天津市和平区七年级数学上期末模拟题(2)有答案
2017-2018学年天津市和平区七年级数学上期末模拟题(2)有答案【推荐】

七年级数学上册 期末模拟题一、选择题:1.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( )A .1022.01(精确到0.01)B .1022(精确到个位) C.1022.00(精确到0.1) D .1022.010(精确到千分位)2.如图所示的几何体的俯视图是( )3.若x 2+x+1的值是8,则4x 2+4x+9的值是( )A .37B .25C .32D .0 4.解是x=2的方程是( )A .2(x-1)=6B .0.5x+1=xC .21012x x =+D .x x -=+1312 5.如果|a|=﹣a ,下列成立的是( )A .a >0B .a <0C .a ≥0D .a ≤06.下列各式计算正确的是( )A .6a+a=6a 2B .﹣2a+5b=3abC .4m 2n ﹣2mn 2=2mnD .3ab 2﹣5b 2a=﹣2ab 27.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个数有 ( ) ①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A .1个B .2个C .3个D .4个8.如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A .100°B .115°C .65°D .130°9.钟表在3点30分时,它的时针和分针所成的角是( )A .75°B .80°C .85°D .90°10.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )A .8B .9C .8或9D .无法确定11.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()12.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )A.1 B.2 C.3 D.4二、填空题:13.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高 m.14.当时钟指向上午10:10时,时针与分针的夹角是度.15.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .16.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.17.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .三、解答题:19.计算下列各题:(1)3x2-[7x-(4x-3)+2x2] (2)32°45′48″+21°25′14″. (3)(2ab+3a)-3(2a-ab)20.解方程:21.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.22.某天上午9时,李明,王华两人从A.B两地同时出发,相向而行,上午10时两人相距55千米,两人继续前进,到上午12时,两人又相距55千米,已知李明每小时比王华多走2千米,问:(1)李明、王华两人的速度分别是多少?(2)A.B两地的距离是多少千米?23.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.24.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N_ ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).参考答案1.答案为:C.2.答案为:C3.答案为:A.4.答案为:B;5.答案为:D.6.答案为:D.7.答案为:A8.答案为:B.9.答案为:A.10.答案为:C.11.答案为:A12.答案为:B13.答案为:35.14.答案为:115°15.答案为:416.答案为:135.17.答案为:∠BOC.18.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1=n2+2n+1+n2=2n2+2n+1.故答案为:2n+1;2n2+2n+1.19.(1)原式=x2-3x-3.(2)原式=53°70′62″=54°11′2″.(3)原式=5ab-3a20.解:,,,.21.解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒).答:小虫共爬行了108秒.22. (1) 李明:28.5km/h 26.5km/h(2) 110km23.解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.24.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.。
天津市和平区2021年七年级上学期《数学》期末试卷与参考答案

天津市和平区2021年七年级上学期《数学》期末试卷与参考答案一、选择题本大题共12小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 计算(-18)÷6的结果等于( )A. -3B. 3C. D.答案:A2. 多项式x 2﹣3xy 2﹣4的次数和常数项分别是( )A. 2和4 B. 2和﹣4C. 3和4D. 3和﹣4答案:D3. 2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录,将数据10900用科学记数法表示为( )A. B. C. D. 答案:B4. 如图所示,由7个相同的小正方体组合成一个立体图形,从它上面看到的平面图形是( )13-1331.0910⨯41.0910⨯310.910⨯50.10910⨯A. B.C. D.答案:A5. 下列方程变形正确的是( )A. 由﹣5x =2,得 B.由,得y =2C. 由3+x =5,得x =5+3D. 由3=x ﹣2,得x =﹣2﹣3答案:B6. 如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A. 50°B. 55°C. 60°D. 65°答案:D7. 如图,从A 到B 有①,②,③三条路线,最短的路线是①,其理由是( )A. 因为它最直B. 两点确定一条直线C. 两点间的距离的概念D. 两点之间,线段最短答案:D52x =-112y =8. 如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是( )A. 传B. 统C. 文D. 化答案:C9. 如图所示,点是线段的中点,点是线段的中点,下列选项中错误的是()A. B. C. D. 答案:D10. 如图:∠AOB :∠BOC :∠COD =2:3:4,射线OM 、ON ,分别平分∠AOB 与∠COD ,又∠MON =84°,则∠AOB 为( )A. 28°B. 30°C. 32°D. 38°答案:A11. 下列说法中,正确的有( )个.①射线AB 与射线BA是同一条射线;C ABD CB CD AC DB =-CD AD BC =-12CD AB DB =-13CD AB=②连接两点的线段叫做这两点的距离;③把一个直角三角形以直角边为轴旋转一周得到的几何体是圆柱;④等角的余角相等;⑤因为AM =MB ,所以点M 是AB 的中点.A. 0个 B. 1个C. 2个D. 3个答案:B12. 某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A. 150 米 B. 215米C. 265 米D. 310米答案:C二、填空题本大题共6小题,每小题3分共18分.请将答案直接填在题中的横线上.13. 31.46°=_____度_____分_____秒.答案:①. 31②. 27③. 3614. 已知a ,b 互为相反数,c ,d 互为倒数, x 是数轴上到原点的距离为1的点表示的数,则的值为__________.答案:02020a bx cd cd+-+15. 当x =1时,多项式ax 2+bx+1的值为3,那么多项式2(3a ﹣b )﹣(5a ﹣3b )的值为___.答案:216. 一个角的补角比这个角的余角的4倍少60°,这个角的度数是_____(度).答案:40.17. 已知线段AB =12cm ,M 是AB 的中点,C 是AB 上一点,且AC =5BC ,则C 、M 两点之间的距离是_____cm .答案:418. 我们定义:若两个角差的绝对值等于,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:,,,则和互为“正角”.如图,已知,射线平分, 在的内部,若,则图中互为“正角”的共有___________对.答案:760 1110∠= 250∠=o |12|60-=∠∠1∠2∠120AOB ∠=o OC AOB ∠EOF ∠AOB ∠60EOF ∠=三、解答题本大题共7小题,共58分.解答题应写出演算步骤或简单推理过程。
天津市和平区2022届数学七上期末模拟调研试卷(二)

天津市和平区2022届数学七上期末模拟调研试卷(二)一、选择题1.如图,直线AE 与CD 相交于点B ,60ABC ∠=︒,95FBE ∠=︒,则DBF ∠的度数是( ).A.35︒B.40︒C.45︒D.60︒2.小华在小凡的南偏东30°方位,则小凡在小华的( )方位A .南偏东60° B.北偏西30° C.南偏东30° D.北偏西60°3.如图,直线相交于,平分,给出下列结论:①当时,;②为的平分线;③与相等的角有三个;④。
