2018考研数学三:线性代数必考重点分析
数学专业考研复习资料线性代数重点知识点整理

数学专业考研复习资料线性代数重点知识点整理数学专业考研复习资料:线性代数重点知识点整理一、向量与矩阵1. 向量的定义和性质- 向量的表示与运算- 单位向量和零向量- 向量的线性相关性2. 矩阵的定义和性质- 矩阵的基本运算- 矩阵的转置和逆矩阵- 矩阵的秩和行列式二、线性方程组1. 线性方程组的概念- 线性方程组的解和解的存在唯一性- 齐次线性方程组和非齐次线性方程组2. 线性方程组的解法- 列主元消元法- 矩阵的初等变换和阶梯形矩阵 - 高斯消元法和高斯约当法三、线性空间和子空间1. 线性空间的定义和性质- 线性空间的子空间和直和- 基和维数的概念- 线性空间的同构与等价2. 子空间的性质与判定- 线性子空间的交与和- 维数公式和秩-零化定理- 子空间的降维与升维四、线性变换和特征值1. 线性变换的定义和性质- 线性变换的表示和运算- 线性变换的核与像- 线性变换的矩阵表示和判定2. 特征值和特征向量- 特征方程和特征值的求解 - 特征空间和特征子空间- 相似矩阵和对角化矩阵五、内积空间和正交变换1. 内积的定义和性质- 内积的基本性质和判定- 正交向量和正交子空间- 构造内积空间2. 正交变换和正交矩阵- 正交变换的性质和表示- 正交矩阵的特点和运算- 正交矩阵的对角化和特征值六、二次型和正定矩阵1. 二次型的定义和性质- 二次型的标准形和规范形 - 二次型的正定性和负定性- 二次型的规约和降维2. 正定矩阵的定义和性质- 正定矩阵的判定和运算- 正定矩阵的特征值和特征向量- 正定矩阵及其应用总结:线性代数是数学专业考研中的重要内容之一。
通过对向量与矩阵、线性方程组、线性空间和子空间、线性变换和特征值、内积空间和正交变换、二次型和正定矩阵等知识点的学习和掌握,能够为考研复习提供有力的理论基础和解题方法。
在复习过程中,需要注重概念的理解、性质的掌握以及应用题的练习,同时注意归纳总结和思维方法的培养。
2018年考研数学三

2018年考研数学三摘要:一、引言1.考研数学三的概述2.2018年考研数学三的考试大纲和试卷结构二、2018年考研数学三的考试重点1.函数、极限与连续2.一元函数微分学3.一元函数积分学4.向量代数与空间解析几何5.多元函数微分学6.多元函数积分学7.无穷级数8.常微分方程三、2018年考研数学三的考试难点1.提高题的难度和占比2.综合题的考察3.对数学基础知识的深入要求四、应对2018年考研数学三的策略1.扎实掌握基础知识2.注重题目类型和解题技巧的训练3.提高解题速度和准确率4.模拟考试和总结反思五、结论1.考研数学三的重要性2.2018年考研数学三的考试特点和趋势3.对未来考研数学三的展望正文:2018年考研数学三是在我国研究生入学考试中的一门重要科目,对于许多专业来说,数学三的成绩直接影响着考生的整体表现。
本文将针对2018年考研数学三的考试情况,从考试大纲、试卷结构、考试重点、难点以及应对策略等方面进行分析和讨论。
首先,根据2018年考研数学三的考试大纲,该年度的数学三试卷分为选择题、填空题、解答题和综合题四部分,总计150分。
试卷结构延续了以往的传统,重点考察函数、极限与连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、常微分方程等知识点。
在2018年考研数学三的考试重点方面,除了要求考生熟练掌握基础知识外,还加强了对数学思维能力和综合应用能力的考察。
例如,在函数、极限与连续部分,增加了对数列极限、函数极限的性质及其应用的考察;在一元函数微分学和一元函数积分学部分,注重了导数的几何意义、微积分基本定理及其应用的考察;在向量代数与空间解析几何部分,增加了对向量运算、空间直线与平面方程及其应用的考察;在多元函数微分学和多元函数积分学部分,强化了对偏导数、重积分及其应用的考察;在无穷级数和常微分方程部分,提高了对级数收敛性判别、常微分方程解法及其应用的考察。
考研数学重要知识点解析线性代数

考研数学重要知识点解析线性代数线性代数是考研数学中的一个重要知识点,也是研究线性空间和其上的线性映射的一门数学分支。
它在数学中具有广泛的应用,例如在物理学、工程学、计算机科学等领域都有着重要的地位。
线性代数的重要知识点主要包括线性空间、线性映射、矩阵和向量等。
首先,线性空间是指满足一定条件的集合,其中的元素称为向量。
线性空间具有加法和数乘两种运算,满足一定的性质。
线性空间的基可以用来表示该空间中的任意向量,并且可以通过坐标来表示向量。
线性映射是线性代数中的一个重要概念,它是指将一个线性空间映射到另一个线性空间的函数。
线性映射保持向量空间的加法和数乘运算。
线性映射的矩阵也是线性代数中的一个重要概念,它可以通过矩阵乘法来表示。
矩阵是一个矩形的数表,由行和列组成。
矩阵是线性代数中的重要工具,可以用来表示线性映射、线性方程组等。
向量是线性代数中的另一个重要概念,它可以用来表示一个点或一个方向。
向量具有大小和方向两个属性,可以通过加法和数乘来进行运算。
向量的点乘和叉乘是线性代数中的两种重要运算,它们分别表示向量的数量积和向量的向量积。
在研究线性代数时,我们需要掌握线性映射和矩阵的基本性质,理解线性方程组、特征值和特征向量的概念,掌握矩阵的行列式和逆矩阵的计算方法,熟练运用向量的点乘和叉乘进行计算等。
同时,在解决线性代数相关问题时,我们还可以运用线性代数的一些方法和技巧,如矩阵的变换、矩阵的秩等。
