B =( )(A )()1,3 (B )()1,4 (C )()2,3 (D )()2,4 【答案】C【解析】2{|430}{|13}A x x x x x =-+<=<<,(2,3)A B =,故选C . (2)【2015年山东,理2】若复数z 满足i 1iz=-,其中i 是虚数单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+ 【答案】A【解析】2(1i)i i i 1i z =-=-+=+,1i z =-,故选A .(3)【2015年山东,理3】要得到函数sin(4)3y x π=-的图象,只需将函数sin 4y x =的图像( )(A )向左平移12π个单位(B )向右平移12π个单位(C )向左平移3π个单位(D )向右平移3π个单位【答案】B【解析】sin 4()12y x π=-,只需将函数sin 4y x =的图像向右平移12π个单位,故选B .(4)【2015年山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则=( )(A )232a - (B )234a - (C)234a (D )232a【答案】D【解析】由菱形ABCD 的边长为a ,60ABC ∠=可知18060120BAD ∠=-=,2223()()cos1202BD CD AD AB AB AB AD AB a a a a ⋅=-⋅-=-⋅+=-⋅+=,故选D .(5)【2015年山东,理5】不等式|1||5|2x x ---<的解集是( )(A )(,4)-∞ (B )(,1)-∞ (C)(1,4) (D )(1,5) 【答案】A【解析】当1x <时,1(5)42x x ---=-<成立;当15x ≤<时,1(5)262x x x ---=-<,解得4x <,则14x ≤<;当5x ≥时,1(5)42x x ---=<不成立.综上4x <,故选A . (6)【2015年山东,理6】已知,x y 满足约束条件020x y x y y -≥⎧⎪+≤⎨⎪≥⎩若z ax y =+的最大值为4,则a =( )(A )3 (B)2 (C )—2 (D )-3【答案】B【解析】由z ax y =+得y ax z =-+,借助图形可知:当1a -≥,即1a ≤-时在0x y ==时有最大值0,不符合题意;当01a ≤-<,即10a -<≤时在1x y ==时有最大值14,3a a +==,不满足10a -<≤;当10a -<-≤,即01a <≤时在1x y ==时有最大值14,3a a +==,不满足01a <≤;当1a -<-,即1a >时在2,0x y ==时有最大值24,2a a ==,满足1a >,故选B .(7)【2015年山东,理7】在梯形ABCD 中,2ABC π∠=,//AD BC ,222BC AD AB ===.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )23π (B )43π (C )53π(D )2π 【答案】C【解析】2215121133V πππ=⋅⋅-⋅⋅=,故选C .(8)【2015年山东,理8】已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落在区间()3,6内的概率为( )(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,(22)95.44%P μσξμσ-<<+=)(A)4.56% (B )13.59% (C )27.18% (D )31.74% 【答案】D【解析】1(36)(95.44%68.26%)13.59%2P ξ<<=-=,故选D .(9)【2015年山东,理9】一条光线从点(2,3)--射出,经y 轴反射与圆22(3)(2)1x y ++-=相切,则反射光线所在的直线的斜率为( )(A )53-或35- (B )32-或23- (C)54-或45- (D )43-或34- 【答案】D【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2),y k x +=-即230kx y k ---=,则221,|55|11d k k k ==+=++,解得43k =-或34-,故选D .(10)【2015年山东,理10】设函数31,1,()2,1.xx x f x x -<⎧=⎨≥⎩则满足()(())2f a f f a =的取值范围是( ) (A)2[,1]3(B )[0,1] (C )2[,)3+∞ (D)[1,)+∞【答案】C【解析】由()(())2f a f f a =可知()1f a ≥,则121aa ≥⎧⎨≥⎩或1311a a <⎧⎨-≥⎩,解得23a ≥,故选C . 第II 卷(共100分)二、填空题:本大题共5小题,每小题5分 (11)【2015年山东,理11】观察下列各式:010113301225550123377774;4;4;4;C C C C C C C C C C =+=++=+++=照此规律,当*n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【解析】0121012121212121212121211(2222)2n n n n n n n n n n C C C C C C C C ----------++++=++++021122223121212121212121210121212112121212121211[()()()()]211()2422n n n n n n n n n n n n n n n n n n n n n n n n C C C C C C C C C C C C C C ----------------------=++++++++=+++++++=⋅= (12)【2015年山东,理12】若“[0,],tan 4x x m π∀∈≤”是真命题,则实数m 的最小值为 .【答案】1【解析】“[0,],tan 4x x m π∀∈≤”是真命题,则tan 14m π≥=,于是实数m 的最小值为1.(13)【2015年山东,理13】执行右边的程序框图,输出的T 的值为 . 【答案】116【解析】11200111111236T xdx x dx =++=++=⎰⎰. (14)【2015年山东,理14】已知函数()x f x a b =+(0,1)a a >≠的定义域和值域都是[1,0]-,则a b += . 【答案】32-【解析】当1a >时1010a b a b -⎧+=-⎨+=⎩,无解;当01a <<时1001a b a b -⎧+=⎨+=-⎩,解得12,2b a =-=,则13222a b +=-=-.(15)【2015年山东,理15】平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .【答案】32【解析】22122:1(0,0)x y C a b a b -=>>的渐近线为by x a=±,则22222222(,),(,)pb pb pb pb A B a a a a -22:2(0)C x py p =>的焦点(0,)2p F ,则22222AF pb pa a k pb b a-==,即2254b a =,2222294c a b a a +==,32c e a ==. 三、解答题:本大题共6题,共75分.(16)【2015年山东,理16】(本小题满分12分)设2()sin cos cos ()4f x x x x π=-+.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()0,12A f a ==,求ABC ∆面积. 解:(Ⅰ)由111111()sin 2[1cos(2)]sin 2sin 2sin 22222222f x x x x x x π=-++=-+=-,由222,22k x k k Z ππππ-≤≤+∈得,44k x k k Z ππππ-≤≤+∈,则()f x 的递增区间为[,],44k k k Z ππππ-+∈;由3222,22k x k k Z ππππ+≤≤+∈得3,44k x k k Z ππππ+≤≤+∈,则()f x 的递增区间为3[,],44k k k Z ππππ++∈.(Ⅱ)在锐角ABC ∆中,11()sin 0,sin 222A f A A =-==,6A π=,而1a =,由余弦定理可得2212cos 23(23)6b c bc bc bc bc π=+-≥-=-,当且仅当b c =时等号成立,即2323bc ≤=+-,11123sin sin 2264ABC S bc A bc bc π∆+===≤故ABC ∆面积的最大值为23+. (17)【2015年山东,理17】(本小题满分12分)如图,在三棱台DEF ABC-中,2,,AB DE G H =分别为,AC BC 的中点. (Ⅰ)求证://BD 平面FGH ;(Ⅱ)若CF ⊥平面ABC ,,,45AB BC CF DE BAC ⊥=∠=,求平面FGH 与平面ACFD 所成角(锐角)的大小.解:(Ⅰ)证明:连接DG ,DC ,设DC 与GF 交于点T ,在三棱台DEF ABC -中,2AB DE =,则2AC DF =, 而G 是AC 的中点,DF AC ,则//DF GC ,所以四边形DGCF 是平行四边形,T 是DC 的中点,DG FC . 又在BDC ∆,是BC 的中点,则TH DB ,又BD ⊄平面FGH ,TH ⊂平面FGH ,故//BD 平面FGH .(Ⅱ)由CF ⊥平面ABC ,可得DG ⊥平面ABC 而,AB BC ⊥,45BAC ∠=,则GB AC ⊥,于是,,GB GA GC 两两垂直,以点G 为坐标原点, ,,GA GB GC 所在的直线,分别为,,x y z 轴建立空间直角坐标系, 设2AB =,则1,22,2DE CF AC AG ====,22(0,2,0),(2,0,0),(2,0,1),(,,0)22B C F H ---, 则平面ACFD 的一个法向量为1(0,1,0)n =,设平面FGH 的法向量为2222(,,)n x y z =,则2200n GH n GF ⎧⋅=⎪⎨⋅=⎪⎩,即222222020x y x z ⎧-=⎪⎨⎪-+=⎩, 取21x =,则221,2y z ==,2(1,1,2)n =,121cos ,2112n n <>==++,故平面FGH 与平面ACFD 所成角(锐角)的大小为60.(18)【2015年山东,理18】(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足3log n n n a b a =,求数列{}n b 的前n 项和n T .解:(Ⅰ)由233n n S =+可得111(33)32a S ==+=,11111(33)(33)3(2)22n n n n n n a S S n ---=-=+-+=≥,而11133a -=≠,则13,13,1n n n a n -=⎧=⎨>⎩.(Ⅱ)由3log n n n a b a =及13,13,1n n n a n -=⎧=⎨>⎩,可得3111log 3113n n n n n a b n a n -⎧=⎪⎪==⎨-⎪>⎪⎩ 2311123133333n n n T --=+++++,2234111123213333333n n n n n T ---=++++++,22312231211111111111111()3333333333333331121213113213319392233182313n n n n n n n n n nn n T n n n ----=+-++++-=-+++++----+=+-=+--=-⋅⋅- 113211243n n n T -+=-⋅ (19)【2015年山东,理19】(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取一个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数"的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数";(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX . 解:(Ⅰ)125,135,145,235,245,345;(Ⅱ)X 的所有取值为—1,0,1.32112844443339992111(0),(1),(1)31442C C C C C P X P X P X C C C ⋅+====-=====0(1)13144221EX =⨯+⨯-+⨯=.(20)【2015年山东,理20】(本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q .(i )求||||OQ OP 的值;(ii )求ABQ ∆面积最大值.解:(Ⅰ)由椭圆2222:1(0)x y C a b a b+=>>可知ce a =而222a b c =+则2,a b c ==,左、右焦点分别是12(,0),,0)F F ,圆1F:22()9,x y ++=圆2F:22()1,x y +=由两圆相交可得24<<,即12<,交点在椭圆C 上,则224134b b +=⋅,整理得424510b b -+=,解得21b =,214b =(舍去), 故21b =,24a =,椭圆C 的方程为2214x y +=.(Ⅱ)(i)椭圆E 的方程为221164x y +=,设点00(,)P x y ,满足220014x y +=,射线000:(0)y PO y x xx x =<,代入221164x y +=可得点00(2,2)Q x y --,于是||2||OQ OP =.(ii )点00(2,2)Q x y --到直线AB 距离等于原点O 到直线AB 距离的3倍:d =221164y kx mx y =+⎧⎪⎨+=⎪⎩,得224()16x kx m ++=, 整理得222(14)84160k x kmx m +++-=.2222226416(41)(4)16(164)0k m k m k m ∆=-+-=+->,||AB =211||||32214m S AB d k ∆==⋅⋅⋅=+ 22221646122(41)m k m k ++-≤⋅=+,当且仅当22||82m m k =+等号成立.而直线y kx m =+与椭圆22:14x C y +=有交点P ,则2244y kx m x y =+⎧⎨+=⎩有解, 即222224()4,(14)8440x kx m k x kmx m ++=+++-=有解,其判别式22222216416(14)(1)16(14)0k m k m k m ∆=-+-=+-≥,即2214k m +≥, 则上述2282m k =+不成立,等号不成立,设(0,1]t =,则S ∆==(0,1]为增函数, 于是当2214k m +=时max S ∆==ABQ ∆面积最大值为12.(21)【2015年山东,理21】(本题满分14分)设函数2()ln(1)()f x x a x x =++-,其中a R ∈.(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0x ∀>,()0f x ≥成立,求a 的取值范围. 解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞,21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++,设2()21g x ax ax a =++-, 当0a =时,1()1,()01g x f x x '==>+,函数()f x 在(1,)-+∞为增函数,无极值点.当0a >时,228(1)98a a a a a ∆=--=-,若809a <≤时0∆≤,()0,()0g x f x '≥≥,函数()f x 在(1,)-+∞为增函数,无极值点.若89a >时0∆>,设()0g x =的两个不相等的实数根12,x x ,且12x x <,且1212x x +=-,而(1)10g -=>,则12114x x -<<-<,所以当1(1,),()0,()0,()x x g x f x f x '∈->>单调递增;当12(,),()0,()0,()x x x g x f x f x '∈<<单调递减;当2(,),()0,()0,()x x g x f x f x '∈+∞>>单调递增.因此此时函数()f x 有两个极值点;当0a <时0∆>,但(1)10g -=>,121x x <-<,所以当2(1,),()0,()0,()x x g x f x f x '∈->>单调 递増;当2(,),()0,()0,()x x g x f x f x '∈+∞<<单调递减,所以函数只有一个极值点.综上可知当809a ≤≤时()f x 的无极值点;当0a <时()f x 有一个极值点;当89a >时,()f x 的有两个极值点.(Ⅱ)由(Ⅰ)可知当809a ≤≤时()f x 在(0,)+∞单调递增,而(0)0f =,则当(0,)x ∈+∞时,()0f x >,符合题意; 当819a <≤时,2(0)0,0g x ≥≤,()f x 在(0,)+∞单调递增,而(0)0f =, 则当(0,)x ∈+∞时,()0f x >,符合题意;当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.另解:(Ⅰ)2()ln(1)()f x x a x x =++-,定义域为(1,)-+∞21(21)(1)121()(21)111a x x ax ax af x a x x x x -++++-'=+-==+++, 当0a =时,1()01f x x '=>+,函数()f x 在(1,)-+∞为增函数,无极值点. 设222()21,(1)1,8(1)98g x ax ax a g a a a a a =++--=∆=--=-,当0a ≠时,根据二次函数的图像和性质可知()0g x =的根的个数就是函数()f x 极值点的个数.若(98)0a a ∆=-≤,即809a <≤时,()0g x ≥,()0f x '≥函数在(1,)-+∞为增函数,无极值点.若(98)0a a ∆=->,即89a >或0a <,而当0a <时(1)0g -≥此时方程()0g x =在(1,)-+∞只有一个实数根,此时函数()f x 只有一个极值点;当89a >时方程()0g x =在(1,)-+∞都有两个不相等的实数根,此时函数()f x 有两个极值点;综上可知当809a ≤≤时()f x 的极值点个数为0;当0a <时()f x 的极值点个数为1;当89a >时, ()f x 的极值点个数为2.(Ⅱ)设函数2()ln(1)()f x x a x x =++-,0x ∀>,都有()0f x ≥成立,即2ln(1)()0x a x x ++-≥当1x =时,ln20≥恒成立;当1x >时,20x x ->,2ln(1)0x a x x++≥-;当01x <<时,20x x -<,2ln(1)0x a x x++≤-;由0x ∀>均有ln(1)x x +<成立.故当1x >时,,2ln(1)11x x x x +<--(0,)∈+∞,则只需0a ≥; 当01x <<时,2ln(1)1(,1)1x x x x +>∈-∞---,则需10a -+≤,即1a ≤.综上可知对于0x ∀>,都有()0f x ≥成立,只需01a ≤≤即可,故所求a 的取值范围是01a ≤≤.另解:(Ⅱ)设函数2()ln(1)()f x x a x x =++-,(0)0f =,要使0x ∀>,都有()0f x ≥成立,只需函数函数()f x 在(0,)+∞上单调递增即可,于是只需0x ∀>,1()(21)01f x a x x '=+-≥+成立, 当12x >时1(1)(21)a x x ≥-+-,令210x t -=>,2()(,0)(3)g t t t =-∈-∞+,则0a ≥;当12x =时12()023f '=>;当102x <<,1(1)(21)a x x ≤-+-,令21(1,0)x t -=∈-,2()(3)g t t t =-+关于(1,0)t ∈-单调递增,则2()(1)11(13)g t g >-=-=--+,则1a ≤,于是01a ≤≤. 又当1a >时,2(0)0,0g x <>,所以函数()f x 在2(0,)x 单调递减,而(0)0f =, 则当2(0,)x x ∈时,()0f x <,不符合题意;当0a <时,设()ln(1)h x x x =-+,当(0,)x ∈+∞时1()1011x h x x x'=-=>++, ()h x 在(0,)+∞单调递增,因此当(0,)x ∈+∞时()(0)0,ln(1)0h x h x >=+<,于是22()()(1)f x x a x x ax a x <+-=+-,当11x a>-时2(1)0ax a x +-<,此时()0f x <,不符合题意.综上所述,a 的取值范围是01a ≤≤.【评析】求解此类问题往往从三个角度求解:一是直接求解,通过对参数a 的讨论来研究函数的单调性,进一步确定参数的取值范围;二是分离参数法,求相应函数的最值或取值范围以达到解决问题的目的;三是凭借函数单调性确定参数的取值范围,然后对参数取值范围以外的部分进行分析验证其不符合题意,即可确定所求.。
2015年山东省高考数学试卷(理科)

2015年XX省高考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•XX)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)2.(5分)(2015•XX)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i3.(5分)(2015•XX)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位4.(5分)(2015•XX)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a25.(5分)(2015•XX)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)6.(5分)(2015•XX)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣37.(5分)(2015•XX)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π8.(5分)(2015•XX)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%9.(5分)(2015•XX)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣10.(5分)(2015•XX)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•XX)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=.12.