其中正确的结论有( )A.个B.个C.个D.个4.互联“微商”经营已成为大众创业新途径.某微信平台上一件商品标价为440元,按标价的五折销售,仍可获利10%,则这件商品的进价为( )A .240元B .200元C .160元D .120元5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。
若AE =x (cm ),依题意可得方程( )A.6+2x =14-3xB.6+2x =x +(14-3x )C.14-3x =6D.6+2x =14-x6.给出如下结论:①单项式-232x y 的系数为-32,次数为2;②当x =5,y =4时,代数式x 2-y 2的值为1;③化简(x +14)-2(x -14)的结果是-x +34;④若单项式57ax 2y n +1与-75ax m y 4的差仍是单项式,则m +n =5.其中正确的结论有( ) A.1个B.2个C.3个D.4个 7.有理数m ,n 在数轴上的位置如图所示,则化简│n│-│m -n│的结果是( )A.mB.2n-mC.-mD.m-2n8.甲队有51个人,乙队有45个人,从乙队调若干人到甲队后,甲队的人数恰好是乙队的3倍,求变化后乙队有多少人?若设变化后乙队有x 人,可列方程为:A.51+x=3(45-x)B.51-x=3(45+x)C.3x-51=45-xD.51-3x=x-45 9.一个代数式减去-2x 得-2x 2-2x+1,则这个代数式为( ) A .21x -+ B .2241x x --+C .221x -+D .224x x -- 10.如图,数轴上的、、A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||,a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 11.﹣12016的相反数的倒数是( ) A.1B.﹣1C.2016D.﹣2016 12.计算()115555⎛⎫-⨯÷-⨯ ⎪⎝⎭结果正确的是( ) A.25B.-25C.-1D.1二、填空题13.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠COB =_____度.14.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,若∠DOC=28°,则∠AOB 的度数为______.15.某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.16.把多项式2332435xy x y x y -+-按字母x 的降幂排列是____. 17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a ,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a 的代数式表示)18.2017年12月24日“八中之春”在重庆市大剧院成功演出,其中播放的王俊凯祝福母校八十周年庆的视频,当天络点击量达到350000次,数字350000用科学计数法表示为_________________.19.将有理数0.23456精确到百分位的结果是___________.20.已知在3×3的方格内已填好了两个数﹣5和6,可以在其余空格中填上适当的数,使得每行、每列及对角线上的三个数之和都相等,则表中x 的值为_____.三、解答题21.如果两个角的差的绝对值等于90,就称这两个角互为反余角,其中一个角叫做另一个角的反余角,例如,1120∠=,230∠=,1290∠∠-=,则1∠和2∠互为反余角,其中1∠是2∠的反余角,2∠也是1∠的反余角. ()1如图1.O 为直线AB 上一点,OC AB ⊥于点O ,OE OD ⊥于点O ,则AOE ∠的反余角是______,BOE ∠的反余角是______;()2若一个角的反余角等于它的补角的23,求这个角. ()3如图2,O 为直线AB 上一点,AOC 30∠=,将BOC ∠绕着点O 以每秒1角的速度逆时针旋转得DOE ∠,同时射线OP 从射线OA 的位置出发绕点O 以每秒4角的速度逆时针旋转,当射线OP 与射线OB 重合时旋转同时停止,若设旋转时间为t 秒,求当t 为何值时,POD ∠与POE ∠互为反余角(图中所指的角均为小于平角的角).22.如图,点O 为原点,已知数轴上点A 和点B 所表示的数分别为﹣10和6,动点P 从点A 出发,以每秒6个单位长度的速度沿数轴正方向匀速运动,同时动点Q 从点B 出发,以每秒3个单位的速度沿数轴负方向匀速运动,设运动时间为t (t >0)秒(1)当t=2时,求AP 的中点C 所对应的数;(2)当PQ=OA 时,求点Q 所对应的数.23.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了(3)x x >千米. ()1用含x 的代数式表示他应支付的车费.()2行驶30千米,应付车费多少钱?()3若他支付了36元,你能算出他乘坐的路程吗?24.已知8x 2a y 与-3x 4y 2+b 是同类项,且A=a 2+ab-2b 2,B=3a 2-ab-6b 2,求2B-3(B-A )的值.25.(1)计算1114125522-+---(); (2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭. 26.先化简,再求值()()25xy 4x 2xy 22.5xy 10-+-+,其中x 1=-,y 2=-. 27.我们定义一种新运算:a*b=a 2﹣b+ab .例如:1*3=12﹣3+1×3=1.(1)求2*(﹣3)的值.(2)求(﹣2)*[2*(﹣3)]的值.28.已知:点D 在线段AB 上,点C 是线段AD 的中点,AB=4。
2022-2023学年天津市和平区七年级(上)期末数学试卷(附答案详解)

2022-2023学年天津市和平区七年级(上)期末数学试卷1. 计算−8+2的结果是( )A. −6B. 6C. −10D. 102. 节约是一种美德,节约是一种智慧。
据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人。
350 000 000用科学记数法表示为( )A. 3.5×107B. 3.5×108C. 3.5×109D. 3.5×10103. 如图的几何体是由一些小正方体组合而成的,则这个几何体的左视图是( )A.B.C.D.4. 下列变形不一定正确的是( )A. 若a=b,m≠0,则am =bmB. 若a=b,则a2=b2C. 若a=b,则a+2c=b+2cD. 若ac=bc,则a=b5. 在灯塔O处观测到轮船A位于北偏西54∘的方向,同时轮船B在南偏东15∘的方向,则∠AOB 的大小为( )A. 69∘B. 111∘C. 159∘D. 141∘6. 若单项式13a m+1b3与−2a3b n的和仍是单项式,则方程x−7n−1+xm=1的解为( )A. x=−23B. x=23C. x=−29D. x=297. 下列说法正确的有( )①角的大小与所画边的长短无关;②如图,∠ABD也可用∠B表示;∠AOB,那么OC是∠AOB的平分线;③如果∠AOC=12④连接两点的线段叫做这两点之间的距离;⑤两点之间线段最短;CD,则点E是线段CD的中点.⑥点E在线段CD上,若DE=12A. 1个B. 2个C. 3个D. 4个8. 如图,O为直线AB上一点,∠DOC为直角,OE平分∠AOC,OG平分∠BOC,OF平分∠BOD,下列结论:①∠AOE与∠BOG互余;②∠EOF与∠GOF互补;③∠DOE与∠DOG互补;④∠AOC−∠BOD=90∘,其中正确的有个( )A. 4B. 3C. 2D. 19. 如图几何体中属于棱柱的有______ (填序号).10. 若a,b互为相反数,且ab≠0,c、d互为倒数,m是数轴上到原点的距离为2的点表)3−3cd+m2的值为______.示的数,则(a+b)2+(ba11. 若x=1时,代数式ax3+bx+7的值为3,则当x=−1时,ax3+bx+7的值为________________ .12. 某正方体的每个面上都有一个汉字,如图是它的一个展开图,则在原正方体中,与“我”字所在面相对的面上的汉字是______ 。
2023-2024学年天津市和平区 七年级(上)期末数学试卷(含解析)

