新定义中考数学试题的命题阐释与思考
中考新定义问题(第 2 课时 压轴题部分)

中考“新定义”问题(第 2 课时·压轴题部分)※※※ 背景分析“新定义”问题是近年来中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力.“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略[1].而“新定义”问题的关键则需要学生正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力.※※※ 教学目标分析①、知识与能力目标:使学生能有效地捕捉到“新定义”与“旧知识”的联系,提高学生有效地对知识点迁移的反映能力;培养学生的阅读能力和独立获取新知识、运用新知识、解决新问题的能力.而在解决新问题的过程中又可以产生了许多新方法、新观念,增强了学生创新思维.②、过程与方法目标:使学生通过阅读、观察、思考、分析、综合从而掌握“新定义”.并通过实例,提高学生解决问题的能力,加深对概念的理解.③、情感、态度与价值观目标:使学生感受到在探索“新定义”问题的过程中,体验解决新问题的方法与乐趣,从而培养学生学好数学的兴趣;学生在观察、思考、探究、归纳的过程中,锻炼意志与品质,使学生的个性得到发展.※※※ 学情分析初中阶段的数学学习要求学生初步学会运用数学思维去观察、分析现实社会,去解决日常生活中的问题,增强应用数学的意识,促进学生的全面发展.所以我认为应有意识地使学生能够运用已掌握的知识与方法理解“新定义”,做到“化生为熟”,化难为易,化繁为简,现学现用,提高学生的综合能力.※※※ 教学重点、难点教学重点:理解“新定义”,寻找“新定义”与旧知识点的联系.教学难点:“新定义”的迁移和应用能力.※※※ 教法、学法分析教法:精讲精练,启发诱导教学法.学法:以学生为主体,引导学生讨论,交流合作,启发引导学生领会规律,体会学习“新定义”解决问题的乐趣.※※※ 教学过程设计教学内容教学活动设计说明一、学习任务呈现:1、(2018 年深圳市中考卷,20)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图 1,在△CFE 中,CF=6,CE=12,∠FCE=45°,以点 C 为圆心,以任意长为半径作 AD,再分别以点 A 和点 D 为圆心,大于AD 长为半径作弧,交EF 于点B,AB∥CD.(1)求证:四边形 ACDB 为△FEC的亲密菱形;(2)求四边形 ACDB 的面积.(图1)2、(2018 年景德镇市模拟卷,23)如图,将△ABC 绕点A 逆时针旋转α后,与△ADE 构成位似图形,我们称与互为“旋转位似图形”.(1)知识理解:两个重合了一个顶点且边长不相等的等边三角形(填“是”或“不是”)“旋转位似图形”;如图 2,△ABC 和△ADE 互为“旋转位似图形”,① 若α =26º,∠B=100 º,∠E=29 º,则∠BAE = ;②若AD=6,DE=8,AB=4,则BC = ;(2)知识运用:如图 3,在四边形ABCD 中,∠ADC=90 º,AE⊥BD 于E,∠DAC =∠DBC,求证:△ACD 和△ABE 互为“旋转位似图形”;(3)拓展提高:教师提前把学案发给学生,让学生先学后教,先练后导.(用15 分钟完成第1、第 2小题)限时完成.教师用投影仪投影学生的作答进行分析、讲评,侧重问题的入手分析,提炼解题思路与策限时训练,就是为了激发学生尽快进入上课的精神状态,集中注意力于问题解决当中,同时,也是教师很好地了解学生已有的面对“新定义”知识基础,答题规范等的好举措.让学生先独立完成练习,就是让学生尽快地进入“新定义”问题情境,通过解题回顾应对新知识的反应能力.学生独立完如图 4,△ABC 为等腰直角三角形,点G 为AC 中点,点F 是AB上一点,D是GF延长线上一点,点E在线段GF上,且△ABD 与△AGE 互为“旋转位似图形”,若AC=6,AD=2 2 ,求出DE 和BD 的值. DC DE OBɑEA C(图2)AB(图3)DBFEA G C(图4)二、评价、总结反思问题解决过程约用 7 分钟讲评学生的解答过程,引导学生总结与反思上述问题的解决策略.三、能力提升训练3、(2018 年南通市中考卷,28)【定义】如图 5,A,B 为直线 l 同侧的两点,过点 A 作直线 1 的对称点A′,连接A′B交直线l 于点 P,连接 AP,则称点 P 为点 A,B 关于直线 l 的“等角点”.【运用】如图6,在平面直坐标系xOy 中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点 A,B 关于直线 x=4 的等角点;(2)若直线 l 垂直于 x 轴,点 P(m,n)是点 A,B 关于直线l 的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点 P 是点A,B 关于直线 y=ax+b(a≠0)的等角点,且点 P 位于直线 AB 的右下方,当∠APB=60°时,求 b 的取值范围(直接写出结果).yAl AB oxP A1 B(图5)(图6)yAo xB(备用图)四、提炼“新定义”压轴题部分解决策略(课堂小结)今天学习的“新定义”问题无明确的概念介定,重点是学以致用,能将新旧知识点穿插联系解决新问题.