(5分)(2015•XX)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为.13.(5分)(2015•XX)执行如图程序框图,输出的T的值为.14.(5分)(2015•XX)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.15.(5分)(2015•XX)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.三、解答题16.(12分)(2015•XX)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值.17.(12分)(2015•XX)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.18.(12分)(2015•XX)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.19.(12分)(2015•XX)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.20.(13分)(2015•XX)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.21.(14分)(2015•XX)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.2015年XX省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.(5分)(2015•XX)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】求出集合A,然后求出两个集合的交集.【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4},则A∩B={x|2<x<3}=(2,3).故选:C.【点评】本题考查集合的交集的求法,考查计算能力.2.(5分)(2015•XX)若复数z满足=i,其中i为虚数单位,则z=()A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i【分析】直接利用复数的乘除运算法则化简求解即可.【解答】解:=i,则=i(1﹣i)=1+i,可得z=1﹣i.故选:A.【点评】本题考查复数的基本运算,基本知识的考查.3.(5分)(2015•XX)要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象()A.向左平移单位B.向右平移单位C.向左平移单位D.向右平移单位【分析】直接利用三角函数的平移原则推出结果即可.【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位.故选:B.【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.4.(5分)(2015•XX)已知菱形ABCD的边长为a,∠ABC=60°,则=()A.﹣a2B.﹣a2C.a2D.a2【分析】由已知可求,,根据=()•=代入可求【解答】解:∵菱形ABCD的边长为a,∠ABC=60°,∴=a2,=a×a×cos60°=,则=()•==故选:D【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5.(5分)(2015•XX)不等式|x﹣1|﹣|x﹣5|<2的解集是()A.(﹣∞,4)B.(﹣∞,1)C.(1,4)D.(1,5)【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可.【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1;②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4;③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅.综上知解集为(﹣∞,4).故选A.【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.6.(5分)(2015•XX)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=()A.3 B.2 C.﹣2 D.﹣3【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).则A(2,0),B(1,1),若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,此时,目标函数为z=2x+y,即y=﹣2x+z,平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,此时,目标函数为z=3x+y,即y=﹣3x+z,平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,故a=2,故选:B【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.7.(5分)(2015•XX)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A. B. C. D.2π【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥,几何体的体积为:=.故选:C.【点评】本题考查几何体的体积的求法,考查空间想象能力以与计算能力.画出几何体的直观图是解题的关键.8.(5分)(2015•XX)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.【点评】本题考查正态分布曲线的特点与曲线所表示的意义,考查正态分布中两个量μ和σ的应用,考查曲线的对称性,属于基础题.9.(5分)(2015•XX)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.【点评】本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.10.(5分)(2015•XX)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是()A.[,1]B.[0,1]C.[,+∞)D.[1,+∞)【分析】令f(a)=t,则f(t)=2t,讨论t<1,运用导数判断单调性,进而得到方程无解,讨论t≥1时,以与a<1,a≥1,由分段函数的解析式,解不等式即可得到所求范围.【解答】解:令f(a)=t,则f(t)=2t,当t<1时,3t﹣1=2t,由g(t)=3t﹣1﹣2t的导数为g′(t)=3﹣2t ln2,在t<1时,g′(t)>0,g(t)在(﹣∞,1)递增,即有g(t)<g(1)=0,则方程3t﹣1=2t无解;当t≥1时,2t=2t成立,由f(a)≥1,即3a﹣1≥1,解得a≥,且a<1;或a≥1,2a≥1解得a≥0,即为a≥1.综上可得a的范围是a≥.故选C.【点评】本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法是解题的关键.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2015•XX)观察下列各式:C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,当n∈N*时,C+C+C+…+C=4n﹣1.【分析】仔细观察已知条件,找出规律,即可得到结果.【解答】解:因为C=40;C+C=41;C+C+C=42;C+C+C+C=43;…照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幂指数相同,可得:当n∈N*时,C+C+C+…+C=4n﹣1;故答案为:4n﹣1.【点评】本题考查归纳推理的应用,找出规律是解题的关键.12.(5分)(2015•XX)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为1.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“∀x∈[0,],tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13.(5分)(2015•XX)执行如图程序框图,输出的T的值为.【分析】模拟执行程序框图,依次写出每次循环得到的n,T的值,当n=3时不满足条件n <3,退出循环,输出T的值为.【解答】解:模拟执行程序框图,可得n=1,T=1满足条件n<3,T=1+xdx,n=2满足条件n<3,T=1+xdx+x2dx=1+=,n=3不满足条件n<3,退出循环,输出T的值为.故答案为:【点评】本题主要考查了循环结构的程序框图,考查了定积分的应用,属于基本知识的考查.14.(5分)(2015•XX)已知函数f(x)=a x+b(a>0,a≠1)的定义域和值域都是[﹣1,0],则a+b=.【分析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:【点评】本题考查指数函数的单调性的应用,以与分类讨论思想,属于中档题.15.(5分)(2015•XX)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为.【分析】求出A的坐标,可得=,利用△OAB的垂心为C2的焦点,可得×(﹣)=﹣1,由此可求C1的离心率.【解答】解:双曲线C1:﹣=1(a>0,b>0)的渐近线方程为y=±x,与抛物线C2:x2=2py联立,可得x=0或x=±,取A(,),设垂心H(0,),则k AH==,∵△OAB的垂心为C2的焦点,∴×(﹣)=﹣1,∴5a2=4b2,∴5a2=4(c2﹣a2)∴e==.故答案为:.【点评】本题考查双曲线的性质,考查学生的计算能力,确定A的坐标是关键.三、解答题16.(12分)(2015•XX)设f(x)=sinxcosx﹣cos2(x+).(Ⅰ)求f(x)的单调区间;(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC 面积的最大值.【分析】(Ⅰ)由三角函数恒等变换化简解析式可得f(x)=sin2x﹣,由2k≤2x ≤2k,k∈Z可解得f(x)的单调递增区间,由2k≤2x≤2k,k∈Z 可解得单调递减区间.(Ⅱ)由f()=sinA﹣=0,可得sinA,cosA,由余弦定理可得:bc,且当b=c 时等号成立,从而可求bcsinA≤,从而得解.【解答】解:(Ⅰ)由题意可知,f(x)=sin2x﹣=sin2x﹣=sin2x﹣由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;由2k≤2x≤2k,k∈Z可解得:k≤x≤k,k∈Z;所以f(x)的单调递增区间是[k,k],(k∈Z);单调递减区间是:[k,k],(k∈Z);(Ⅱ)由f()=sinA﹣=0,可得sinA=,由题意知A为锐角,所以cosA=,由余弦定理a2=b2+c2﹣2bccosA,可得:1+bc=b2+c2≥2bc,即bc,且当b=c时等号成立.因此S=bcsinA≤,所以△ABC面积的最大值为.