2023-2024学年天津市和平区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题2分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算−3−2的值为( )A. −5B. −1C. 5D. 12.南京长江四桥线路全长约29000米,将29000用科学记数法表示为( )A. 0.29×105B. 2.9×103C. 2.9×104D. 29×1033.下列说法正确的是( )A. 单项式−3xy的系数是−3B. 单项式2πa3的次数是4C. 多项式x2y2−2x2+3是二次三项式D. 多项式x2−2x+6的项分别是x2、2x、34.如图所示,几何体由6个大小相同的立方体组成,其俯视图是( )A.B.C.D.5.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠BFE=( )A. 70°B. 65°C. 60°D. 50°6.如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为( )A. 159°B. 141°C. 111°D. 69°7.下列等式变形错误的是( )A. 若a=b,则a1+x2=b1+x2B. 若a=b,则3a=3bC. 若a=b,则ax=bxD. 若a=b,则am =bm8.若(m−2)x|2m−3|=6是一元一次方程,则m等于.( )A. 1B. 2C. 1或2D. 任何数9.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设共有x人,则可列方程为( )A. 8x+3=7x−4B. 8x−3=7x+4C. x−38=x+47D. x+38=x−4710.将一副三角板按如图所示的位置摆放,其中∠α与∠β一定互余的是( )A. B.C. D.11.已知线段AB=10cm,点C是直线AB上一点,BC=4cm,若M是AC的中点,N是BC的中点,则线段MN 的长度是( )A. 3cmB. 5cmC. 7cmD. 7cm或3cm12.现定义运算“∗”,对于任意有理数a,b满足a∗b={2a−b,a≥ba−2b,a<b.如5∗3=2×5−3=7,1 2∗1=12−2×1=−32,若x∗3=5,则有理数x的值为( )A. 4B. 11C. 4或11D. 1或11二、填空题:本题共6小题,每小题3分,共18分。
2019-2020学年天津市和平区七年级上期末数学试卷含答案解析.docx

2019-2020 学年天津市和平区七年级上期末数学试卷含答案解析一、选择题(共 12 小题,每小题 2 分,满分24 分)1.计算(﹣3)﹣(﹣ 5) =()A . 2 B.﹣ 2 C. 8D.﹣ 82.数轴上的点 A 到原点的距离是4,则点 A 表示的数为()A . 4 B.﹣ 4 C. 4 或﹣ 4D. 2 或﹣ 23.下列作图语句中,正确的是()A .画直线 AB=6cm B.延长线段 AB 到 CC.延长射线 OA 到 B D.作直线使之经过 A , B ,C 三点4.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A .线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线5.把方程﹣去分母,正确的是()A . 3x﹣( x﹣ 1)=1B. 3x﹣ x﹣ 1=1 C. 3x﹣ x﹣ 1=6 D. 3x﹣( x﹣ 1)=66m a=n b,根据等式性质变形为m=n,那么a b必须符合的条件是().已知+ +,A . a=﹣ bB.﹣ a=bC. a=bD. a,b 可以是任意有理数或整式7.如图,下列说法中错误的是()A . OA 的方向是东北方向B. OB 的方向是北偏西55°C. OC 的方向是南偏西 30°D. OD 的方向是南偏东30°8.下列图形中,经过折叠不能围成一个立方体的是()A .B.C.D.9.已知∠ 1=18°18′,∠ 2=18.18°,∠ 3=18.3 °,下列结论正确的是()A .∠ 1=∠ 3B.∠ 1=∠ 2C.∠ 2=∠ 3D.∠ 1=∠ 2= ∠ 310.已知∠ 1与∠ 2互余,∠2 与∠ 3 互补,∠ 1=58°,则∠ 3=()A . 58°B . 148°C. 158°D. 32°11.如果线段 AB=10cm , MA +MB=13cm ,那么下面说法中正确的是()A .点 M 是线段 AB 上B.点 M 在直线 AB 上C.点 M 在直线 AB 外D.点 M 在直线 AB 上,也可能在直线AB 外12.如图, AOB 是一条直线,∠ AOC=60 °, OD , OE 分别是∠ AOC 和∠ BOC 的平分线,则图中互补的角有()A . 5 对 B. 6 对 C. 7 对 D. 8 对二、填空题(共 6 小题,每小题 3 分,满分 18 分)313. 4 的底数是,指数是,计算的结果是.14.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是.15.若 a, b 互为相反数, c, d 互为倒数, m 的绝对值为2,则的值为.16.已知:线段a, b,且 a> b.画射线 AE ,在射线AE 上顺次截取AB=BC=CD=a ,在线段 AD 上截取 AF=b ,则线段FD=.17ABCD按如图所示的那样折叠后,若得到∠AEB ′=56 °.把一张长方形纸片,则∠BEF=.18.平面内有四个点 A , B, C, D,过其中每两个点画直线可以画出直线的条数为.三、解答题(共7 小题,满分58 分)19.计算:(1);(2)﹣ 6+(﹣ 2)3×()÷()2÷(﹣3).20.解下列方程:(1) x+5= x+3﹣ 2x ;(2).21.已知 A=3x 2+3y2﹣ 5xy ,B=2xy ﹣ 3y2+4x2.(1)化简: 2B ﹣A ;(2)已知﹣ a |x﹣2|b2与 aby的同类项,求 2B ﹣A 的值.22.如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠ AOC=35 °,求∠ AOD 的度数;(2)问:∠ AOC= ∠ BOD 吗?说明理由;(3)写出∠ AOD 与∠ BOC 所满足的数量关系,并说明理由.23.列一元一次方程解应用题.某校七年级( 1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9 元;如果在学校自己刻录,除租用一台刻录机需要140 元外,每张光盘还需要成本费 5 元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级( 1)班共有学生 36 人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.24.已知 m, n 满足等式( m﹣ 8)2+2| n﹣m+5| =0.(1)求 m, n 的值;(2)已知线段 AB=m ,在直线 AB 上取一点 P,恰好使 AP=nPB ,点 Q 为 PB 的中点,求线段AQ 的长.25.已知∠ AOB 为锐角,如图(1).(1)若 OM 平分∠ AOC ,ON 平分∠ BOD ,∠ MON=32 °,∠ COD=10 °,如图( 2)所示,求∠ AOB 的度数.(2)若 OM , OD,OC, ON 是∠ AOB 的五等分线,如图( 3)所示,以射线 OA ,OM ,OD, OC, ON ,OB 为始边的所有角的和为980°,求∠ AOB 的度数.-学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(共 12 小题,每小题 2 分,满分24 分)1.计算(﹣ 3)﹣(﹣ 5) =()A . 2 B.﹣ 2 C. 8 D.﹣ 8【考点】有理数的减法.【分析】先将减法转化为加法,然后再按照加法法则计算即可.【解答】解:(﹣3)﹣(﹣ 5) =﹣ 3+5=2.故选: A .【点评】本题主要考查的是有理数的减法,掌握有理数的减法法则是解题的关键.2.数轴上的点 A 到原点的距离是4,则点 A 表示的数为()A . 4 B.﹣ 4 C. 4 或﹣ 4D. 2 或﹣ 2【考点】数轴.【分析】在数轴上点 A 到原点的距离为 4 的数有两个,意义相反,互为相反数.即 4 和﹣4.【解答】解:在数轴上, 4 和﹣ 4 到原点的距离为4.∴点 A 所表示的数是 4 和﹣ 4.故选: C.【点评】此题考查的知识点是数轴.关键是要明确原点的距离为 4 的数有两个,意义相反.3.下列作图语句中,正确的是()A .画直线AB=6cm B.延长线段AB 到 CC.延长射线OA 到 B D.作直线使之经过 A , B ,C 三点【考点】作图—尺规作图的定义.【专题】探究型.【分析】根据各个选项中的语句,可以判断其是否正确,从而可以解答本题.【解答】解:∵直线无法测量,故选项 A 错误;延长线断 AB 到 C 是正确的,故选项 B 正确;射线 OA 本身是以点O 为端点,向着OA 方向延伸,故选项 C 错误;如果点 A 、 B、 C 三点不在同一直线上,则直线不能同时经过这三个点,故选项 D 错误;故选 B .【点评】本题考查作图﹣尺规作图的定义,解题的关键是明确尺规作图的方法,哪些图形可以测量,哪些不可以测量.4.把一条弯曲的公路改成直道,可以缩短路程,其道理用几何知识解释正确的是()A .线段可以比较大小B.线段有两个端点C.两点之间线段最短D.过两点有且只有一条直线【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质:两点之间线段最短进行解答即可.【解答】解:把一条弯曲的公路改成直道,可以缩短路程,其道理是两点之间线段最短,故选: C.【点评】此题主要考查了线段的性质,关键是掌握两点之间线段最短.5.把方程﹣去分母,正确的是()A . 3x﹣( x﹣ 1)=1B. 3x﹣ x﹣ 1=1 C. 3x﹣ x﹣ 1=6 D. 3x﹣( x﹣ 1)=6【考点】解一元一次方程.【专题】计算题.【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线起到括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以 6 得: 3x﹣( x﹣ 1) =6.故选 D .【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.6.已知 m+a=n+b,根据等式性质变形为m=n,那么 a, b 必须符合的条件是()A . a=﹣ bB.﹣ a=bC. a=bD. a,b 可以是任意有理数或整式【考点】等式的性质.【分析】根据等式的性质,两边都减去b,然后判断即可得解.