不同的“新定义”要以不变应万变.五、课后作业4、(2017 年·江西·23)我们定义:如图 7,在△ABC中,把 AB绕点 A 顺时针旋转α (0°<α <180°)得到AB′,把 AC 绕通过第3题,教师启发学生总结、反思和提炼“新定义”问题的主要类型、解决问题的策略.问题的能力,提升学生的学习兴趣5、(2017 年海南省中考数学仿真试卷(三),23)定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图 11 中正方形 ABCD 即为线段 BD 的“对角线正方形”.如图 12,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点 P 从点 C 出发,沿折线 CA﹣AB 以 5cm/s 的速度运动,当点 P 与点 B 不重合时,作线段 PB 的“对角线正方形”,设点 P 的运动时间为 t(s),线段 PB 的“对角线正方形”的面积为 S(cm2).(1)如图 13,借助虚线的小正方形网格,画出线段 AB 的“对角线正方形”.(2)当线段 PB 的“对角线正方形”有两边同时落在△ABC 的边上时,求 t 的值.(3)当点 P 沿折线 CA﹣AB 运动时,求 S 与 t 之间的函数关系式.(4)在整个运动过程中,当线段 PB 的“对角线正方形”至少有一个顶点落在∠A 的平分线上时,直接写出 t 的值.CPEDA(图11) B(图12)AB (图13)通过课后独立思考及课前的预习让学生自我评价学习效果,学会反思、发现问题,最终形成运用所学知识去分析问题,解决问题的能力.※※※ 教学评价分析本节课通过对“新定义”问题分析解答,课堂问题由中到难,层层深入.在教学思想上既注重了知识迁移形成过程教学,又突出了学生学习方法的指导,探究能力的训练,创新精神的培养.小结应对“新定义”问题的一些感悟:ⅰ、重视阅读理解能力的培养数学阅读是学生自主学习、自主探索问题的途径之一,数学阅读能力是学生可持续发展能力的一个重要标志.新定义问题的解决,阅读能力的大小直接决定对问题的理解程度.因此,数学教学中必须重视数学阅读能力的培养,重点加强学生数学阅读指导,如在平时的检测中有意识地添加阅读型的问题,指导学生如何阅读,在阅读中如何找关键词,使学生掌握科学的数学阅读方法,养成良好的阅读习惯,让学生更好地、更主动地去阅读、理解、掌握数学知识.ⅱ、加强解题策略指导解题是学生掌握和运用数学知识的重要途径和方法,是学生数学综合能力的体现.掌握正确的解题策略,既可以帮助学生快速地找到解题的正确思路,又有利于学生构建知识体系,提高学生的学习效率.因此,教师在教学实践中要引导学生对解题思路、策略进行研究归纳,解决“新定义”问题的解题策略是①、深刻理解“新定义”---明确“新定义”的条件、原理、方法、步骤和结论;②、重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况.③、依据新定义,运用类比、归纳、联想、分类讨论以及数型结合的数学思想方法解决题目中需要解决的问题.ⅲ、注重思想渗透、培养迁移能力新定义问题,考查知识面广,我们不可能通过一一列举的方法对所有问题做分析与解答,这就要求教师在课堂教学中,交给学生解答数学问题的“金钥匙”---数学思想.如分类整合思想、数型结合思想、函数方程思想、化归转化思想等. 在数学教学过程中渗透数学思想也是落实培养初中生核心素养的主要途径[2].【参考文献】[1]曹义钊. 中考数学中“新定义”问题的类型及教学策略[J] 中学课程辅导(教学研究)2016, (24 ) 103-104[2]徐晓红.“新定义”试题 -- 中考压轴题的新走向[J].中学数学杂志(初中版),2013(8):55-57.。
中考数学中“新定义”问题的类型及教学策略

中考数学中“新定义”问题的类型及教学策略作者:曹义钊来源:《中学课程辅导·教学研究》2016年第16期摘要:近几年嘉兴中考对于“新定义”类型的问题要求较高,而学生往往对于这类问题感到畏惧。
本文以“新定义”问题的概念以及特征为出发点,把这类题型分为四种类型。
教学时从概念中提取信息→加工信息→转化迁移→建立模型→解决问题。
这类问题主要考查学生现学现用的能力以及类比和转化思想。
关键词:“新定义”;策略;迁移;阅读理解中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2016)08-0103“新定义”问题是近几年嘉兴中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力。