【点评】本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17.(12分)(2015•XX)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC 的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.【分析】(Ⅰ)根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE∥HF,便有BE∥平面FGH,再证明DE∥平面FGH,从而得到平面BDE∥平面FGH,从而BD∥平面FGH;(Ⅱ)连接HE,根据条件能够说明HC,HG,HE三直线两两垂直,从而分别以这三直线为x,y,z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明为平面ACFD的一条法向量,设平面FGH的法向量为,根据即可求出法向量,设平面FGH与平面ACFD所成的角为θ,根据cosθ=即可求出平面FGH与平面ACFD所成的角的大小.【解答】解:(Ⅰ)证明:根据已知条件,DF∥AC,EF∥BC,DE∥AB;△DEF∽△ABC,又AB=2DE,∴BC=2EF=2BH,∴四边形EFHB为平行四边形;∴BE∥HF,HF⊂平面FGH,BE⊄平面FGH;∴BE∥平面FGH;同样,因为GH为△ABC中位线,∴GH∥AB;又DE∥AB;∴DE∥GH;∴DE∥平面FGH,DE∩BE=E;∴平面BDE∥平面FGH,BD⊂平面BDE;∴BD∥平面FGH;(Ⅱ)连接HE,则HE∥CF;∵CF⊥平面ABC;∴HE⊥平面ABC,并且HG⊥HC;∴HC,HG,HE三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,设HC=1,则:H(0,0,0),G(0,1,0),F(1,0,1),B(﹣1,0,0);连接BG,根据已知条件BA=BC,G为AC中点;∴BG⊥AC;又CF⊥平面ABC,BG⊂平面ABC;∴BG⊥CF,AC∩CF=C;∴BG⊥平面ACFD;∴向量为平面ACFD的法向量;设平面FGH的法向量为,则:,取z=1,则:;设平面FGH和平面ACFD所成的锐二面角为θ,则:cosθ=|cos|=;∴平面FGH与平面ACFD所成的角为60°.【点评】考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理与其性质,线面垂直的性质与线面垂直的判定定理,以与建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念与求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18.(12分)(2015•XX)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【分析】(Ⅰ)利用2S n=3n+3,可求得a1=3;当n>1时,2S n﹣1=3n﹣1+3,两式相减2a n=2S n ﹣2S n﹣1,可求得a n=3n﹣1,从而可得{a n}的通项公式;(Ⅱ)依题意,a n b n=log3a n,可得b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2S n﹣1=3n﹣1+3,此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=.(Ⅱ)因为a n b n=log3a n,所以b1=,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=;当n>1时,T n=b1+b2+…+b n=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3T n=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2T n=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以T n=﹣,经检验,n=1时也适合,综上可得T n=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题.19.(12分)(2015•XX)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得1分.(Ⅰ)写出所有个位数字是5的“三位递增数”;(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.【分析】(Ⅰ)根据“三位递增数”的定义,即可写出所有个位数字是5的“三位递增数”;(Ⅱ)随机变量X的取值为:0,﹣1,1分别求出对应的概率,即可求出分布列和期望.【解答】解:(Ⅰ)根据定义个位数字是5的“三位递增数”有:125,135,145,235,245,345;(Ⅱ)由题意知,全部“三位递增数”的个数为,随机变量X的取值为:0,﹣1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即;当X=﹣1时,首先选择5,由于不能被10整除,因此不能选择数字2,4,6,8,可以从1,3,7,9中选择两个数字和5进行组合,即;当X=1时,有两种组合方式,第一种方案:首先选5,然后从2,4,6,8中选择2个数字和5进行组合,即;第二种方案:首先选5,然后从2,4,6,8中选择1个数字,再从1,3,7,9中选择1个数字,最后把3个数字进行组合,即.则P(X=0)==,P(X=﹣1)==,P(X=1)==,X 0 ﹣1 1PEX=0×+(﹣1)×+1×=.【点评】本题主要考查离散型随机变量的分布列和期望的计算,求出对应的概率是解决本题的关键.20.(13分)(2015•XX)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E 于A,B两点,射线PO交椭圆E于点Q.(i)求||的值;(ii)求△ABQ面积的最大值.【分析】(Ⅰ)运用椭圆的离心率公式和a,b,c的关系,计算即可得到b,进而得到椭圆C 的方程;(Ⅱ)求得椭圆E的方程,(i)设P(x0,y0),||=λ,求得Q的坐标,分别代入椭圆C,E的方程,化简整理,即可得到所求值;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,运用韦达定理,三角形的面积公式,将直线y=kx+m代入椭圆C的方程,由判别式大于0,可得t的范围,结合二次函数的最值,又△ABQ的面积为3S,即可得到所求的最大值.【解答】解:(Ⅰ)由题意可知,PF1+PF2=2a=4,可得a=2,又=,a2﹣c2=b2,可得b=1,即有椭圆C的方程为+y2=1;(Ⅱ)由(Ⅰ)知椭圆E的方程为+=1,(i)设P(x0,y0),||=λ,由题意可知,Q(﹣λx0,﹣λy0),由于+y02=1,又+=1,即(+y02)=1,所以λ=2,即||=2;(ii)设A(x1,y1),B(x2,y2),将直线y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2﹣16=0,由△>0,可得m2<4+16k2,①则有x1+x2=﹣,x1x2=,所以|x1﹣x2|=,由直线y=kx+m与y轴交于(0,m),则△AOB的面积为S=|m|•|x1﹣x2|=|m|•=2,设=t,则S=2,将直线y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△≥0可得m2≤1+4k2,②由①②可得0<t≤1,则S=2在(0,1]递增,即有t=1取得最大值,即有S,即m2=1+4k2,取得最大值2,由(i)知,△ABQ的面积为3S,即△ABQ面积的最大值为6.【点评】本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同时考查三角形的面积公式和二次函数的最值,属于中档题.21.(14分)(2015•XX)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.【分析】(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.对a与△分类讨论可得:(1)当a=0时,此时f′(x)>0,即可得出函数的单调性与极值的情况.(2)当a>0时,△=a(9a﹣8).①当时,△≤0,②当a时,△>0,即可得出函数的单调性与极值的情况.(3)当a<0时,△>0.即可得出函数的单调性与极值的情况.(II)由(I)可知:(1)当0≤a时,可得函数f(x)在(0,+∞)上单调性,即可判断出.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调性,即可判断出.(3)当1<a时,由g(0)<0,可得x2>0,利用x∈(0,x2)时函数f(x)单调性,即可判断出;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),研究其单调性,即可判断出【解答】解:(I)函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,x∈(﹣1,+∞).=.令g(x)=2ax2+ax﹣a+1.(1)当a=0时,g(x)=1,此时f′(x)>0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.(2)当a>0时,△=a2﹣8a(1﹣a)=a(9a﹣8).①当时,△≤0,g(x)≥0,f′(x)≥0,函数f(x)在(﹣1,+∞)上单调递增,无极值点.②当a时,△>0,设方程2ax2+ax﹣a+1=0的两个实数根分别为x1,x2,x1<x2.∵x1+x2=,∴,.由g(﹣1)>0,可得﹣1<x1.∴当x∈(﹣1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减;当x∈(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增.因此函数f(x)有两个极值点.(3)当a<0时,△>0.由g(﹣1)=1>0,可得x1<﹣1<x2.∴当x∈(﹣1,x2)时,g(x)>0,f′(x)>0,函数f(x)单调递增;当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减.因此函数f(x)有一个极值点.综上所述:当a<0时,函数f(x)有一个极值点;当0≤a时,函数f(x)无极值点;当a时,函数f(x)有两个极值点.(II)由(I)可知:(1)当0≤a时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(2)当<a≤1时,由g(0)≥0,可得x2≤0,函数f(x)在(0,+∞)上单调递增.又f(0)=0,∴x∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a时,由g(0)<0,可得x2>0,∴x∈(0,x2)时,函数f(x)单调递减.又f(0)=0,∴x∈(0,x2)时,f(x)<0,不符合题意,舍去;(4)当a<0时,设h(x)=x﹣ln(x+1),x∈(0,+∞),h′(x)=>0.∴h(x)在(0,+∞)上单调递增.因此x∈(0,+∞)时,h(x)>h(0)=0,即ln(x+1)<x,可得:f(x)<x+a(x2﹣x)=ax2+(1﹣a)x,当x>时,ax2+(1﹣a)x<0,此时f(x)<0,不合题意,舍去.综上所述,a的取值范围为[0,1].【点评】本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss;吕静;双曲线;maths;刘长柏;w3239003;翔宇老师;wkl197822;wfy814;沂蒙松(排名不分先后)菁优网2016年8月29日。