【解答】解: m+a=n+b 两边都减去 b 得, m+a﹣ b=n ,∵等式可变形为m=n,∴a﹣ b=0 ,∴a=b.故选 C.【点评】本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0 数或字母,等式仍成立.7.如图,下列说法中错误的是()A . OA 的方向是东北方向B. OB 的方向是北偏西55°C. OC 的方向是南偏西 30°D. OD 的方向是南偏东30°【考点】方向角.【分析】根据题意、结合方向角的概念对各个选项进行判断即可.【解答】解: OA 的方向是东北方向, A 正确;OB 的方向是北偏西55°, B 正确;OC 的方向是南偏西60°, C 错误;OD 的方向是南偏东30°, D 正确,故选: C.【点评】本题考查的是方向角的知识,在方位图中正确读懂方向角是解题的关键.8.下列图形中,经过折叠不能围成一个立方体的是()A .B.C.D.【考点】展开图折叠成几何体.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项 A 、 B、 C 经过折叠均能围成正方体;D、有“田”字格,不能折成正方体.故选 D .【点评】本题主要考查展开图折叠成几何体的知识点,注意只要有“田”字格的展开图都不是正方体的表面展开图.9.已知∠ 1=18°18′,∠ 2=18.18°,∠ 3=18.3 °,下列结论正确的是()A .∠ 1=∠ 3B.∠ 1=∠ 2C.∠ 2=∠ 3D.∠ 1=∠ 2= ∠ 3【考点】度分秒的换算.【分析】根据小单位化大单位除以进率,可化成相同单位的角,根据有理数的大小比较,可得答案.【解答】解:∠1=18°18′=18.3 °=∠ 3<∠ 2,故选: A .【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率化成相同单位的角是解题关键.10.已知∠ 1 与∠ 2 互余,∠ 2 与∠ 3 互补,∠ 1=58°,则∠ 3=()A . 58°B . 148°C. 158°D. 32°【考点】余角和补角.【分析】已知∠ 1 的度数,根据余角的性质可求得∠ 2 的度数,再根据补角的性质即可求得∠3 的度数.【解答】解:∵∠ 1 与∠ 2 互余,∠ 1=65°∴∠ 2=90°﹣ 58°=32∠2 与∠ 3 互补∴∠ 3=180 °﹣ 32°=148°.故选 B .【点评】本题考查了余角和补角,是基础题,熟记概念是解题的关键.11AB=10cm,MA+MB=13cm,那么下面说法中正确的是().如果线段A .点 M 是线段 AB 上B.点 M 在直线 AB 上C.点 M 在直线 AB 外D.点 M 在直线 AB 上,也可能在直线AB 外【考点】直线、射线、线段.【分析】根据AB=10cm ,若点 M 是线段 AB 上,则 MA +MB=10cm ,点 M 在直线 AB 外或点M 在直线 AB 上都可能 MA +MB=13cm .【解答】解:如图1M在直线AB外时,MA+MB=13cm,:点2M在直线AB上时,MA+MB=13cm,如图,点根据以上两个图形得出M 可以在直线 AB 上,也可以在直线AB 外,故选 D .【点评】本题考查了求两点间的距离的应用,主要考查学生的画图能力和理解能力.12.如图, AOB 是一条直线,∠AOC=60 °, OD , OE 分别是∠ AOC 和∠ BOC 的平分线,则图中互补的角有()A . 5 对 B. 6 对 C. 7 对 D. 8 对【考点】余角和补角.【分析】根据邻补角的定义以及角平分线的定义求得图中角的度数,然后根据互补的定义进行判断.【解答】解:∠BOC=180 °﹣∠ AOC=180 °﹣ 60°=120°,∵OD , OE 分别是∠ AOC 和∠ BOC 的平分线,∴∠ AOD= ∠ COD=30 °,∠ COE= ∠ BOE=60 °,∴∠ AOE= ∠ BOC=120 °,∠ DOE=90 °,∠ DOB=150 °,则∠ AOD +∠ DOB=180 °,∠ COD +∠DOB=180 °,∠ AOC +∠ BOC=180 °,∠ COE+∠BOC=180 °,∠ BOE +∠ BOC=180 °,∠ AOE +∠BOE=180 °,∠ AOE +∠ AOC=180 °,∠ AOE +∠C OE=180 °.总之有 8 对互补的角.故选 D .【点评】本题考查了补角的定义以及角平分线的定义,正确求得图中角的度数是关键.二、填空题(共 6 小题,每小题 3 分,满分 18 分)13. 43的底数是 4 ,指数是 3 ,计算的结果是64 .【考点】有理数的乘方.【专题】计算题;实数.【分析】利用幂的意义判断即可得到结果.【解答】解: 43的底数是4,指数是3,计算的结果是64,故答案为: 4; 3; 64【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.14.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是圆柱.【考点】由三视图判断几何体.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.【点评】考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.15.若 a, b 互为相反数, c, d 互为倒数, m 的绝对值为2,则的值为4.【考点】代数式求值;相反数;绝对值;倒数.【专题】计算题;实数.【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b, cd,以及 m 的值,代入计算即可求出值.【解答】解:根据题意得:a b=0,cd=1,m=2或﹣2,+当m=2 时,原式 =8﹣ 4=4 ;当 m= ﹣ 2 时,原式 =8 ﹣ 4=4.故答案为: 4【点评】此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握运算法则是解本题的关键.16.已知:线段 a, b,且 a> b.画射线 AE ,在射线 AE 上顺次截取 AB=BC=CD=a ,在线段AD 上截取 AF=b ,则线段 FD= 3a﹣ b .【考点】两点间的距离.【分析】先根据题意画出图形,然后根据线段间的和差关系进行计算即可.【解答】解:如图所示:DF=AD ﹣ AF=AB +CB+CD﹣ AF=3a ﹣ b.故答案为: 3a﹣ b.【点评】本题主要考查的是两点间间的距离,根据题意画出图形是解题的关键.17.把一张长方形纸片ABCD 按如图所示的那样折叠后,若得到∠AEB ′=56 °,则∠ BEF= 62° .【考点】角的计算;翻折变换(折叠问题).【分析】先根据平角的定义求出∠BEB ′,再根据折叠的性质得出∠BEF= ∠ B′EF=∠BEB ′,即可求出答案.【解答】解:∵把一张长方形纸片ABCD 按如图所示的那样折叠后,得到∠AEB ′=56 °,∴∠ BEB ′=180°﹣∠ AEB ′=124°,∠ BEF= ∠ B′EF,∵∠ BEF +∠ B′EF=∠ BEB ′,∴∠ BEF= ∠ B′EF=∠ BEB′=62°,故答案为: 62°.【点评】本题考查了平角的定义和折叠的性质的应用,关键是求出∠BEB ′的度数以及得出∠BEF= ∠ B′EF=∠ BEB′.18.平面内有四个点 A , B, C, D,过其中每两个点画直线可以画出直线的条数为1条、 4 条或 6 条.【考点】直线、射线、线段.【分析】由直线公理,两点确定一条直线,但题中没有明确指出已知点中,是否有 3 个点,(或者 4 个点)在同一直线上,因此要分三种情况加以讨论.【解答】解:( 1)如果 4 个点,点 A 、 B 、C、D 在同一直线上,那么只能确定一条直线,如图:(2)如果 4 个点中有 3 个点(不妨设点A、 B、 C)在同一直线上,而第 4 个点,点 D 不在此直线上,那么可以确定 4 条直线,如图:(3)如果 4 个点中,任何 3 个点都不在同一直线上,那么点 A 分别和点B、 C、 D 确定 3条直线,点 B 分别与点C、 D 确定 2 条直线,最后点C、 D 确定一条直线,这样共确定6条直线,如图:综上所述,过其中 2 个点可以画 1 条、 4 条或 6 条直线.故答案为: 1 条、 4 条或 6 条.【点评】本题考查了直线的定义.在解题过程中,注意分情况讨论,这样才能将各种情况考虑到.三、解答题(共7 小题,满分58 分)19.计算:(1);(2)﹣ 6+(﹣ 2)3×()÷()2÷(﹣3).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式通分并利用同分母分数的加减法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式 = +﹣+1= ﹣+1=;(2)原式 =﹣ 6﹣ 8× ×36×(﹣)=﹣ 6+16=10.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解下列方程:(1) x+5= x+3﹣ 2x ;(2).【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】( 1)方程去分母,移项合并,把x 系数化为 1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为 1,即可求出解.【解答】解:( 1)去分母得: 2x+10=x+6﹣ 4x ,移项合并得: 5x= ﹣ 4,解得: x= ﹣0.8;( 2)去分母得: 5(x ﹣ 3)﹣ 3( 2x+7)=15 ( x ﹣1),去括号得: 5x ﹣ 15﹣6x ﹣ 21=15x ﹣ 15,移项合并得:﹣ 16x=21 ,解得: x= ﹣.