这些方法和技巧在解决实际问题时往往能够提高解题的效率和准确度。
总之,线性代数是考研数学中的一个重要知识点,掌握线性空间、线性映射、矩阵和向量等的基本概念和性质,熟练运用相关的计算方法和技巧对于考研数学的学习和考试至关重要。
通过对线性代数的深入理解和应用,我们可以更好地理解和应用数学在实际问题中的作用。
考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数中必考知识点归纳总结

1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A;3. 代数余子式和余子式的关系:(1)(1)i j i j ijij ij ijMA A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式(=◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A CA B C B O B==、(1)m n C A O AA B B O B C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵: ⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解;⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪=⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nE OF O O ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线性方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,i λ乘A 的各列元素; ③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C ab Ca bC b C a b -----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-mnn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m m m m r n r r nnn nnn n n r C CCC CC rC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、111211*********2n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12nb b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪⎪ ⎪⎝⎭; 含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出Ax b ⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关; 若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关; ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14.12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭有非零解,即0Ax =有非零解; ⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0Ti j i j a a i j n i j =⎧==⎨≠⎩;②、若A 为正交矩阵,则1TA A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----; 3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B ,其中可逆;⇔T x Ax 与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则TC AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。
线性代数重点总结

线性代数重点总结线性代数是现代数学领域的重要分支,它研究线性方程组、向量空间、线性映射等代数结构和它们之间的关系。
在应用数学、工程学、计算机科学等领域中,线性代数起着举足轻重的作用。
本文将以1500字左右的篇幅,对线性代数的重点内容进行总结,旨在为读者提供一份简明扼要、重点突出的学习指南。
第一部分:线性方程组与矩阵1.1 线性方程组的定义及解的存在唯一性线性方程组由多个线性方程组成,它的解是使得方程组中所有方程都成立的解集。
如果线性方程组有解,且解是唯一的,那么称线性方程组是可解且解唯一的。
1.2 线性方程组的矩阵形式将线性方程组用矩阵和向量表示可以简化计算过程。
线性方程组的系数矩阵A、未知数向量X和常数向量B之间满足AX=B的关系。
1.3 线性方程组的消元法高斯消元法和高斯-约当消元法是求解线性方程组的常用方法。
通过对矩阵进行初等行变换,将线性方程组转化为更简化的形式,从而求出解。
1.4 矩阵的运算矩阵的加法、减法和数乘是常见的矩阵运算。