“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用。
由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题时会感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略。
三、“新定义”问题的教学策略“新定义”问题的一般结构形式为:展现新定义→运用新定义,它特别注重考查学生自主学习的过程,使考试评价过程转变为考查学生自主学习的能力,因此在针对这类问题的教学中,教师特别要注重教学策略。
1. “新定义”问题与常规问题的区别常规问题解题思维流程:如图,学生简单提取已知条件后,建立模型,再结合所学知识直接解决问题。
“新定义”问题解题思维流程:如图,学生首先要通过阅读提取新的信息,再利用已有认知加工信息,将新定义转化为熟悉的旧知,建立模型,最后利用已有经验在新定义的框架内解决问题。
2. 教学策略“新定义”问题解题思维过程相比常规问题要复杂,主要是加工信息和转化迁移这两个重要环节,笔者根据多年的教学经验,在“新定义”问题教学中可细化为“阅读→理解→转化”三个重要环节来讲解。
数学命题意图

数学命题意图结合,第12题考查变量的代入等。
通过这样的设计,试题不仅能够检验学生的基础知识和技能,也能够引导学生运用基本思想方法解决问题,从而达到引领教学方向的目的。
三、注重素养培养,提高学生综合能力数学学科素养是指学生在数学学科中所具备的价值观、方法论和思维方式等方面的素养。
在本次试题命制中,我们注重培养学生的数学素养,试题涵盖了数学学科素养的多个方面,如数学思想方法、数学应用能力、数学创新意识、数学审美情趣等。
例如第17题考查学生对于数据的分析和解释能力,第20题考查学生对于数学模型的建立和应用能力,第25题考查学生对于数学结论的理解和运用能力等。
这些试题不仅能够考查学生的基础知识和技能,也能够培养学生的数学素养,提高学生的综合能力。
四、贯彻公平原则,确保考试公正本次试题命制贯彻公平原则,确保考试公正。
试题来源广泛,既有课本、考试说明和课本题的变式或引申,也有教材外的知识点,试题难度适中,涵盖了不同层次的考查内容,能够满足不同层次的学生需求。
试题设计严谨,考查内容全面,能够全面评价学生的数学研究水平。
同时,我们还注重试题的语言表达和图形设计,使试题更加清晰易懂,避免了语言和图形上的歧义,确保试题的客观性和公正性。
五、注重反思总结,推动教学改进试题命制是一个不断反思总结、不断改进的过程。
我们将认真分析学生的答卷情况和教师的教学反馈,总结试题命制的经验和不足,不断推动教学改进。
同时,我们也欢迎广大教师和学生对本次试题提出宝贵的意见和建议,共同促进数学学科的发展。
本文讨论了我市数学中考试卷的一些特点和考查思想。
其中,第15题考查数学整体思想,第17题考查分类讨论思想,第26题考查特殊到一般、转化等思想。
此外,第20题需要学生具备一定的几何直观和推理能力,考查学生的图形直观能力、发现与探究能力、合情推理能力等。
这些试题立意新颖,构思巧妙,体现了试题的信度和效度,反映出学生的数学素养和数学基本功。
为了适应深入推进新课改的需要,教师应该由“教为中心”向“学为中心”转变,回归教材,重视新课教学。
中考数学新定义问题的解题策略

在直线 y2=kx+1+k(k 为常数,且 k≥0)上 . 若 A,B 两点关于
原点对称,则称点 A,B 为函数 y1,y2 图像上的一对“友好
点”
. 请问这两个函数图像上的“友好点”对数的情况为
(
).
A. 有 1 对或 2 对
B. 只有 1 对
C. 只有 2 对
D. 有 2 对或 3 对
1
解:设 A a, - ,由题意知,点 A 关于原点的对称点
1
若 k ≠0,则 a = ,此时方程①有 2 个实数根,即两个
k
函数图像上的“友好点”
有2对.
综上,这两个函数图像上的“友好点”对数情况为有
1 对或 2 对 . 故选 A.
点评:本题主要考查直线和双曲线上点的坐标特征
及关于原点对称的点的坐标,根据关于原点对称的点的
坐标特征转化为方程的问题求解是解题的关键 .
[文章编号] 1674-6058(2018)35-0021-02
中考数学中的“新定义”问题,主要是指在给出问题
中定义了初中数学中没有学过的一些概念、运算、符号
的一类题型 . 其特点是源于初中数学内容,但又是考生
从没有遇到过的新信息 . 它可以是新的概念、新的运算、
新的符号、新的图形、新的定理或新的操作规则与程序、
由题意得
x2=2×(2-x),解得 x1= -1+ 5 ,x2= -1- 5 (舍去).
则 AM=BN= 5 - 1. ∴ m-n=MN=AM + BN-AB = 2( 5 -
1)- 2 = 2 5 -4.
点评:
本题借助“定义新数”,
考查数轴的概念和一
元二次方程的解法 .