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.已知 A=3x 2+3y 2﹣ 5xy ,B=2xy ﹣ 3y 2+4x 2.( 1)化简: 2B ﹣A ;( 2)已知﹣ a|x ﹣2|b 2 与 ab y的同类项,求 2B ﹣A 的值.【考点】整式的加减;同类项.【专题】计算题;整式.【分析】( 1)把 A 与 B 代入 2B ﹣ A 中,去括号合并即可得到结果;(2)利用同类项的定义求出x 与 y 的值,代入原式计算即可得到结果. 【解答】解:( 1 )∵ A=3x 2 3y 2 5xy , B=2xy﹣ 3y 2 4x 2 + ﹣ + ,∴ 2B ﹣A=2 (2xy ﹣ 3y 2+4x 2)﹣( 3x 2+3y 2﹣ 5xy ) =4xy ﹣ 6y 2+8x 2﹣ 3x 2﹣ 3y 2 +5xy=5x 2+9xy ﹣9y 2;|x ﹣2| 2与 y的同类项,(2)∵﹣ ab ab∴ | x ﹣ 2| =1, y=2 ,解得: x=3 或 x=1 , y=2,当 x=3 , y=2 时,原式 =45+54﹣ 36=53;当 x=1 , y=2 时,原式 =5+18﹣ 36=﹣ 13.【点评】此题考查了整式的加减,以及同类项,熟练掌握运算法则是解本题的关键.22.如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O .(1)若∠ AOC=35 °,求∠ AOD 的度数;(2)问:∠ AOC= ∠ BOD 吗?说明理由;(3)写出∠ AOD 与∠ BOC 所满足的数量关系,并说明理由.【考点】余角和补角.【分析】( 1)把已知角的度数代入∠AOD= ∠AOC +∠ COD ,求出即可;(2)已知∠ AOB= ∠ COD=90 °,都减去∠ COB 即可;(3)根据∠ AOB= ∠ COD=90 °即可求出答案.【解答】解:( 1)∵∠ COD=90 °,∠ AOC=35 °,∴∠ AOD= ∠ AOC +∠ COD=35 °+90°=125°;(2)∠ AOC= ∠ BOD ,理由是:∵∠ AOB= ∠ COD=90 °,∴∠ AOB ﹣∠ COB= ∠ COD ﹣∠ COB ,∴∠ AOC= ∠ BOD ;(3)∠ AOD +∠BOC=180 °,理由是:∵∠AOB= ∠COD=90 °,∴∠ AOD +∠ BOC=∠AOC +∠ COD +∠ BOC=∠COD+∠ AOB=90°+90°=180°.【点评】本题考查了角的计算及余角和补角的概念,熟悉图形是解题的关键.23.列一元一次方程解应用题.某校七年级( 1)班数学老师为做好期末复习,事先录制了一节复习课,准备刻成电脑光盘给每个学生回家观看.如果到电脑公司刻录光盘每张需9 元;如果在学校自己刻录,除租用一台刻录机需要140 元外,每张光盘还需要成本费 5 元.(1)问刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)如果七年级( 1)班共有学生 36 人,每人一张,那么到电脑公司刻录合算,还是在学校自己刻录合算.【考点】一元一次方程的应用.【分析】本题中到电脑公司刻录需要的总费用=单价×刻录的数量,而自刻录的总费用=租用刻录机的费用+每张的成本×刻录的数量.列出总费用与刻录数量的关系式,然后将两种费用进行比较.(1)到电脑公司刻录需要的总费用 =自己刻录的总费用时,到电脑公司刻录与学校自己刻录所需费用一样;(2)分别求出到电脑公司刻录需要的总费用和自己刻录的总费用,再比较大小即可求解.【解答】解:( 1)设刻录 x 张光盘时,到电脑公司刻录与学校自己刻录所需费用一样,依题意,得9x=140 +5x ,解得 x=35 .答:刻录35 张光盘时,到电脑公司刻录与学校自己刻录所需费用一样(2) 9× 36=324(元),140+5× 36=140+180=320(元),因为 324>320,所以在学校自己刻录合算.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找到关键描述语,由费用找出合适的等量关系,列出方程,再求解.24.已知 m, n 满足等式( m﹣ 8)2+2| n﹣m+5| =0.(1)求 m, n 的值;(2)已知线段 AB=m ,在直线 AB 上取一点 P,恰好使 AP=nPB ,点 Q 为 PB 的中点,求线段AQ 的长.【考点】两点间的距离;非负数的性质:绝对值;非负数的性质:偶次方.【分析】( 1)根据非负数的和为零,可得每个非负数同时为零,可得m, n 的值;(2)根据线段的和差,可得AP , PB 的长,根据线段中点的性质,可得PQ 的长,根据线段的和差,可得答案.【解答】解:(1)由( m﹣ 8)2+2| n﹣ m+5| =0,得m﹣8=0 , n﹣ m+5=0.解得 m=8, n=3;(2)由( 1)得 AB=8 , AP=3PB ,有两种情况:①当点 P 在点 B 的左侧时,如图1,AB=AP +PB=8, AP=3PB ,4PB=8,解得 PB=2, AP=3PB=3 × 2=6.∵点 Q 为 PB 的中点,∴PQ= PB=1,AQ=AP +PQ=6+1=7 ;②当点 P 在点 B 的右侧时,如图2,∵A P=AB +BP, AP=3PB ,∴3PB=8 +PB,∴ PB=4 .∵点 Q 为 PB 的中点,∴BQ= PB=2,∴AQ=AB +BQ=8 +2=10 .【点评】本题考查了两点间的距离,利用非负数的和为零得出每个非负数同时为零是解题关键;利用线段的和差是解题关键,要分类讨论,以防遗漏.25.已知∠ AOB 为锐角,如图(1).(1)若 OM 平分∠ AOC ,ON 平分∠ BOD ,∠ MON=32 °,∠ COD=10 °,如图( 2)所示,求∠ AOB 的度数.(2)若 OM , OD,OC, ON 是∠ AOB 的五等分线,如图( 3)所示,以射线 OA ,OM ,OD, OC, ON ,OB 为始边的所有角的和为980°,求∠ AOB 的度数.【考点】角的计算;角平分线的定义.【分析】( 1)根据角平分线的定义容易得到,∠MON= ∠ CON +∠ DON ﹣∠ COD ,根据已知条件求得∠ COM +∠ DON=42 °,即可求得∠ AOM +∠ BON=42 °,从而求得∠ AOB= ∠AOM +∠ BON +∠ MON=74 .(2)设∠ AOB 被五等分的每个角为x°,则∠ AOB=5x °,分别表示出以射线OA 、 OM 、OD、 OC、 ON 、OB 为始边的所有角的度数,根据题意列出关于x 的方程,解方程求得x 的值,即可求得∠AOB 的度数.【解答】解:(1)∵ OM 平分∠ AOC , ON 平分∠ BOD ,∴∠ AOM= ∠COM ,同理:∠ BON= ∠DON ,∵∠ MON=32 °,∠ COD=10 °,∠ MON= ∠ CON +∠ DON ﹣∠ COD ,∴32°=∠ COM +∠DON ﹣ 10°,∴∠ COM +∠ DON=42 °,∴∠AOM +∠ BON=42 °,∵∠ AOB= ∠ AOM +∠BON +∠MON ,∴∠ AOB=42 °+32°=74 °;(2)设∠ AOB 被五等分的每个角为x°,则∠ AOB=5x °,以射线OA为始边的所有角的度数为x°2x °3x °4x°5x°=15x °+ + + +,以射线 OM 、 OD 、OC、 ON、 OB 为始边的所有角的度数分别为11x °, 9x°, 9x°11x °,15x°,由题意得15x+11x +9x+9x +11x+15x=980 ,解得 x=14 .故∠ AOB=5 × 14°=70 °.【点评】本题考查了角平分线定义,角的有关计算的应用,解此题的关键是找出角度关系.。
天津市和平区2022届数学七年级上学期期末调研试卷模拟卷二
天津市和平区2022届数学七年级上学期期末调研试卷模拟卷二一、选择题1.将一副直角三角尺按如图所示摆放,则图中∠ABC 的度数是 ( )A.120°B.135°C.145°D.150°2.如果∠A 的补角与∠A 的余角互补,那么2∠A 是A .锐角B .直角C .钝角D .以上三种都可能3.下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线②角的两边越长,角的度数越大③多项式5ab -是一次二项式 ④232a b π的系数是32 A.1B.2C.3D.4 4.下列运用等式的性质,变形正确的是( ) A.若x 2=6x ,则x =6B.若2x =2a ﹣b ,则x =a ﹣bC.若a =b ,则ac =bcD.若3x =2,则x=32 5.下列方程中,解为x =3的方是( )A .y-3=0B .x+2=1C .2x-2=3D .2x=x+36.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab7.已知a ﹣b=3,c+d=2,则(b+c )﹣(a ﹣d )的值是( )A .15B .1C .﹣5D .﹣18.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y 9.把方程2113332x x x -++=-去分母正确的是( ) A .18x+2(2x-1)=18-3(x+1) B .3x+(2x-1)=3-(x+1)C .18x+2(2x-1)=18-(x+1)D .3x+2(2x-1)=3-3(x+1) 10.﹣12016的相反数的倒数是( ) A.1 B.﹣1 C.2016 D.﹣201611.5的相反数是( ) A.15 B.5 C.15- D.﹣512.