此外,还有矩阵的乘法、转置和逆矩阵等运算。
1.5 矩阵的特征值与特征向量特征值和特征向量描述了矩阵的特征性质。
特征值是方程Ax=λx 的解,其中A是方阵,λ是特征值,x是非零向量。
特征向量则是对应于特征值的非零向量。
第二部分:向量空间与线性映射2.1 向量空间的定义与性质向量空间是具有线性结构的集合。
它满足加法封闭性、数乘封闭性、零向量存在性、加法逆元存在性等性质。
2.2 线性独立与线性相关向量空间中的向量集合线性相关指存在非零向量使得线性组合等于零向量。
线性独立则是指不存在非零向量使得线性组合等于零向量。
2.3 矩阵的秩与行列式矩阵的秩是指矩阵的极大线性无关行(列)数。
行列式是一个与矩阵相关的数值。
2.4 线性变换和线性映射线性变换是定义在向量空间上的函数,它保持向量空间的线性结构。
线性映射是指保持向量空间的线性结构和运算的函数。
第三部分:特殊的矩阵3.1 对称矩阵与正定矩阵对称矩阵是指矩阵的转置与自身相等。
2018考研数学:线性代数得高分的建议
2018考研数学:线性代数得高分的建议1.认真分析考试大纲,抓住考试重点考试大纲是最重要的备考资料,从历年的数学大纲来看,每年基本上不变,所以同学们可以先参考2015年考研数学大纲,将大纲中要求的考点仔细梳理一下,一定要明确重点,不要在不太重要的内容和复杂的题目上投入太多精力。
而对于线性代数的重点考查对象一定要重视,例如,线性方程组的求解基本上每年都会以解答题的形式考查,矩阵的特征值、特征向量以及化成对角矩阵是考试频率最高的,也是较难的一类题目,这类问题的关键,所以平时复习要加强这类题型的训练。
另外,围绕向量的秩的考查也是考试的重点,大家在复习过程中一定要深刻理解它们的性质。
大家可参阅2015《全国硕士研究生入学统一考试线性代数辅导讲义》里面覆盖了所有的考点。
2.加强对基本概念、基本性质的理解从历年试题看,线性代数主要考查考生对基本概念、性质的深入理解以及分析解决问题的能力,需要考生能够做到灵活地运用所学的知识,熟记一些解题方法去解决线性代数问题。
所以大家在复习过程中要准确理解线性代数的基本概念,基本性质,为了深刻记忆,同学们可以结合一些例题和练习题来训练,只要概念和方法理解准确到位,多做些相关题目,考试时碰到类似题目就一定能够轻松正确解答。
基础知识的复习主要是在基础阶段进行,也就是今年暑期之前,要特别指出的是在基础阶段的复习中,不要轻视对教材中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。
在此过程中,不要过多地去追求复杂的题,要脚踏实地、全面仔细地复习,凡是考纲上有的内容,就不要遗漏。
这个阶段虽然涉及综合性、提高性题型不多,但基础打得好将为下阶段全面综合复习创造一个有利前提,而且,试卷中多数综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的基本概念、性质和方法。
3.重视真题的训练真题是最具有代表性的资料,因为线性代数考试内容和技巧比较单一,变化相对少,所以在考研真题题型中的重复率可以达到90%,因此我们要加强对历年真题的重视,尤其是近十五年的真题,总体来讲,做真题可以分两步。
考研数学线性代数重点内容与题型总结
考研数学线性代数重点内容与题型总结考研阶段大致有依次下面几个阶段:根底阶段、强化阶段、冲刺阶段,前面每个阶段如果走的更好更快,那么将为以后的阶段提供足够空间,反之可能打乱复习进程。
越是到后面,考生越是要坚持两条腿走路,即知识点总结和题型总结。
也就是要把书由厚读到薄,把知识转化成自己的东西,这样才会越学越轻松。
线性代数在考研数学中占有重要地位,必须予以高度重视。
和高数与概率统计相比,由于线性代数的学科特点,同学们更应该要注重对知识点的总结。
线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,同学们必须注重计算能力。
线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。
下面,就将线代中重点内容和典型题型做总结,希望对同学们复习有帮助。
一、行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。
如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以表达。
所以要熟练掌握行列式常用的计算方法。
1重点内容:行列式计算(1)降阶法这是计算行列式的主要方法,即用展开定理将行列式降阶。
但在展开之前往往先用行列式的性质对行列式进展恒等变形,化简之后再展开。
(2)特殊的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必须熟练掌握相应的计算方法。
2常见题型(1)数字型行列式的计算(2)抽象行列式的计算(3)含参数的行列式的计算。
二、矩阵矩阵是线性代数的核心,是后续各章的根底。
矩阵的概念、运算及理论贯穿线性代数的始终。
这部分考点较多。
涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。
有些性质得证明必须能自己推导。
考研数学《线性代数》考点知识点总结
n
aki Akj
k 1
Dij
D, 0,
当i 当i
j, n
j;
或
k 1
aik
Ajk
Dij
D, 0,
当i 当i
j, j; 其中ij
1, 0,
当i j, 当i j.