2021年中考数学专题复习:新定义和阅读理解题

2021年中考数学专题复习:新定义和阅读理解题“新定义”题指给出一个从未接触过的新规定,要求现学现用,“给什么,用什么”是应用新“定义”解题的基本思路.这类试题的特点:源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等等.在解决它们过程中又可产生了许多新方法、新观念,增强了学生创新意识.阅读理解题源于课本,高于课本,既考查阅读能力,又综合考查学生的数学意识和数学综合应用能力,尤其侧重于考查学生的数学思维能力和创新意识. 这类题目的结构一般为:给出一段阅读材料,学生通过阅读,将材料所给的信息加以搜集整理,在此基础上,按照题目的要求进行推理解答.一、新定义1.对于任意两个不相等的数a,b定义一种新运算“⊕”如下:a⊕b=a+ba-b,如:3⊕2=3+23-2=5,那么12⊕4=________.2.定义新运算“a*b”:对于任意实数a,b,都有a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运算,例4*3=(4+3)(4-3)-1=7-1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.已知:[x]表示不超过x的最大整数.例:[4.8]=4,[-0.8]=-1.现定义:{x}=x-[x],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}=________.4.用⊕定义一种新运算:对于任意实数m和n,规定m⊕n=m2n-mn-3n,如:1⊕2=12×2-1×2-3×2=-6.(1)求(-2)⊕3;(2)若3⊕m≥-6,求m的取值范围,并在所给的数轴上表示出解集.5.定义:分数nm(m,n为正整数且互为质数)的连分数1a1+1a2+1a3+…(其中a1,a2,a3,…为整数,且等式右边的每一个分数的分子都为1),记作n m =⊕ 1a 1+1a 2+1a 3+…,例如719=⊕1197=12+57=12+175=12+11+25=12+11+152=12+11+12+12,719的连分数为12+11+12+12,记作719=⊕12+11+12+12,则________=⊕11+12+13.6.定义一种新运算⎠⎛b a n·x n -1dx =a n -b n ,例如⎠⎛n k 2xdx =k 2-n 2,若⎠⎛5mm -x -2dx =-2,则m=( )A .-2 B. -25 C .2 D.257.在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是( )A .y =-xB .y =x +2C .y =2xD .y =x 2-2x8.对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点.若关于x 的二次函数y =-x 2-10x +m(m≠0)有两个不相等的零点x 1,x 2(x 1<x 2),关于x 的方程x 2+10x -m -2=0有两个不相等的非零实数根x 3,x 4(x 3<x 4),则下列关系式一定正确的是( A )A .0<x 1x 3<1 B.x 1x 3>1 C .0<x 2x 4<1 D.x 2x 4>1二、阅读理解题1.阅读理解:已知两点M(x 1,y 1),N(x 2,y 2),则线段MN 的中点K(x ,y)的坐标公式为:x =x 1+x 22,y =y 1+y 22.如图,已知点O 为坐标原点,点A(-3,0),⊕O 经过点A ,点B 为弦PA 的中点.若点P(a ,b),则有a ,b 满足等式:a 2+b 2=9.设B(m ,n),则m ,n 满足的等式是( )A .m 2+n 2=9 B.922322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-n mC .(2m +3)2+(2n)2=3D .(2m +3)2+4n 2=9 2.已知点P(x 0,y 0)到直线y =kx +b 的距离可表示为d =||kx 0+b -y 01+k 2,例如:点(0,1)到直线y =2x +6的距离d =||2×0+6-11+22= 5.据此进一步可得两条平行线y =x 和y =x -4之间的距离为________.3.阅读材料:设a→=(x 1,y 1),b→=(x 2,y 2),如果a→⊕b→,则x 1·y 2=x 2·y 1.根据该材料填空,已知a→=(4,3),b→=(8,m),且a→⊕b→,则m =________. 4.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr ,1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x =N(a >0且a≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M·N)=log a M +log a N(a >0,a≠1,M >0,N >0),理由如下: 设log a M =m ,log a N =n ,则M =a m ,N =a n , ⊕M·N =a m ·a n =a m+n,由对数的定义得m +n =log a (M·N) 又⊕m +n =log a M +log a N , ⊕log a (M·N)=log a M +log a N. 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式___________________________________;(2)log a MN =__________.(a >0,a≠1,M >0,N >0) (3)拓展运用:计算log 69+log 68-log 62=________. 5.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依次类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2.根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为________,第5项是________.(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…,a n -a n -1=d ,….所以 a 2=a 1+da 3=a 2+d =(a 1+d)+d =a 1+2d , a 4=a 3+d =(a 1+2d)+d =a 1+3d , ……由此,请你填空完成等差数列的通项公式: a n =a 1+(________)d.(3)-4041是等差数列-5,-7,-9…的第________项. 6.阅读下面的材料:如果函数y =f(x)满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f(x 1)<f(x 2),则称f(x)是增函数; (2)若x 1<x 2,都有f(x 1)>f(x 2),则称f(x)是减函数. 