下列四个数23,0,-7,()21-中,负数是( ) A.23B.0C.-7D.()2 1- 二、填空题13.如图所示:把两块完全相同的直角三角板的直角顶点重合,如果AOD 128∠=︒,那么BOC ∠= ______ .14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.《九章算术》采用问题集的形式,全书共收集了246个问题,分为九章,其中的第八章叫“方程”章,方程一词就源于这里.《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?” 译文:“几个人一起去购买物品,如果每人出8钱,那么剩余3钱;如果每人出7钱,那么差4钱.问有多少人,物品的价格是多少”?设有x 人,可列方程为_____.15.一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是_____元.16.若x =y+3,则14(x ﹣y )2﹣2.3(x ﹣y )+0.75(x ﹣y )2+310(x ﹣y )+7等于_____. 17.已知()215234m x y m y --+是四次三项式,则m =________. 18.某地气温在早上7点时测得温度为﹣0.5摄氏度,到10点时上升了0.5摄氏度,到中午12点时又上升了0.5摄氏度,则在12点时的温度是________摄氏度.19.1cm 2的手机上约有细菌120 000个,120 000用科学记数法表示为_____.20.如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.三、解答题21.如图1,已知点C 在线段AB 上,线段AC=10厘米,BC=6厘米,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC+BC=a ,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2cm/s 的速度沿AB 向右运动,终点为B ,点Q 以1cm/s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?22.如图,AB ∥CD ,BO 与CD 交于点O ,OE ⊥BO ,OF 平分∠BOD .若∠ABO=50°,求∠EOF 的度数.23.《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.24.已知代数式A=2x 2+5xy ﹣7y ﹣3,B=x 2﹣xy+2.(1)求3A ﹣(2A+3B )的值;(2)若A ﹣2B 的值与x 的取值无关,求y 的值.25.有这样一道题:“先化简,再求值:222(324)2()x x x x x -+---,其中100x =”甲同学做题时把100x =错抄成了10x =,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.26.-15-(-8)+(-11)-12.27.去年某地高新技术产品进出口总额为5287.8万美元,比上年增长30%,如果今年仍按此比例增长,那么今年该地高新技术产品进出口总额可达到多少万美元(结果精确到万位)?28.某校一学生不幸得了白血病,全校学生踊跃捐款献爱心,经统计初一共有学生420人,平均每人捐了5元,初二共有学生400人,平均每人捐了6元,初三学生平均每人捐了8元,占全校学生捐款总额的49,则初三学生有多少人?【参考答案】***一、选择题13.5214.8x ﹣3=7x+415.10016.1017.-2.18.519.20.9三、解答题21.(1)8厘米;(2)a ;(3)t=4或或.22.115°.23.城中有75户人家.24.(1)﹣x2+8xy﹣7y﹣9;(2)y=025.说明见解析.26.-3027.今年该地高新技术产品进出口总额可达到1×104万美元28.初三学生有450人.。
天津市和平区七年级数学上期末模拟题(2)有答案-名校密卷
七年级数学上册 期末模拟题一、选择题:1.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( )A .1022.01(精确到0.01)B .1022(精确到个位) C.1022.00(精确到0.1) D .1022.010(精确到千分位)2.如图所示的几何体的俯视图是( )3.若x 2+x+1的值是8,则4x 2+4x+9的值是( )A .37B .25C .32D .0 4.解是x=2的方程是( )A .2(x-1)=6B .0.5x+1=xC .21012x x =+D .x x -=+1312 5.如果|a|=﹣a ,下列成立的是( )A .a >0B .a <0C .a ≥0D .a ≤06.下列各式计算正确的是( )A .6a+a=6a 2B .﹣2a+5b=3abC .4m 2n ﹣2mn 2=2mnD .3ab 2﹣5b 2a=﹣2ab 27.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个数有 ( ) ①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A .1个B .2个C .3个D .4个8.如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A .100°B .115°C .65°D .130°9.钟表在3点30分时,它的时针和分针所成的角是( )A .75°B .80°C .85°D .90°10.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )A.8 B.9 C.8或9 D.无法确定11.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()12.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )A.1 B.2 C.3 D.4二、填空题:13.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高 m.14.当时钟指向上午10:10时,时针与分针的夹角是度.15.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .16.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.17.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD 始终相等的角是.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .三、解答题:19.计算下列各题:(1)3x2-[7x-(4x-3)+2x2] (2)32°45′48″+21°25′14″. (3)(2ab+3a)-3(2a-ab)20.解方程:21.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.22.某天上午9时,李明,王华两人从A.B两地同时出发,相向而行,上午10时两人相距55千米,两人继续前进,到上午12时,两人又相距55千米,已知李明每小时比王华多走2千米,问:(1)李明、王华两人的速度分别是多少?(2)A.B两地的距离是多少千米?23.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.24.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N_ ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).参考答案1.答案为:C.2.答案为:C3.答案为:A.4.答案为:B;5.答案为:D.6.答案为:D.7.答案为:A8.答案为:B.9.答案为:A.10.答案为:C.11.答案为:A12.答案为:B13.答案为:35.14.答案为:115°15.答案为:416.答案为:135.17.答案为:∠BOC.18.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1=n2+2n+1+n2=2n2+2n+1.故答案为:2n+1;2n2+2n+1.19.(1)原式=x2-3x-3.(2)原式=53°70′62″=54°11′2″.(3)原式=5ab-3a20.解:,,,.21.解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒).答:小虫共爬行了108秒.22. (1) 李明:28.5km/h 26.5km/h(2) 110km23.解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.24.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.。
【推荐】2017-2018学年天津市和平区七年级数学上期末模拟题(2)有答案