2015高考真题山东卷理科数学真题答案解析
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合A={X|X²-4X+3<0},B={X|2<X<4},则A B=(A)(1,3)(B)(1,4)(C)(2,3)(D)(2,4)【答案】C【解析】(2)若复数Z满足1Zii=-,其中i为虚数为单位,则Z=(A)1-i (B)1+i (C)-1-i (D)-1+i 【答案】A【解析】(3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B 【解析】(4)已知ABCD 的边长为a ,∠ABC=60o ,则错误!未找到引用源。
·错误!未找到引用源。
=(A )- 错误!未找到引用源。
(B )- 错误!未找到引用源。
(C ) 错误!未找到引用源。
(D ) 错误!未找到引用源。
2015年普通高等学校招生全国统一考试(山东卷)理数答案解析(正式版)(解析版)
高中数学学习材料金戈铁骑整理制作绝密★启用前本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)已知集合{}2430A x x x =-+<,{}24B x x =<<,则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4)【答案】C考点:1、一元二次不等式;2、集合的运算.(2)若复数Z 满足1z i i=-,其中i 为虚数为单位,则z = (A )1-i (B )1+i (C )-1-i (D )-1+i【答案】A【解析】 试题分析:因为1z i i=-,所以,()11z i i i =-=+ 所以,1z i =-故选:A.考点:复数的概念与运算.(3)要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象 (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B考点:三角函数的图象变换.(4)已知ABCD 的边长为a ,∠ABC=60o,则BD CD ⋅= (A )-(B )- (C ) (D )【答案】D【解析】 试题分析:因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅()22223cos602BABC BA a a a +⋅=+= 故选D.考点:平面向量的线性运算与数量积.(5)不等式152x x ---<的解集是(A )(- ,4) (B )(- ,1) (C )(1,4) (D )(1,5)【答案】A考点:含绝对值的不等式的解法.(6)已知x,y满足约束条件2x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z=ax+y的最大值为4,则a=(A)3 (B)2 (C)-2 (D)-3 【答案】B【解析】考点:简单的线性规划问题.(7)在梯形ABCD 中,2ABC π∠=,AD//BC ,BC=2AD=2AB=2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为(A ) (B ) (C ) (D )2【答案】C【解析】试题分析:直角梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为1,母线长为2的圆柱挖去一个底面半径同样是1、高为1的圆锥后得到的组合体,所以该组合体的体积为:2215121133V V V πππ=-=⨯⨯-⨯⨯⨯=圆柱圆锥 故选C.考点:1、空间几何体的结构特征;2、空间几何体的体积.(8)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,3),从中随机取一件,其长度误差落在区间(3,6)内的概率为(附:若随机变量ξ服从正态分布N (μ,σ²)),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)(A )4.56% (B )13.59% (C )27.18% (D )31.74%【答案】B【解析】试题分析:用表示ξ 零件的长度,根据正态分布的性质得:()()()13666332P P P ξξξ<<=-<<--<<⎡⎤⎣⎦ 0.95440.68260.13592-== 故选B. 考点:正态分布的概念与正态密度曲线的性质.(9)一条光纤从点(-2,-3)射出,经y 轴反射后与圆( 相切,则反射光线所在直线的斜率为()(A ) 或 (B ) 或 (C ) 或 (D ) 或 【答案】D考点:1、圆的标准方程;2、直线的方程;3、直线与圆的位置关系.(10)设函数f(x)=,则满足()()()2f a f f a =的a 取值范围是() (A )[ ,1] (B )[0,1] (C )[ ) (D )[1, + )【答案】C考点:1、分段函数;2、指数函数.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2015年山东省高考数学试卷理科答案与解析
2015年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.( 5 分)(2015?山东)已知集合A={x|x2-4x+3 V 0}, B={x|2 V x v 4},则A A B=( ) A . (1 , 3) B. (1, 4) C. (2, 3) D. (2, 4)考点:交集及其运算.专题:集合.分析:求出集合A,然后求出两个集合的交集.解答:解:集合A={x|x 2- 4x+3 v 0}={x|1 v x v 3}, B={x|2 v x v 4},则 A QB={x|2 v x v 3}= (2, 3).故选:C.点评:本题考查集合的交集的求法,考查计算能力.2. ( 5分)(2015?山东)若复数z满足=i,其中i为虚数单位,则z=( )1^1A . 1 - i B. 1+i C. - 1 - i D. - 1+i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:直接利用复数的乘除运算法则化简求解即可.解答:解:'=i,则=i (1 - i) =1+i,_ i可得z=1 - i .故选:A .点评:本题考查复数的基本运算,基本知识的考查.|713. ( 5分)(2015?山东)要得到函数y=sin (4x——)的图象,只需将函数y=sin4x的图象( )A.向左平移I TT单位12B.向右平移TT单位12C.向左平移I TT单位D.向右平移TT单位33考点:函数y=Asin ( w x+ $)的图象变换.专题:三角函数的图像与性质.分析:直接利用三角函数的平移原则推出结果即可.解答:兀讥:解:因为函数y=sin (4x-=) =sin[4 (x -—)],J _L要得到函数y=sin (4x -卫)的图象,只需将函数y=sin4x的图象向右平移巴单位.3 12点评:本题考查三角函数的图象的平移,值域平移变换中4.( 5分)(2015?山东)已知菱形 ABCD 的边长为a , / ABC=60 °则BD*CD =( )考点:平面向量数量积的运算. 专题:计算题;平面向量及应用. 分析:_ - -由已知可求^-BC ,根据CD = (BA + BC ) 極=期 +BABC 代入可求解答:解:•.•菱形ABCD 的边长为a , / ABC=60 °故选:D 点评:本题主要考查了平面向量数量积的定义的简单运算,属于基础试题5. ( 5分)(2015?山东)不等式|x - 1| - |x - 5|v 2的解集是()A . (-a, 4)B . (-a, 1)C . (1 , 4)D . (1, 5)考点:绝对值不等式的解法. 专题:不等式的解法及应用.分析:运用零点分区间,求出零点为 1, 5,讨论①当x V 1,②当1$韦,③当x >5,分 别去掉绝对值,解不等式,最后求并集即可.解答:解:①当x v 1,不等式即为-x+1+x - 5 V 2,即-4 V 2成立,故x v 1;② 当1夯(W5,不等式即为 x - 1+x - 5 V 2,得x V 4,故1$ V 4;③ 当 x > 5, x - 1 - x+5 V 2,即 4 V 2 不成立,故 x €?. 综上知解集为(-a, 4). 故选A .点评:本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属 于中档题.6. ( 5分)(2015?山东)已知x , y 满足约束条件* K+y<2 ,若z=ax+y 的最大值为4,则a=( )A . 3考点:简单线性规划. 专题:不等式的解法及应用.x 的系数是易错点.A . -r a 2B .-活C . :; 2—a2 44D .3 a 2••m 2,则二:i=BA ■ BC=a 冶 >Cos60电 仪2, (I I ':')分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定 大值. 解答:解:作出不等式组对应的平面区域如图:(阴影部分).则 A (2, 0), B (1, 1),若z=ax+y 过A 时取得最大值为 4,则2a=4,解得a=2, 此时,目标函数为 z=2x+y , 即 y= - 2x+z ,平移直线y= - 2x+z ,当直线经过 A (2, 0)时,截距最大,此时 z 最大为4,满足条 件 若z=ax+y 过B 时取得最大值为 4,贝U a+仁4,解得a=3, 此时,目标函数为 z=3x+y , 即 y= - 3x+z ,平移直线y= - 3x+z ,当直线经过 A (2, 0)时,截距最大,此时 z 最大为-6,不满足条件, 故 a=2, 故选:B点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想 是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为()z 的最7. ( 5 分)(2015?山东)在梯形 ABCD 中,/ ABC=,AD // BC , BC=2AD=2AB=2 ,将考点:棱柱、棱锥、棱台的体积. 专题:空间位置关系与距离. 分析:画出几何体的直观图,利用已知条件,求解几何体的体积即可. 解答:解:由题意可知几何体的直观图如图:旋转体是底面半径为1高为2的圆锥,挖去一个相同底面高为1的倒圆锥, 几何体的体积为:严兀吃-丄兀小.3 3点评:本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观 图是解题的关键.2& ( 5分)(2015?山东)已知某批零件的长度误差(单位:毫米)服从正态分布 N ( 0, 3 ),从中随机抽取一件,其长度误差落在区间(3, 6)内的概率为()(附:若随机变量 胡服从正态分布 N (卩,/),则P (厂 X M 旷o ) =68.26%, P (厂2 dV M 旷2 0 =95.44%)A . 4.56%B . 13.59%C . 27.18%D . 31.74%考点:正态分布曲线的特点及曲线所表示的意义. 专题:计算题;概率与统计.分析: ■由题意 P (- 3V V 3) =68.26% , P (- 6V V 6)=95.44%,可得 P ( 3V V 6)=( 95.44%2-68.26%),即可得出结论.