例题:证明函数f(x)=6x (x >0)是减函数. 证明:设0<x 1<x 2,f(x 1)-f(x 2)=6x 1-6x 2=6x 2-6x 1x 1x 2=6(x 2-x 1)x 1x 2. ⊕0<x 1<x 2,⊕x 2-x 1>0,x 1x 2>0.⊕6(x 2-x 1)x 1x 2>0.即f(x 1)-f(x 2)>0. ⊕f(x 1)>f(x 2).⊕函数f(x)=6x (x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f(x)=1x2+x(x <0),f(-1)=1(-1)2+(-1)=0,f(-2)=1(-2)2+(-2)=-74. (1)计算:f(-3)=________,f(-4)=________;(2)猜想:函数f(x)=1x 2+x(x <0)是________函数(填“增”或“减”).参考答案一 1.2 2.C 3.1.14.解:(1)(-2)※3=(-2)2×3-(-2)×3-33=43+23-33=3 3.(2)∵3※m ≥-6,∴32·m -3m -3m ≥-6. 解得:m ≥-2.将解集表示在数轴上如下:5.710 6.B 7.B 8.A二 1.D 2.22 3.6 4.(1)4=log 381(或log 381=4) (2)log a M -log a N (3)2 5.(1)5 25 (2)n -1 (3)2019 6.(1)-269 -6316 (2)增。
2011-2012全国各地中考数学试题分考点解析汇编新定义和跨学科问题

2011-2012全国各地中考数学试题分考点解析汇编新定义和跨学科问题一、选择题1.(2011广东台山3分)如果一个定值电阻R两端所加电压为5伏时,通过它的电流为1安培,那么通过这一电阻的电流I随它的两端电压U变化的图像是【答案】D。
【考点】正比例函数的图象。
【分析】根据电流电压电阻三者关系:VIR,其中R为定值,电流I随它的两端电压U变化是正比例函数的关系,所以它的图象为过原点的直线。
故选C。
2.(2011山西省2分)如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是A.35°B.70°C.110°D.120°【答案】B。
【考点】平行线的性质,入射角与反射角的关系,三角形内角和定理,等腰三角形的性质。
【分析】过点D作DF⊥AO交OB于点F,则DF是法线,根据入射角等于反射角的关系,得∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等)。
∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°。
故选B。
4.(2011湖南岳阳3分)下列四句话中的文字有三句具有对称规律,其中没有这种规律的一句是A、上海自来水来自海上B、有志者事竞成C、清水池里池水清D、蜜蜂酿蜂蜜【答案】B。
【考点】生活中的对称现象。
【分析】根据四个选项的特点,分析出与其它三个不同的即为正确选项:A、上海自来水来自海上,可将“水”理解为对称轴,对折后重合的字相同,故本选项错误;B、有志者事竞成,五字均不相同,所以不对称,故本选项正确;C、清水池里池水清,可将“里”理解为对称轴,对折后重合的字相同,故本选项错误;D、蜜蜂酿蜂蜜,可将“酿”理解为对称轴,对折后重合的字相同,故本选项错误。
专题02 新定义阅读型问题-中考数学专题拓展提高讲练(教师版)九年级数学中考复习专题讲座
专题二:新定义阅读型问题(学生版)★考点一:规律题型中的新定义◆典例一:定义: a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=-1,-1的差倒数是= .已知a1=-,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009=.◆典例二:古希腊数学家把1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,第100个三角形数是__5_050__.★考点二:运算题型中的新定义◆典例一:对于两个不相等的实数a、b ,定义一种新的运算如下,a*b= (a+b>0),如: 3*2==,那么6*(5*4)= 1◆典例二:对于任意实数m,n,定义一种运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算.例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是__4≤a<5__.★考点三:探索题型中的新定义◆典例一:设a,b是任意两个实数,用max{a,b}表示a,b两数中较大者,例如:max{-1,-1}=-1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}=__5__,max{0,3}=__3__;(2)若max{3x+1,-x+1}=-x+1,求x的取值范围;(3)求函数y=x2-2x-4与y=-x+2的图象的交点坐标,函数y=x2-2x-4的图象如图1-1-2所示,请你在图中作出函数y=-x+2的图象,并根据图象直接写出max{-x+2,x2-2x+4}的最小值.◆典例二:定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.如图①,等腰直角四边形ABCD ,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长. ②若AC ⊥BD ,求证:AD =CD .针对训练1. 定义一种新的运算:x *y =x +2y x ,如:3*1=3+2×13=53,则(2*3)*2=____.2. 如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”,下列各组数据中,能作为一个智慧三角形三边长的一组是( ) A .1,2,3 B .1,1, 2 C .1,1, 3D .1,2, 33. 我们定义:当m ,n 是正实数,且满足m +n =mn 时,就称P ⎝⎛⎭⎫m ,mn 为“完美点”,已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC =2,则点C 的坐标可以是( )A .(1,2)B .(2,1)C .(3,4)D .(2,4)4. 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是____(写出所有正确说法的序号). ①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5m n +n 2=0;③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54.5. 