七年级数学上册 期末模拟题一、选择题:1.按括号内的要求,用四舍五入法,对1022.0099取近似值,其中错误的是( )A .1022.01(精确到0.01)B .1022(精确到个位) C.1022.00(精确到0.1) D .1022.010(精确到千分位)2.如图所示的几何体的俯视图是( )3.若2++1的值是8,则42+4+9的值是( )A .37B .25C .32D .04.解是=2的方程是( )A .2(-1)=6B .0.5+1=C .21012x x =+D .x x -=+1312 5.如果|a|=﹣a ,下列成立的是( )A .a >0B .a <0C .a ≥0D .a ≤06.下列各式计算正确的是( )A .6a+a=6a 2B .﹣2a+5b=3abC .4m 2n ﹣2mn 2=2mnD .3ab 2﹣5b 2a=﹣2ab 27.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个数有 ( ) ①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.A .1个B .2个C .3个D .4个8.如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )A .100°B .115°C .65°D .130°9.钟表在3点30分时,它的时针和分针所成的角是( )A .75°B .80°C .85°D .90°10.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )A .8B .9C .8或9D .无法确定11.小明从家里骑自行车到学校,每小时骑15m ,可早到10分钟,每小时骑12m 就会迟到5分钟.问他家到学校的路程是多少m?设他家到学校的路程是m,则据题意列出的方程是()12.按照如图所示的计算机程序计算,若开始输入的值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )A.1 B.2 C.3 D.4二、填空题:13.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方高 m.14.当时钟指向上午1010时,时针与分针的夹角是度.15.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .16.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.17.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .三、解答题:19.计算下列各题:(1)32-[7-(4-3)+22] (2)32°45′48″+21°25′14″. (3)(2ab+3a)-3(2a-ab)20.解方程:21.一只小虫从某点P出发,在一条直线上回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.22.某天上午9时,李明,王华两人从A.B两地同时出发,相向而行,上午10时两人相距55千米,两人继续前进,到上午12时,两人又相距55千米,已知李明每小时比王华多走2千米,问:(1)李明、王华两人的速度分别是多少?(2)A.B两地的距离是多少千米?23.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.24.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,B,C两点之间的距离为;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N_ ;(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).参考答案1.答案为:C.2.答案为:C3.答案为:A .4.答案为:B ;5.答案为:D.6.答案为:D.7.答案为:A8.答案为:B.9.答案为:A .10.答案为:C.11.答案为:A12.答案为:B13.答案为:35.14.答案为:115°15.答案为:416.答案为:135.17.答案为:∠BOC .18.解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1=n 2+2n+1+n 2=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.19.(1)原式=2-3-3.(2)原式=53°70′62″=54°11′2″.(3)原式=5ab-3a20.解:, , , .21.解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10=0,∴小虫能回到起点P ;(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒).答:小虫共爬行了108秒.22. (1) 李明28.5m/h 26.5m/h(2) 110m23.解:∵OB是∠AOC的平分线,∴∠1=∠2,又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.24.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;(3)P=n﹣,Q=n+.故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.。
初中数学天津市和平区七年级数学上期末模拟考试题含答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,它们任意两城市中最大的温差是( )A.3℃B. 8℃C.11℃ D.17℃试题2:若数轴上的点A、B分别于有理数a、b对应,则下列关系正确的是( )A.a<b B.﹣a<b C.|a|<|b| D.﹣a >﹣b试题3:已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有( )①AP=BP;②BP=AB;③AB=2AP;④AP+PB=AB.A.1个 B.2个 C.3个 D.4个试题4:下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上评卷人得分B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上试题5:下列变形正确的是()A.变形得B.变形得C.变形得D.变形得试题6:关于x的方程2(x﹣1)﹣a=0的根是3,则a的值为( )A.4 B.﹣4 C.5 D.﹣5试题7:书店、学校、食堂在平面上分别用A、B、C来表示,书店在学校的北偏西30°,食堂在学校的南偏东15°,则平面图上的∠ABC的度数应该是( )A.65° B.35° C.165° D.135°试题8:用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为( )A.5 B.6 C.7D.8试题9:两个锐角的和不可能是( )A.锐角 B.直角 C.钝角 D.平角试题10:23.46°的余角的补角是( )A.66.14° B.113.46° C.157.44° D.47.54°试题11:已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个 D.4个试题12:如图所示的运算程序中,若开始输入的x值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为()A.3 B.6 C.4D.2试题13:近似数2.13×103精确到位.试题14:用边长为1的正方形,做了一套七巧板,拼成如图所示的图形,则图②中阴影部分的面积为.试题15:计算:|3.14﹣π|= .试题16:如图,点C、D在线段AB上,点C为AB中点,若AC=5cm,BD=2cm,则CD= cm.试题17:如图,OA表示北偏东42°方向,OB表示南偏东53°方向,则∠AOB= .试题18:观察下列算式,你发现了什么规律?12=;12+22=;12+22+32=;12+22+32+42=;…①根据你发现的规律,计算下面算式的值;12+22+32+42+52= ;②请用一个含n的算式表示这个规律:12+22+32…+n2= ;③根据你发现的规律,计算下面算式的值:512+522+…+992+1002= .试题19:(﹣3)2﹣()2×+6÷|﹣|3.试题20:(+1﹣2.75)×(﹣24)+(﹣1)2017试题21:解方程:x+5=x+3﹣2x;试题22:试题23:已知A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2.(1)化简:2B﹣A;(2)已知﹣a|x﹣2|b2与ab y的同类项,求2B﹣A的值.试题24:如图,将一幅直角三角板叠放在一起,使直角顶点重合于点O.(1)若∠AOC=35°,求∠AOD的度数;(2)问:∠AOC=∠BOD吗?说明理由;(3)写出∠AOD与∠BOC所满足的数量关系,并说明理由.试题25:(1)小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8折”.小明测算了一下,如果买100支,比按原价购买可以便宜10元,求每支铅笔的原价是多少?试题26:如图,AB=16cm,延长AB到C,使BC=3AB,D是BC的中点,求AD的长度.试题27:如图,已知数轴上的点A对应的数为6,B是数轴上的一点,且AB=10,动点P从点A出发,以每秒6个单位长度的速度沿着数轴向左匀速运动,设运动时间为t秒(t>0).(1)数轴上点B对应的数是_______,点P对应的数是_______(用t的式子表示);(2)动点Q从点B与点P同时出发,以每秒4个单位长度的速度沿着数轴向左匀速运动,试问:运动多少时间点P可以追上点Q?(3)M是AP的中点,N是PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若有变化,说明理由;若没有变化,请你画出图形,并求出MN的长.