解答:解:由题意 P (- 3 V V 3) =68.26% , P (- 6v V 6) =95.44%,所以 P (3V V 6) — (95.44% - 68.26%) =13.59% .2故选:B .点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量□和o 的应用,考查曲线的对称性,属于基础题.9. ( 5分)(2015?山东)一条光线从点(- 2,- 3)射出,经y 轴反射后与圆(x+3) -2) 2=1相切,则反射光线所在直线的斜率为( )A .B .C .-—或-—-—或-———或-—352 3 4 5考点:圆的切线方程;直线的斜率.(yD .专题:计算题;直线与圆.分析:点A (- 2, - 3)关于y 轴的对称点为A'(2, - 3),可设反射光线所在直线的方程 为:y+3=k (x- 2),利用直线与圆相切的性质即可得出.解答:解:点A (- 2, - 3)关于y 轴的对称点为A ' (2,- 3),故可设反射光线所在直线的方程为:y+3=k (x - 2),化为kx - y - 2k - 3=0. 2 2•••反射光线与圆(x+3) + (y - 2)=1相切,I -魂■ 2 ■九■ £ |•••圆心(-3, 2)到直线的距离 d= …〜=1 ,Vk 2H |化为 24k 2+50k+24=0 , k= -里或-丄.3 4故选:D .点评:本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、 对称点,考查了计算能力,属于中档题.考点:分段函数的应用.专题:创新题型;函数的性质及应用;不等式的解法及应用.分析:令f (a ) =t ,则f (t ) =2\讨论t v 1,运用导数判断单调性,进而得到方程无解,讨 论t 》时,以及a v 1, a 》,由分段函数的解析式,解不等式即可得到所求范围.解答:解:令f (a ) =t ,则 f (t ) =2t ,当 t v 1 时,3t - 1=2上,由 g (t ) =3t - 1- 2f 的导数为 g' (t ) =3 - 2、n2, 在 t v 1 时,g ' (t )> 0, g (t )在(-©, 1)递增, 即有 g (t ) v g (1) =0, 则方程3t - 1=2七无解; 当t 》时,2f =2f 成立,由f (a )》,即3a - 1》,解得a 》,且a v 1; 或a 》,2》解得a 》),即为a 》. 综上可得a 的范围是a 》. 3故选C .点评:本题考查分段函数的运用,主要考查函数的单调性的运用,运用分类讨论的思想方法 是解题的关键.10. ( 5分)(2015?山东)设函数f (x )= 的取值范围是( A .-,1])B . [0, 1]Z<1,则满足 f (f ( a)) =2f (a)的 aD . [1, +©、填空题(本大题共 5小题,每小题5分,共25分) 11. (5分)(2015?山东)观察下列各式:照此规律,当n €N *时,考点:归纳推理;组合及组合数公式. 专题:推理和证明.分析:仔细观察已知条件,找出规律,即可得到结果. 解答:解:因为C |=4°;+C照此规律,可以看出等式左侧最后一项,组合数的上标与等式右侧的幕指数相同,故答案为:4n _1点评:本题考查归纳推理的应用,找出规律是解题的关键.12. (5分)(2015?山东)若?x€[0, p], tanx 呦”是真命题,则实数 m 的最小值为—考点:命题的真假判断与应用. 专题:函数的性质及应用;三角函数的图像与性质. 分析:求出正切函数的最大值,即可得到 m 的范围.解答:解:?x €[0, ―-], tanx 呦"是真命题,| 4|可得tanx <1,所以,m 》, 实数m 的最小值为:1. 故答案为:1.、0 +C 1 +C 2 +・・1 '2n- -1 2t;- 1 2n- 12n- 1=4厂; 可得:当n €N *时, C+CC+C=4 ; +C 討42;+C?+c =43;0 2n-l+C 1 2n- 1 +C| 22n-l 2n- 1"4n 124 =2 5•4 C 一一+1 3 15C _4°C +C3 6 =43点评:本题考查函数的最值的应用,命题的真假的应用,考查计算能力.13. ( 5分)(2015?山东)执行如图程序框图,输出的考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的 n , T 的值,当n=3时不满足条件 退出循环,输出T 的值为丄.Pe解答:解:模拟执行程序框图,可得n=1 , T=1满足条件 n v 3, T=1+ f 】xdx , n=2JI 〕满足条件 n v 3, T=1+ j ]xdx+『]x 2dx=1+—, n=3八〕J o 2打6 不满足条件n v 3,退出循环,输出 T 的值为丄.6故答案为:良6点评:本题主要考查了循环结构的程序框图,考查了定积分的应用,属于基本知识的考查.则a+b =—匚 考点:函数的值域. 专题:函数的性质及应用.分析:对a 进行分类讨论,分别题意和指数函数的单调性列出方程组, 解答:解:当a > 1时,函数f (x ) =a x +b在定义域上是增函数,n v 3,14. ( 5分)(2015?山东)已知函数f (x ) =a x +b (a >0, a 力)的定义域和值域都是 1, 0],所以0=l+ba - L-bb- - 1,解得b= - 1,丄=0不符合题意舍去;a当O v a v 1时,函数f (x) =a x+b在定义域上是减函数,所以l+b=-综上a+b=--1故答案为;-解得b= - 2, a==2 2点评:本题考查指数函数的单调性的应用,以及分类讨论思想,属于基础题15. (5分)(2015?山东)平面直角坐标系xOy中,双曲线( a> 0, b > 0) C i:的渐近线与抛物线C2:x2=2py ( p> 0)交于点O, A , B, 若△ OAB 的垂心为C2的焦点, 则C1的离心率为丄考点:双曲线的简单性质.专题:计算题;创新题型;圆锥曲线的定义、性质与方程.分析:求出A的坐标,可得^ab,利用△ OAB的垂心为C2的焦点,可得解答: 一 2 24abX(——)=-1,由此可求aC1的离心率.2解:双曲线C1:七a =1 (a> 0, b> 0)的渐近线方程为y= ±x,与抛物线C2: x2=2py联立,可得x=0或* 2 24ab •/ △ OAB的垂心为C2的焦点,2 2娶- /4ab2 2••• 5a =4b ,2 9• 5a =4 (c -a2)e =J=3 32故答案为:上.2点评:本题考查双曲线的性质,考查学生的计算能力,确定 A 的坐标是关键.三、解答题2 兀16. (12 分)(2015?山东)设 f (x ) =sinxcosx - cos (x+ ). 4(I )求f (x )的单调区间;(n )在锐角△ ABC 中,角A , B , C 的对边分别为 a , b , c,若f (丄)=0, a=1,求△ ABC 13面积的最大值.(n )由 f (£) =si nA -—t =0,可得 si nA , cosA ,由余弦定理可得: ,且=sin2x -A 11(n )由 f (三)=sinA -—=0,可得 sinA=「, 由题意知A 为锐角,所以cosA=:;, 2|由余弦定理 a 2=b 2+c 2 - 2bccosA ,考点: 专题:正弦函数的单调性;两角和与差的正弦函数;余弦定理.三角函数的图像与性质;解三角形.(I )由三角函数恒等变换化简解析式可得f (x ) =sin2x -二,由2兀(x )的单调递增区间,由,k C Z 可解得f 当b=c 时等号成立,从而可求严inA 善,从而得解.解答:解:(I )由题意可知,f (x ) 丄sin2x -21+GOS)~1s in2x -21 - sin2s2~由2k 一— _ TE所以f(X )的单调递增区间是[k ,k f4电x 电k 二 2k TT<2k 丁,k 包可解得单调递减区间.k ①可解得: <2x<2k 下由2k 丁电k i •—,,k €Z ; k ①可解得:,k €Z ;,(k€Z );单调递减区间是:[k Ik 」,(k€Z );可得:1+二bc=b2+c2支be,即be .:,且当b=c时等号成立. 因此丄bcsinA w ' > 二所以△ ABC面积的最大值为—二4点评:本题主要考查了正弦函数的图象和性质,余弦定理,基本不等式的应用,属于基本知识的考查.17. (12分)(2015?山东)如图,在三棱台DEF - ABC中,AB=2DE , G, H分别为AC , BC的中点.(I )求证:BD //平面FGH ;(n )若CF丄平面ABC , AB丄BC, CF=DE , / BAC=45 ° 求平面FGH与平面ACFD所成的角(锐角)的大小.考点:二面角的平面角及求法;直线与平面平行的判定. 专题:空间位置关系与距离;空间角;空间向量及应用.分析:(I )根据AB=2DE便可得到BC=2EF,从而可以得出四边形EFHB为平行四边形,从而得到BE // HF,便有BE //平面FGH,再证明DE //平面FGH,从而得到平面BDE // 平面FGH,从而BD //平面FGH ;(n )连接HE,根据条件能够说明HC, HG , HE三直线两两垂直,从而分别以这三直线为x, y, z轴,建立空间直角坐标系,然后求出一些点的坐标.连接BG,可说明瓦为平面ACFD的一条法向量,设平面FGH的法向量为二二(直,益2),根据厂T 8门命HF二n f•____ 即可求出法向量U,设平面FGH与平面ACFD所成的角为0,根据石蒔0cos0=二二:■-即可求出平面FGH与平面ACFD所成的角的大小. 解答:解:(I )证明:根据已知条件,BC=2EF , H为BC中点,EF / BC;••• EF // BH,且EF=BH ;•••四边形EFHB为平行四边形;•BE // HF , HF?平面FGH , BE?平面FGH ;•BE // 平面FGH ;同样,因为GH ABC中位线,• GH // AB ;又DE // AB ;•DE // GH ;• DE // 平面FGH , DE A BE=E ;•••平面BDE // 平面FGH , BD?平面BDE ;••• BD // 平面FGH ;(n )连接HE,贝y HE // CF;•/ CF丄平面ABC ;•HE //平面ABC,并且HG丄HC;•HC, HG , HE三直线两两垂直,分别以这三直线为x, y, z轴,建立如图所示空间直角坐标系,设HC=1,则:H (0, 0, 0), G (0, 1, 0), F ( 1, 0, 1) , B (- 1 , 0 , 0); 连接BG,根据已知条件BA=BC , G为AC中点;•BG 丄AC ;又CF丄平面ABC , BG?平面ABC ;•BG 丄CF , AC A CF=C ;•BG丄平面ACFD ;•向量BG= (1, 1, 0)为平面ACFD的法向量;设平面FGH的法向量为二(壯2),则:f n HF=x+z=0 廿〜-一,取I则:一…—;设平面FGH和平面ACFD所成的锐二面角为0,则: cos B=|cos n 「1= 了丄:,-,;•平面FGH与平面ACFD所成的角为60°点评:考查棱台的定义,平行四边形的定义,线面平行的判定定理,面面平行的判定定理及其性质,线面垂直的性质及线面垂直的判定定理,以及建立空间直角坐标系,利用空间向量求二面角的方法,平面法向量的概念及求法,向量垂直的充要条件,向量夹角余弦的坐标公式,平面和平面所成角的定义.18. (12分)(2015?山东)设数列{a n}的前n项和为S n,已知29=3“+3.