若抛物线L :y =ax 2+bx +c (a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时,直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x的图象上,它的“带线”l 的表达式为y =2x -4,求此“路线”L 的表达式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形的面积的取值范围.1.考点解析所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.2.考点分类:考点分类见下表考点分类考点内容考点分析与常见题型常考热点三角形三角形的性质与定理一般考点二次函数结合高中二次函数的内容冷门考点圆圆,曲线的新定义【方法点拨】“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.一、中考题型分析“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力。
中考数学复习新定义题型专题训练
中考数学复习新定义题型专题训练典例精析:例1.我们把分子为1的分数叫做理想分数,如,,,111234任何一个理想分数都可以写成两个不同理想分数的和,如()=+;=+;=+;=1111111111236341245209 ;根据对上述式子的观察思考:如果理想分数111n a b=+(n 是不小于2的正整数),那么a b += (用含n 的点评:本题可以视为“规律性的题型中的定义”,主要是根据定义(本题是“理想分数”)计算推理发现规律,从实例规律迁移解决问题.2.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是1112=--,1-的差倒数为()11112=--,现已知11x 3=-,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依次类推,则 2020x =.例2.我们把a b c d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,比如:232534245=⨯-⨯=-,如果有23x01x->,则x 的取值范围为 . 分析:根据二阶行列式规定的运算法则可知:()2x 3x 10--⨯> ,解得:x 1>;∴故应填:x 1>.点评:本题可以视为“运算建模题型中定义”,主要是根据定义所规定的运算法则进行运算推理来解决问题;这类题可以串联起数学的多个知识点,是中考中出现频率比较高的一种题型.追踪练习:1.对于点(),x y 的一次操作变换()(),,1p x y x y x y =+-,且规定()()(),,n 1n 1p x y P P x y -=(n 为大于1的整数);如()(),,1p 1231=-,()()()(),,(.),2111p 12P 12P 3124==-=,(),3p 12=((,))(,)(,)122P p 12p 2462==-,则(,)2019p 11-= ( )A.(),100902-B.(),101002-C.(),100902D.()101002、2.对于正数x ,如果规定()1f x 1x =+,例如:()11f 4145==+,114f 14514⎛⎫== ⎪⎝⎭+;根据上面的规定计算()()()()111f 2019f 2018f 2f 1f f f 220182019⎛⎫⎛⎫⎛⎫++++++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 的值为, ()()()()111f 2020f 2019f 2f 1f f f 220192020⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值二阶行列式运算法则”,计算填空:; ⑵.x 3x 2x 4x 3+---= ;⑶.2x x 26x 2x-=+,则x = .4.若定义()a,b ☆()m,n am bn =+ ,则⎛⋅ ⎝= .5.对于两个不相等的实数a,b,定义一种新的运算如下,)a b a b 0=+> ,如:32= ()654 的值.6.我们定义a b ad bc c d =-,比如:()121623661236-=-⨯-⨯=--=-;若x,y 均为点评:本题可以视为“探索题型中的新定义”,主要是根据定义计算推理论证,这类题一般要在定义的前提下进行匪类讨论,往往和存在性问题交融在一起.追踪练习:1.若平面直角坐标系中,两点关于过原点的一条直线成轴对称,则这两点就是互为镜面点, 这条直线叫镜面直线,如(),A 23)和(),B 32是以x y =为镜面直线的镜面点. ⑴.若(),M 41和(),N 14--是一对镜面点,则镜面直线为 .⑵.若以y =为镜面直线,则(),E 20-的镜面点为 .2.如图,A,B 是⊙O 上的两个顶点,P 是⊙O 上的动点(P 不与A,B 重合),我们称APB∠是⊙O 上关于点A,B 的滑动角.3.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内ABCD 的准内点.⑴.如图2,AFD ∠与DEC ∠的角平分线相交于点P .求证:点P 是四边形ABCD 的准内点.⑵.分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)⑶.判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.( )②任意凸四边形一定只有一个准内点.( )③若点P 是四边形ABCD 的准内点,则PA PB PC PD +=+或PA PC PB PD +=+( ).例4. 对于实数a b 、,定义运算某“*”:()()22a ab a b a b ab b a b ⎧-≥⎪=⎨-<⎪⎩*.例如42*,因为42>,所以2424428=-⨯=*.若12x x 、是一元二次方程2x 5x 60-+=的两个根,则*12x x = .分析:∵12x x 、是一元二次方程2x 5x 60-+=的两个根∴()()x 2x 30--= 解得:x 3= 或x 2=①.当12x 3,x 2== 时,1x *2x =23233-⨯=;②.当12x 2,x 3== 时,1x *2x =22333⨯-=-.故应填:3或3-. 点评:本题可以视为“开放题型中的新定义”,本题的结论是开放的,常常要根据条件分类讨论,结合对应的定义法则进行运算推理(实际上是同一名称多种形式),这类题容易漏解.追踪练习:1. 对实数a ☆b ()()-⎧>≠⎪=⎨≤≠⎪⎩b b a a b,a 0a a b,a 0 ;比如2☆3-==3128,计算[2☆()-4]× [()-4☆()-2]= .2.在平面直角坐标系xOy 中,对于任意两点()111P x ,y 和()222P x ,y 的“非常距离”,给出以下概念:若1212x x y y -≥- ,则点1P 和点2P 的“非常距离”距离为12x x -;.若1212x x y y -<- ,则点1P 和点2P 的“非常距离”距离为12y y -.例如:点()1P 1,2和()2P 3,5。