1 1 1 1
范德蒙德 行列式:
x1 Dn x12
x2 x22
x3 x32
x n 1 1
x n 1 2
x n 1 3
xn xn2 = (xi x j ) .证明用数学归纳法.
A
0
A2
0
A11
,若
A
0 ,则 A1
As
0
A
1 2
0
A
1 s
性质: A A1 A2 As ,且 Ai 0 (i 1,2, , s) ,则 A 0 .
行向量:
α1T
A mn
α
T 2
,
α
T m
αiT (ai1, ai2, , ain )
列向量:
A (a1, a2 , , an )
线性方程组有解,称它相容;无解,就称 它不相容.
(iii)有无限多解的充分必要条件是 R( A) R( A, b) n .
线性方程组 Ax b 有解的充要条件是 R(A) R(A, b) .
n 元齐次线性方程组 Ax 0 有非零解的充要条件是 R(A) n .
矩阵方程 AX B 有解的充要条件是 R(A) R(A, B) .
定理 2: n 阶行列式可定义为 D (1)t a a p11 p2 2 apnn = (1)t a1p1 a2 p2 anpn .
1.D=DT,DT 为 D 转置行列式.(沿副对角线翻转,行列式同样不变)
考研线性代数重点内容归纳.doc
究生入学统一考试数学120种常考题型精解》。
矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。
2012年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。
往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。
特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。
由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础.重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法.重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凯程考研辅导班,中国最权威的考研辅导机构
第 1 页 共 1 页
2018考研数学三:线性代数必考重点分
析
考研数学是比较能拉开分数的一大科目,对于数学基础差的考生来说,
一定要趁着暑假突击复习,完成逆袭。数学复习要了解各部分重点及考察
题型,这 样有针对性的复习有助于节省时间,提高效率。下面,凯程考研
分享考研数学三线性代数部分的必考知识点及其出题形式,大家一定要看
看。
2018考研数学三:线性代数必考重点及题型分析
章节 知识点 题型
重要度等
级
第一章 行列式 行列式的运算 计算抽象矩阵的行列式 ★★
第二章 矩阵
矩阵的运算 求矩阵高次幂等 ★★★
矩阵的初等变换、初等矩阵 与初等变换有关的命题 ★★★★★
第三章 向量
向量组的线性相关及无关
的有关性质及判别法
向量组的线性相关性 ★★★★★
线性组合与线性表示 判定向量能否由向量组线性表示 ★★★★
第四章 线性方程组 齐次线性方程组的基础解系和通解的求法 求齐次线性方程组的基础解系、
通解
★★★★
第五章 矩阵的
特征值和特征
向量
实对称矩阵特征值和特征
向量的性质,化为相似对角阵的方法 有关实对称矩阵的问题 ★★★★★
相似变换、相似矩阵的概念
及性质
相似矩阵的判定及逆问题 ★★★★
凯程考研辅导班,中国最权威的考研辅导机构
第 2 页 共 2 页
第六章 二次型
二次型的概念 求二次型的矩阵和秩 ★★
合同变换与合同矩阵的概
念
判定合同矩阵 ★★