(I )求{a n}的通项公式;(n )若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.考点:数列的求和. 专题:等差数列与等比数列.分析:(I )利用2S n=3 +3,可求得a1=3;当n> 1 时,2S n-1=3 +3,两式相减2a n=2S nn — 1-2S n - 1,可求得a n =3 ,从而可得{a n }的通项公式;(n )依题意,a n b n =log 3a n ,可得 b 仁-,当 n > 1 时,b n =31 n ?log 33n 1= (n - 1) X 31 ■3-n,于是可求得 T 仁 b 仁一;当 n > 1 时,T n =b 1+b 2+ ••+bn—+(1X 3-1+2 xf 2+・・+ (n - 1)3 3X 31-n ),利用错位相减法可求得{b n }的前n 项和T n .解答:解:(I )因为 2S n =3n +3,所以 2a 仁31+3=6,故 a 1=3,当 n > 1 时,2S n -1=3n -1+3,此时,2a n =2S n - 2S n -1=3n - 3n -1=2 X” 1,即 a n =3n 「1 ,f3, n=l所以a n =,.n>l.(n )因为 a n b n =log 3a n ,所以 b 1=73当 n > 1 时,b n =31-n ?log 33n -1= (n - 1) X 31 -n , 所以T 1=b 1 =3当 n > 1 时,T n =b 1+b 2+ --+b n = + (1X 3-1+2 X -2+・・+ (n - 1) X 31-n ),3所以 3T n =1+ (1X 30+2 X 3-1+3 X _2+・・+ ( n - 1) X 32-n ),两式相减得:2口=匸+ (30+3-1+3-2+ ••+32-n - (n - 1) X 31-n )二+「''33 1-3一1点评:本题考查数列的求和,着重考查数列递推关系的应用,突出考查错位相减法”求和,考查分析、运算能力,属于中档题.19. (12分)(2015?山东)若n 是一个三位正整数,且 n 的个位数字大于十位数字,十位数 字大于百位数字,则称 n 为 三位递增数”(如137, 359, 567等).在某次数学趣味活动中, 每位参加者需从所有的三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的 三位递增数”的三个数字之积不能被 5整除,参加者得0分,若能被5整除,但不 能被10整除,得-1分,若能被10整除,得1分. (I )写出所有个位数字是 5的三位递增数”;(n )若甲参加活动,求甲得分 X 的分布列和数学期望 EX .考点:离散型随机变量的期望与方差;离散型随机变量及其分布列. 专题:概率与统计.综上可得 T n =13 12-1) X 31-n )所以T n =匚12 号广2n=1时也适合,分析:(I)根据三位递增数”的定义,即可写出所有个位数字是5的三位递增数”;(n)随机变量X的取值为:0,- 1, 1分别求出对应的概率,即可求出分布列和期望. 解答:解:(I)根据定义个位数字是5的三位递增数”有:125, 135, 145, 235, 245, 345;(n )由题意知,全部三位递增数”的个数为凉二84 ,y随机变量X的取值为:0,- 1,1,当X=0时,可以选择除去5以外的剩下8个数字中选择3个进行组合,即于A , B两点,射线PO交椭圆E于点Q.⑴求|斗的值;(ii)求厶ABQ面积的最大值.考点:直线与圆锥曲线的综合问题;椭圆的标准方程;曲线与方程.:;点评: 当X= - 1时,首先选择5,由于不能被10整除,因此不能选择数字必;5,然后从2,以从1, 3, 5, 7中选择两个数字和5进行组合,即当X=1时,有两种组合方式,第一种方案:首先选个数字和5进行组合,即个数字,再从1, 3, 7,则P (X=0 )=_丄r3 3 023;第二种方案:首先选9中选择1个数字,最后把5,然后从2,2, 4, 6, 8,可4, 6,4, 6,8中选择28中选择1亠,P (X=1 )14c 扛42,-1111114一一.本题主要考查离散型随机变量的分布列和期望的计算,关键.EX=0 *+(-1)-+1求出对应的概率是解决本题的20.( 13分)(2015?山东)平面直角坐标系xOy中,已知椭圆C:—七=1 (a> b > 0)的离心率为「左、右焦点分别是F1, F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆(I )求椭圆C的方程;C 上.x2-L 2 y14b2P为椭圆C上任意一点,过点P的直线y=kx+m 交椭圆E3个数字进行组合,即42(X= - 1)(n)设椭圆E:专题:创新题型;直线与圆;圆锥曲线的定义、性质与方程.分析:(I )运用椭圆的离心率公式和 a , b , c 的关系,计算即可得到 b ,进而得到椭圆 C 的方程;圆C , E 的方程,化简整理,即可得到所求值;(ii )设A (x i , y i ) , B ( x 2 , y 2),将直线y=kx+m 代入椭圆E 的方程,运用韦达定 理,三角形的面积公式,将直线 y=kx+m 代入椭圆C 的方程,由判别式大于0 ,可得t 的范围,结合二次函数的最值,又 △ ABQ 的面积为3S ,即可得到所求的最大值.解答:解:(I )由题意可知,2a=4,可得a=2,又一 =■', a 2- c 2=b 2,a 2可得b=1,即有椭圆C 的方程为丁 +y 2=i ;厂+162_=1 ,即丄_4所以十2 ,即J|=2;(ii )设 A (x 1 , y 1), B2 2 2(1+4k ) x +8kmx+4m由直线y=kx+m 与y 轴交于(0, m ),则厶AOB 的面积为S 」|m|?|x 1 — x 2|于|m|?=2将直线y=kx+m 代入椭圆C 的方程,可得(1+4k 2) x 2+8kmx+4m 2 — 4=0 , 由△为可得m 2w +4k 2 ,② :.::-,在(o , 1]递增,即有t=1取得最大值,)由(I )知椭圆E 的方程为(i )设 P (x o , y o ),由题意可知,K0 Q (—瓜0, — ?y 0),由于—— 4+y o 2=1,贝U 有 X 1+x 2= —l+4k 2 ,x 1x 2= l+4k 2 ,所以 |x 1 — x 2|=- ID 2l+4k 2(n )求得椭圆E 的方程, (i )设 P (x o , y o ), 辭入,求得Q 的坐标,分别代入椭+y 02) =1,(x 2 , y 2),将直线 —16=0,由△ > 0 , y=kx+m 代入椭圆E 的方程,可得可得 m 2v 4+16k 2 ,①l+4k 2由①②可得0 v t W,则S=2 =t ,则 S=2 ),m 2l+4k 2即有SU 「,即m 2=l+4k 2,取得最大值2_ 由(i )知,△ ABQ 的面积为3S ,即△ ABQ 面积的最大值为 6点评:本题考查椭圆的方程和性质,主要考查直线方程和椭圆方程联立,运用韦达定理,同 时考查三角形的面积公式和二次函数的最值,属于中档题.21. (14 分)(2015?山东)设函数 f (x ) =ln (x+1 ) +a (x 2 - x ),其中 a€R , (I )讨论函数f (x )极值点的个数,并说明理由;(n )若?x > 0, f (x )为成立,求a 的取值范围. 与△分类讨论可得:(1 )当a=0时,此时f'( x )> 0,即可得出函数的单调性与极值 的情况. ⑺当a > 0时,△ =a ( 9a -8).①当时,△乜,②当「V 时,"0, 即可得出函数的单调性与极值的情况.(3)当a v 0时,△> 0•即可得出函数的单调性与极值的情况. 可判断出.f fx) =4-Sax - a _ x+1令 g (x ) =2ax 2+ax - a+1.(1) 当a=0时,g (x ) =1,此时f'(x ) > 0,函数f (x )在(-1, +m)上单调递 增,无极值点. (2) 当 a > 0 时,△ =a 2- 8a (1 - a ) =a (9a - 8). ①当时,△切,g (x )为,f ' (x ) ◎函数f (x )在(-1, + m)上单调J递增,无极值点.专题:创新题型;导数的综合应用.(1)函数 f (x ) =ln (x+1) +a (x 2 - x ),其中 a €R , x € ( — 1,+ m)x+12.令 g (x ) =2ax +ax - a+1 .M a(II )由(I )可知:(1 )当0它,可得函数f ( x )在(0 , + m)上单调性,即(2) 当丄v a <1时,由g (0)为,可得X 2切,函数f (乂)在(0, 可判断出.(3) 当1v a 时,由 即可判断出; (4) 当a v 0时,设 出解答:解:(I )函数f (x )+ m)上单调性,即g ( 0 )v 0,可得X 2> 0,利用x € ( 0, x 2)时函数f (x )单调性, h (x ) =x - In (x+1 ), x € (0, +m),研究其单调性,即可判断 =ln (x+1 ) +a (x 2 - x ),其中 a€R , x € (- 1, + m)□+ax - a+1 x+1考点:利用导数研究函数的极值;函数恒成立问题. 9■: -=2△ > 0,设方程2ax +ax - a+1=0的两个实数根分别为-丄,砂>_丄「4由 g (- 1)> 0,可得—1< X 1< -丄.4•••当 X € (- 1, X 1)时,g ( X )> 0, f ' ( X )> 0,函数 f ( X )单调递增; 当 x € (X 1, x 2)时,g (x )< 0, f (x ) < 0,函数 f (x )单调递减; 当 x € (X 2, +8)时,g (X ) > 0, f ' (x )> 0,函数 f (x )单调递增. 因此函数f (x )有两个极值点.(3) 当 a < 0 时,△> 0.由 g (- 1) =1 > 0,可得-1 < X 1V - 丄.4•••当 x € (- 1, X 2)时,g ( x )> 0, f (x )> 0,函数 f ( x )单调递增; 当 x € (X 2, +8)时,g (X ) < 0, f ' (x )< 0,函数 f (X )单调递减. 因此函数f ( X )有一个极值点. 综上所述:当a < 0时,函数f ( x )有一个极值点;当a 0时,函数f (x )有两个极值点.X 1 , X 2, x 1<X 2.(II )由 (I )可知: (1)当 ,函数f ( 乂)在(0 , +8)上单调递增.X 1+X 2=函数f (x )无极值点;0<a=0,,+8)时,f (X )> 0,符合题意.(2)当卫<a <1时,由g (0)为,可得X 2切,函数f (x )在(0,9又 f (0) =0,• x € (0, +8)时,f (X )> 0,符合题意.(3) 当 1< a 时,由 g (0)< 0,可得 X 2>0,• x € (0, X 2)时,函数f (x )单调递减. 又 f (0) =0,• x € (0, X 2)时,f (x )< 0,不符合题意,舍去;(4) 当 a < 0 时,设 h (x ) =x - In (x+1 ), x € (0, +8), h ' (x ) =_— > 0.x+1• h (x )在(0, + 8)上单调递增.因此 x € (0, + 8)时,h (x )> h ( 0) =0,即 In (x+1) < x ,22可得:f (X ) < x+a (X - X ) =ax + (1 - a ) x ,当 x > 一二时, dax 2+ (1 - a ) x < 0,此时f (x )< 0,不合题意,舍去.点评:本题考查了导数的运算法则、利用导数研究函数的单调性极值,考查了分析问题与解决问题的能力,考查了分类讨论思想方法、推理能力与计算能力,属于难题.••• f (0): • x € (0, + 8)上单调递增.。