最新中考数学新定义题型专题复习资料
新定义型专题(一)专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力(二)解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.(三)考点精讲考点一:规律题型中的新定义 例1.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知a 1=-13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2009= .考点二:运算题型中的新定义例2.对于两个不相等的实数a 、b ,定义一种新的运算如下,*0a ba b a b a b+=+(>)﹣,如:323*2532+==﹣,那么6*(5*4)= .例3.我们定义ab ad bc cd=-,例如2345=2×5﹣3×4=10﹣12=﹣2,若x ,y 均为整数,且满足1<14x y <3,则x+y 的值是 .考点三:探索题型中的新定义例4.定义:到凸四边形一组对边距离相等,到另一组对边距离也相等的点叫凸四边形的准内点.如图1,PH=PJ,PI=PG,则点P就是四边形ABCD的准内点.(1)如图2,∠AFD与∠DEC的角平分线FP,EP相交于点P.求证:点P是四边形ABCD 的准内点.(2)分别画出图3平行四边形和图4梯形的准内点.(作图工具不限,不写作法,但要有必要的说明)(3)判断下列命题的真假,在括号内填“真”或“假”.①任意凸四边形一定存在准内点.()②任意凸四边形一定只有一个准内点.()③若P是任意凸四边形ABCD的准内点,则PA+PB=PC+PD或PA+PC=PB+PD.()考点四:阅读材料题型中的新定义阅读材料我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;请解决以下问题:如图,我们把满足AB=AD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;(1)写出筝形的两个性质(定义除外);(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明.真题演练1.定义运算a⊗b=a(1﹣b),下列给出了关于这种运算的几点结论:①2⊗(﹣2)=6;②a⊗b=b⊗a;③若a+b=0,则(a⊗b)+(b⊗a)=2ab;④若a⊗b=0,则a=0.其中正确结论序号是.(把在横线上填上你认为所有正确结论的序号)2.如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线,例如平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有;(2)如图,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不梯形ABCD写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.3. 如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7……叫做“正六边形的渐开线”,其中1FK ,12K K ,23K K ,34K K ,45K K ,56K K ,……的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为l 1,l 2,l 3,l 4,l 5,l 6,…….当AB =1时,l 2 011等于( )A.20112π B.20113π C.20114π D.20116π一、选择题1、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是( )A. 56B. 15C.5D.62.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A 、1,2B 、1,3C 、4,2D 、4,33.(2010浙江杭州,10,3分)定义[a ,b ,c ]为函数y =a x 2+bx c +的特征数,下面给出特征数为[2m ,1﹣m ,﹣1﹣m]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(18,33);②当m >0时,函数图象截x 轴所得的线段长度大于32; ③当m <0时,函数在x >14时,y 随x 的增大而减小; ④当m ≠0时,函数图象经过同一个点. 其中正确的结论有( ) (第12题图)A B CD EF K 1 K 2K 3K 4K 5K 6K 74.通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。
中考数学复习新定义、新运算型问题精讲(共24张PPT)
3
1
解析:选项A中,3×(-2)+2×3=0,∴两向量互相垂直;
选项 B 中,( 2-1)· ( 2+1)+1×1=2,∴两向量不垂直; 1 选项 C 中,3×(-3)+20180×(-1)=-2,∴两向量不垂直; 选项 D 中, 8×( 2) +(- )×4=2,∴两向量不垂直.
所以说法错误的是 C.
4.(2018· 聊城)若x为实数,则[x]表示不大于x的最大整数,例如 [1.6]=1,[π]=3,[-2.82]=-3等.[x]+1是大于x的最小整数,对任意的实 数x都满足不等式[x]≤x<[x]+1 ①.利用这个不等式①,求出满足
[x]=2x-1的所有解,其所有解为 1 或2
解析:根据题意,得 第一次:当n=13时,F①=3×13+1=40,
第二次:当 n=40 时,F②=23 =5,
2
40
第三次:当 n=5 时,F①=3×5+1=16, 16 第四次:当 n=16 时,F②= 4 =1, 第五次:当 n=1 时,F①=3×1+1=4, 4 第六次:当 n=4 时,F②=22 =1,
������������ ������ ������������ ������
b1a2
b2 = 2
13 -2
b2 = 1 c2 = 2
-14 -7 21 -7
112
-2 =1×(-2)-1×12=-14,
13 12 =2×12-1×3=21,
������ = ������ =
= =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1 ) 情 境 设 计 新 颖 、 构 思 独 特 。 题 目 中 出现 考
生 没 有 学 习过 的 新 规 定 、 新 名 称 、 新 符 号 、新 运 算 、 新 图 形 等 概 念 ,情 境 新 颖 、 背 景 公 平 。 ( 2 ) 考 查 阅 读 能 力 、迁 移 能 力 。 考 查 了 考 生 阅 读 材 料 获 取 新 知 识 、学 习理 解 新 知 识 和 应 用 新 知 识
.