试题1答案:D试题2答案:C.试题3答案:A.试题4答案:B试题5答案:D试题6答案:A.试题7答案:C.试题8答案:C试题9答案:D试题10答案:B.试题11答案:A试题12答案:D试题13答案:十位.试题14答案:3/8试题15答案:π﹣3.14试题16答案:解:∵点C为AB中点,∴BC=AC=5cm,∴CD=BC﹣BD=3cm.试题17答案:85°.试题18答案:1);(2);(3)295425;试题19答案:原式=9﹣×+6÷=9﹣+=9+=28.试题20答案:38试题21答案:(1)去分母得:2x+10=x+6﹣4x,移项合并得:5x=﹣4,解得:x=﹣0.8;试题22答案:x=;试题23答案:解:(1)∵A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,∴2B﹣A=2(2xy﹣3y2+4x2)-(3x2+3y2﹣5xy)=4xy﹣6y2+8x2﹣3x2﹣3y2+5xy=5x2+9xy﹣9y2;(2)∵﹣a|x﹣2|b2与ab y的同类项,∴|x﹣2|=1,y=2,解得:x=3或x=1,y=2,当x=3,y=2时,原式=45+54﹣36=53;当x=1,y=2时,原式=5+18﹣36=﹣13.试题24答案:解:(1)∵∠COD=90°,∠AOC=35°,∴∠AOD=∠AOC+∠COD=35°+90°=125°;(2)∠AOC=∠BOD,理由是:∵∠AOB=∠COD=90°,∴∠AOB﹣∠COB=∠COD﹣∠COB,∴∠AOC=∠BOD;(3)∠AOD+∠BOC=180°,理由是:∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=∠COD+∠AOB=90°+90°=180°.试题25答案:解:设每支铅笔的原价是x元,由题意得: 100×0.8x=100x-10 x=0.5 答:每支铅笔的原价是0.5元.试题26答案:解:∵AB=16cm,∴BC=3AB=3×16=48cm.∵D是BC的中点,∴BD=BC=×48=24cm.∴AD=AB+BD=16+24=40cm.试题27答案:(1)-4,6-6t; (2)5秒; (3)线段MN的长度不发生变化,MN=5;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年七年级数学上册 期末模拟题
一、选择题:
1.按括号内的要求,用四舍五入法,对102
2.0099取近似值,其中错误的是( )
A .1022.01(精确到0.01)
B .1022(精确到个位) C.1022.00(精确到0.1) D .1022.010(精确到千分位)
2.如图所示的几何体的俯视图是( )
3.若x 2+x+1的值是8,则4x 2+4x+9的值是( )
A .37
B .25
C .32
D .0
4.解是x=2的方程是( )
A .2(x-1)=6
B .0.5x+1=x
C .21012x x =+
D .x x -=+13
12 5.如果|a|=﹣a ,下列成立的是( )
A .a >0
B .a <0
C .a ≥0
D .a ≤0
6.下列各式计算正确的是( )
A .6a+a=6a 2
B .﹣2a+5b=3ab
C .4m 2n ﹣2mn 2=2mn
D .3ab 2﹣5b 2a=﹣2ab 2
7.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个数有 ( ) ①.AP=BP;②.AB=2BP;③.AB=2AP;④.AP+PB=AB.
A .1个
B .2个
C .3个
D .4个
8.如图,已知点O 在直线AB 上,∠COE=90°,OD 平分∠AOE ,∠COD=25°,则∠BOD 的度数为( )
A .100°
B .115°
C .65°
D .130°
9.钟表在3点30分时,它的时针和分针所成的角是( )
A .75°
B .80°
C .85°
D .90°
10.如图,C 、D 是线段AB 上两点,已知图中所有线段的长度都是正整数,且总和为29,则线段AB 的长度是( )
A .8
B .9
C .8或9
D .无法确定
11.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()
12.按照如图所示的计算机程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第2016次得到的结果为( )
A.1 B.2 C.3 D.4
二、填空题:
13.甲、乙、丙三地的海拔高度分别为20m、﹣15m和﹣10m,那么最高的地方比最低的地方
高 m.
14.当时钟指向上午10:10时,时针与分针的夹角是度.
15.如图,点C是线段AB上一点,AC<CB,M、N分别是AB和CB的中点,AC=8,NB=5,则线段MN= .
16.如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数是度.
17.如图,将一副三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD 始终相等的角是.
18.(1)观察下列图形与等式的关系,并填空:
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:
1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .
三、解答题:
19.计算下列各题:
(1)3x2-[7x-(4x-3)+2x2] (2)32°45′48″+21°25′14″. (3)(2ab+3a)-3(2a-ab)
20.解方程:
21.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.
(1)通过计算说明小虫是否回到起点P.
(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.
22.某天上午9时,李明,王华两人从A.B两地同时出发,相向而行,上午10时两人相距55千米,两人继续前进,到上午12时,两人又相距55千米,已知李明每小时比王华多走2千米,问:
(1)李明、王华两人的速度分别是多少?
(2)A.B两地的距离是多少千米?
23.如图,已知OB平分∠AOC,且∠2:∠3:∠4=2:5:3,求∠2的度数及∠2的余角∠α的度数.
24.根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,﹣,﹣3观察数轴,与点A的距离为3的点表示的数是,
B,C两点之间的距离为;
(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M ,N_ ;
(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P ,Q (用含m,n的式子表示这两个数).
参考答案
1.答案为:C.
2.答案为:C
3.答案为:A.
4.答案为:B;
5.答案为:D.
6.答案为:D.
7.答案为:A
8.答案为:B.
9.答案为:A.
10.答案为:C.
11.答案为:A
12.答案为:B
13.答案为:35.
14.答案为:115°
15.答案为:4
16.答案为:135.
17.答案为:∠BOC.
18.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a
,
n
观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,
∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.
(2)观察图形发现:
图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,
即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,
=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,
=a n﹣1+(2n+1)+a n﹣1=n2+2n+1+n2=2n2+2n+1.
故答案为:2n+1;2n2+2n+1.
19.(1)原式=x2-3x-3.
(2)原式=53°70′62″=54°11′2″.
(3)原式=5ab-3a
20.解:,,,.
21.解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),
=5﹣3+10﹣8﹣6+12﹣10=0,∴小虫能回到起点P;
(2)(5+3+10+8+6+12+10)÷0.5=54÷0.5=108(秒).答:小虫共爬行了108秒.
22. (1) 李明:28.5km/h 26.5km/h
(2) 110km
23.解:∵OB是∠AOC的平分线,∴∠1=∠2,
又∵∠2:∠3:∠4=2:5:3,∴∠1:∠2:∠3:∠4=2:2:5:3,
∴∠2=×360°=60°,∠2的余角∠α的度数=90°﹣60°=30°.
24.解:(1)点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2;
B,C两点之间的距离为﹣2.5﹣(﹣3)=0.5;
(2)B点重合的点表示的数是:﹣1+[﹣1﹣(﹣0.5)]= 0.5;
M=﹣1﹣=﹣1008.5,n=﹣1+=1006.5;
(3)P=n﹣,Q=n+.
故答案为:4或﹣2,0.5;0.5,﹣1008.5,1006.5;n﹣,n+.。