2015年高考真题--理科数学(山东卷)
2015年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项: 1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1) 已知集合A={X|X ²-4X+3<0},B={X|2<X<4},则A B=(A )(1,3) (B )(1,4) (C )(2,3) (D )(2,4) (2)若复数Z 满足1Zi i=-,其中i 为虚数为单位,则Z= (A )1-i (B )1+i (C )-1-i (D )-1+i (3)要得到函数y=sin (4x-3π)的图像,只需要将函数y=sin4x 的图像() (A )向左平移12π个单位 (B )向右平移12π个单位 (C )向左平移3π个单位 (D )向右平移3π个单位 (4)已知ABCD 的边长为a ,∠ABC=60o ,则错误!未找到引用源。
.错误!未找到引用源。
=(A )- 错误!未找到引用源。
(B )- 错误!未找到引用源。
(C ) 错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共23页) 2015年山东省高考数学试卷(理科) 一、选择题(本大题共10小题,每小题5分,共50分) 1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 2.(5分)若复数z满足=i,其中i为虚数单位,则z=( ) A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i 3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象( )个单位. A.向左平移 B.向右平移 C.向左平移 D.向右平移
4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=( ) A.﹣a2 B.﹣a2 C.a2 D.a2 5.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是( ) A.(﹣∞,4) B.(﹣∞,1) C.(1,4) D.(1,5)
6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=( ) A.3 B.2 C.﹣2 D.﹣3 7.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. B. C. D.2π 8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%) A.4.56% B.13.59% C.27.18% D.31.74% 9.(5分)一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2) 第2页(共23页)
2=1相切,则反射光线所在直线的斜率为( )
A.﹣或﹣ B.﹣或﹣ C.﹣或﹣ D.﹣或﹣
10.(5分)设函数f(x)=,则满足f(f(a))=2f(a)的a的取值范围是( ) A.[,1] B.[0,1] C.[,+∞) D.[1,+∞)
二、填空题(本大题共5小题,每小题5分,共25分) 11.(5分)观察下列各式: C=40;
C+C=41; C+C+C=42; C+C+C+C=43; … 照此规律,当n∈N*时, C+C+C+…+C= .
12.(5分)若“∀x∈[0,],tanx≤m”是真命题,则实数m的最小值为 . 13.(5分)执行右边的程序框图,输出的T的值为 .
14.(5分)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[﹣1,0], 第3页(共23页)
则a+b= . 15.(5分)平面直角坐标系xOy中,双曲线C1:﹣=1(a>0,b>0)的渐近线与抛物线C2:x2=2py(p>0)交于点O,A,B,若△OAB的垂心为C2的焦点,则C1的离心率为 .
三、解答题 16.(12分)设f(x)=sinxcosx﹣cos2(x+). (Ⅰ)求f(x)的单调区间; (Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f()=0,a=1,求△ABC面积的最大值. 17.(12分)如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点. (Ⅰ)求证:BD∥平面FGH; (Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.
18.(12分)设数列{an}的前n项和为Sn,已知2Sn=3n+3. (Ⅰ)求{an}的通项公式; (Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn. 19.(12分)若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得﹣1分,若能被10整除,得 第4页(共23页)
1分. (Ⅰ)写出所有个位数字是5的“三位递增数”; (Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望EX.
20.(13分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q. (i)求||的值; (ii)求△ABQ面积的最大值. 21.(14分)设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R, (Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围. 第5页(共23页)
2015年山东省高考数学试卷(理科) 参考答案与试题解析
一、选择题(本大题共10小题,每小题5分,共50分) 1.(5分)已知集合A={x|x2﹣4x+3<0},B={x|2<x<4},则A∩B=( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 【分析】求出集合A,然后求出两个集合的交集. 【解答】解:集合A={x|x2﹣4x+3<0}={x|1<x<3},B={x|2<x<4}, 则A∩B={x|2<x<3}=(2,3). 故选:C. 【点评】本题考查集合的交集的求法,考查计算能力.
2.(5分)若复数z满足=i,其中i为虚数单位,则z=( ) A.1﹣i B.1+i C.﹣1﹣i D.﹣1+i 【分析】直接利用复数的乘除运算法则化简求解即可. 【解答】解:=i,则=i(1﹣i)=1+i, 可得z=1﹣i. 故选:A. 【点评】本题考查复数的基本运算,基本知识的考查.
3.(5分)要得到函数y=sin(4x﹣)的图象,只需要将函数y=sin4x的图象( )个单位. A.向左平移 B.向右平移 C.向左平移 D.向右平移 【分析】直接利用三角函数的平移原则推出结果即可. 【解答】解:因为函数y=sin(4x﹣)=sin[4(x﹣)],
要得到函数y=sin(4x﹣)的图象,只需将函数y=sin4x的图象向右平移单位. 第6页(共23页)
故选:B. 【点评】本题考查三角函数的图象的平移,值域平移变换中x的系数是易错点.
4.(5分)已知菱形ABCD的边长为a,∠ABC=60°,则=( ) A.﹣a2 B.﹣a2 C.a2 D.a2
【分析】由已知可求,,根据=()•=代入可求 【解答】解:∵菱形ABCD的边长为a,∠ABC=60°, ∴=a2,=a×a×cos60°=,
则=()•== 故选:D. 【点评】本题主要考查了平面向量数量积的定义的简单运算,属于基础试题
5.(5分)不等式|x﹣1|﹣|x﹣5|<2的解集是( ) A.(﹣∞,4) B.(﹣∞,1) C.(1,4) D.(1,5) 【分析】运用零点分区间,求出零点为1,5,讨论①当x<1,②当1≤x≤5,③当x>5,分别去掉绝对值,解不等式,最后求并集即可. 【解答】解:①当x<1,不等式即为﹣x+1+x﹣5<2,即﹣4<2成立,故x<1; ②当1≤x≤5,不等式即为x﹣1+x﹣5<2,得x<4,故1≤x<4; ③当x>5,x﹣1﹣x+5<2,即4<2不成立,故x∈∅. 综上知解集为(﹣∞,4). 故选:A. 【点评】本题考查绝对值不等式的解法,主要考查运用零点分区间的方法,考查运算能力,属于中档题.
6.(5分)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=( ) 第7页(共23页)
A.3 B.2 C.﹣2 D.﹣3 【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值. 【解答】解:作出不等式组对应的平面区域如图:(阴影部分). 则A(2,0),B(1,1), 若z=ax+y过A时取得最大值为4,则2a=4,解得a=2, 此时,目标函数为z=2x+y, 即y=﹣2x+z, 平移直线y=﹣2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件, 若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3, 此时,目标函数为z=3x+y, 即y=﹣3x+z, 平移直线y=﹣3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件, 故a=2, 故选:B.
【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键. 第8页(共23页)
7.(5分)在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A. B. C. D.2π 【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可. 【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的倒圆锥, 几何体的体积为:=. 故选:C.
【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键.
8.(5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( ) (附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P(μ﹣2σ<ξ<μ+2σ)=95.44%) A.4.56% B.13.59% C.27.18% D.31.74% 【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论. 【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%, 所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%. 故选:B. 【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两