,( 1 ) = 1 + }, f( 2 ) = 1 + 手, 厂( 。 ) = + , 则 / ( ) ‘
( 2 )- f( 3) ‘ - f ( - 1 O 0 )— — 。
新 问 题 的 能 力 ,是 创 新 意 识 、 问题 意 识 的 有 效 载
体 ,这 类 试 题 主 要 有 以 下 三 个 特 点 :
( 吲1 ) 2 +( 2 ) 2 + …+ (
薪 定 义 巾者数 试 题 曲 命 题 潮释 与 逻者
莆 田市教 师进修 学 院 蔡 德清
何 为 新定 义? x - , j - 在 教 材 或 课 标 中没 有 出现 或 没
一
有 要 求 的 符 号 、概 念 、 法 则 、 图 形 、 命 题 等 进 行 重 新 界定 ,我t f 3  ̄, 为 新 定 义 。 所 谓 新 定 义 试 题 ,就 是 指 通 过 试 题 提 供 的 新 定 义 、 新 概 念 、 新 规 则 、 新 定
的 能 力 ,考 查 层 次 丰 富 , 不 同 水 平 的 考 生 可 以 在 解
答 中充 分展 示 自己的探 究 深度 。试题 进 行 知识 迁移 的 同 时 关 注 方 法 迁 移 ,让 考 生 经 历 学 习 、探 索 、 问 题解 决 的整个 过 程 。 ( 3 ) 检 测 思 维 能 力 、 创 新 能 力 。 试 题 不 是 简 单 直 白地 考 查 基 础 知 识 、基 本 技 能 ,而 是 把 对 “ 基 础 ” 的考 查 置 于分 析 、 解决 数 学 问题 的 背景 之 中 ,
体 现 了情 境 性 、 探 究性 、开 放 性 和 实 践性 的统 一 。
,
同 时 ,这 类 试 题 与 中 考 的 过 程 性 测 试 目标 相 符 , 体 因 而 能 更 好 地 检 测 考 生 的 独 立 思 考 能 力 、 探 索 精 神
和 仓U 新能力。 新 定 义 试 题 往 往 都 是 原 创 题 ,而 坚 持 原 创 可 以
、
定义新的运算
例 l ( 2 0 1 1年 莆 田 市 质 检 ) :定 义 a b = a b + 口 +
b, 若 3 x= 27, 则 的 值 是 。
理 、 新 材 料 来 创 设 新 情 境 ,提 出 新 问 题 ,要 求 学 生 完 成 某 种 推 理 、 证 明 或 指 定 要 求 的 试 题 。 新 定 义 试
试 题 评 析 : 以 上 两 例 属 于 新 定 义 运 算 题 ,例 l
新 定 义 一 个 四 则 运 算 公 式 ,例 2以 高 中 对 函 数 值 的 表 达 方 式 为 内 容 进 行 定 义 。 这 类 问 题 相 对 比 较 简 单 ,只 是 初 步 运 用 新 定 义 ,要 求 考 生 直 接 利 用 公 式 进 行 计 算 ,其 目 的 是 考 查 考 生 对 新 定 义 的 理 解 , 要 求考 生 X - , J g  ̄定 义 的 对 象 进 行 拓 展 、 延 伸 。 命 题 反 思 :试 题 关 注 数 学 规 则 的 选 择 和 运 用 , 命 题 时 通 过 新 定 义 符 号 、 新 定 义 运 算 法 则 、 新 定 义 变 换 等 方 式 ,设 计 取 整 函 数 、 程 序 框 图 、 行 列 式 计 算 等 问 题 。 这 类 试 题 关 注 的 是 对 概 念 的 理 解 与 简 单 应 用 ,考 查 的 大 多 是 程 序 性 知 识 , 应 注 意 不 能 强 调 机械 模 仿 。
题 其 背 景 相 对 公 平 ,是 近 几 年 各 地 中 考 的 热 点 ,也
例 2( 2 0 1 1年 莆 田 市 中考 题 ) : 已知 函数 f ( )=
l + 生 ,其 中
.
a) 表 示 当 x - a时 对 应 的 函 数 值 ,如
是 中考 所 追 求 的 理 想 题 型 之 一 。 新 定 义 试 题 主 要 考 查 考 生 学 习新 知 识 的 能 力 和 综 合 利 用 所 学 知 识 解 决
二 、定义新的概念
例 3 ( 2 0 1 5 年 莆 田 市 质 检 ): 对 于 一 个 自 然 数 t, 如 果 能 找 到 正 整 数 、 Y, 使 得 I I t = x + y + x y " , 则 称
凡为 “ 好 教 ”, 例 如 , 3 =1 +1 +1 xl, 则 3 是 一 个 “ 好
现 以 本 人 参 与 命 制 的 新 定 义 试 题 为 例 , 阐释 这 类试 题 的特 点与考 查价 值 。
例 4 ( 2 0 1 3年 莆 田 市 中 考 ) : 统 计 学 规 定 : 某
次 测 量 得 到 n个 结 果 1 , 2 , … , 。 当 函 数 y- -
: 现 出~ 定 的 数 学 思考 和 解决 问题 能 力 方 面 的要 求 ,
‘
数” , 在 8, 9, 1 0, l 1这 四 个 数 中 , “ 好 数 ” 的 个
数 为 (
A 1
)
B. 2 C. 3 D. 4
有 效 保 证 考 试 的 公 平 ,减 少 因 机 械 训 练 、 押 题 、 猜 题 对 考 试 产 生 的 负 面 影 响 ,对 于 提 高 中 考 的 科 学 有 效性 、 引导课 堂教 学 改革具 有积极 的作 用。