数学思想方法有哪七种

合集下载

常用的数学思想方法

常用的数学思想方法

常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。

常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。

数学小学数学常用的16种思想方法

数学小学数学常用的16种思想方法

数学|小学数学常用的16种思想方法数学基础打得好,对将来的升学也有较大帮助。

但是数学的学习比较抽象,小学生在学习过程中会碰到一些“拦路虎”,掌握一些方法,这些就都不怕了。

1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确解答的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

6、转化思想方法转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

数学思想方法的

数学思想方法的

数学思想方法的
数学思想方法主要有:用字母表示数的思想,数形结合的思想,转化思想 (化归思想),分类思想,类比思想,函数的思想,方程的思想,无逼近思想等等。

1.用字母表示数的思想:这是基本的数学思想之
一 .在代数第一册第二章“代数初步知识”中,主要体现了这种思想。

2.数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

3.转化思想:在整个初中数学中,转化 (化归)思想一直贯穿其中。

初中数学八大思想方法总结

初中数学八大思想方法总结

初中数学八大思想方法总结初中数学的八大思想方法是指数学学科中的八种基本思想方法,即归纳、演绎、分类、比较、抽象、联想、推测和分析。

这些思想方法在数学学习和问题解决过程中起到了重要的指导作用,能够帮助学生理解和掌握数学知识,培养数学思维能力。

下面将对每一种思想方法进行详细阐述。

首先是归纳。

归纳思想方法是通过观察和实验,从具体的个别事物或现象中寻找共同点、相似之处,从而总结出一般规律或定律。

归纳是数学研究和解决问题的重要手段,能够培养学生的观察能力和归纳能力。

第二是演绎。

演绎思想方法是从已知事实、条件或前提出发,运用逻辑推理的方法,得出结论。

演绎是数学推理的基本方法,能够帮助学生分析问题、确定解题步骤,并推导出准确的答案。

第三是分类。

分类思想方法是将事物或现象按照某种规则或特征进行划分和组织。

分类能够帮助学生理清数学概念之间的关系,搞清楚各个概念的边界和特点,从而更好地理解和应用数学知识。

第四是比较。

比较思想方法是将不同事物或现象进行对比和分析,找出它们的共同点和差异点。

比较能够帮助学生深入理解数学概念和知识,发现问题的本质和特点,从而培养学生的分析思维能力和解决问题的能力。

第五是抽象。

抽象思想方法是将具体的事物或现象中的共同特点联系起来,形成一个更为一般的概念或理论体系。

抽象是数学研究和发展的核心方法之一,能够帮助学生理解和应用抽象概念,拓展数学思维的广度和深度。

第六是联想。

联想思想方法是在解决问题时,将已有的知识和经验与新的问题进行联系和应用。

联想能够帮助学生迅速找到解决问题的思路和方法,提高解题效率和准确性。

第七是推测。

推测思想方法是根据已有的事实、条件或观察结果,推断出可能的结论或规律。

推测是数学研究和创新的重要方法,能够培养学生的假设能力和创造性思维。

最后是分析。

分析思想方法是将复杂的问题或现象进行分解和研究,找出其中的关键因素和规律。

分析能够帮助学生深入思考问题的本质和特点,提高解决问题的能力和水平。

十大数学思想方法

十大数学思想方法

数学(mathematics或maths,来⾃希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的⼀门学科,从某种⾓度看属于形式科学的⼀种。

下⾯请欣赏店铺为⼤家带来的⼗⼤数学思想⽅法,希望对⼤家有所帮助~ 1、配⽅法: 所谓配⽅,就是把⼀个解析式利⽤恒等变形的⽅法,把其中的某些项配成⼀个或⼏个多项式正整数次幂的和形式。

通过配⽅解决数学问题的⽅法叫配⽅法。

其中,⽤的最多的是配成完全平⽅式。

配⽅法是数学中⼀种重要的恒等变形的⽅法,它的应⽤⾮常⼴泛,在因式分解、化简根式、解⽅程、证明等式和不等式、求函数的极值和解析式等⽅⾯都经常⽤到它。

2、因式分解法: 因式分解,就是把⼀个多项式化成⼏个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的⼀个有⼒⼯具、⼀种数学⽅法在代数、⼏何、三⾓函数等的解题中起着重要的作⽤。

因式分解的⽅法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、⼗字相乘法等外,还有如利⽤拆项添项、求根分解、换元、待定系数等等。

3、换元法: 换元法是数学中⼀个⾮常重要⽽且应⽤⼗分⼴泛的解题⽅法。

我们通常把未知数或变数称为元,所谓换元法,就是在⼀个⽐较复杂的数学式⼦中,⽤新的变元去代替原式的⼀个部分或改造原来的式⼦,使它简化,使问题易于解决。

4、判别式法与韦达定理: ⼀元⼆次⽅程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2—4ac,不仅⽤来判定根的性质,⽽且作为⼀种解题⽅法,在代数式变形,解⽅程(组),解不等式,研究函数乃⾄解析⼏何、三⾓函数运算中都有⾮常⼴泛的应⽤。

韦达定理除了已知⼀元⼆次⽅程的⼀个根,求另⼀根;已知两个数的和与积,求这两个数等简单应⽤外,还可以求根的对称函数,计论⼆次⽅程根的符号,解对称⽅程组,以及解⼀些有关⼆次曲线的问题等,都有⾮常⼴泛的应⽤。

5、待定系数法: 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,⽽后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从⽽解答数学问题,这种解题⽅法称为待定系数法。

十大数学思想方法

十大数学思想方法

十大数学思想方法十大数学思想方法数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。

下面请欣赏店铺为大家带来的十大数学思想方法,希望对大家有所帮助~1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

数学中常用的思想方法

数学中常用的思想方法

数学中常用的思想方法数学中常用的思想方法学数学,最重要的是练好基本功,就如功夫中的扎马步一样,基础越扎实,你能达到的高度就越高!而数学思想,也是这基本功中的一部分,下面这些是我们常用的数学思想,希望对大家有帮助!1、对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

2、假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

3、比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

4、符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式、等。

5、类比思想方法类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。

如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。

类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。

转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。

如几何的等积变换、解方程的同解变换、公式的'变形等,在计算中也常用到甲÷乙=甲×1/乙。

7、分类思想方法分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。

如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。

7种初中数学常用数学思想

7种初中数学常用数学思想

7种初中数学常用数学思想 计算能力是一项基本的数学能力,也是综合能力的具体体现。计算能力的培养,不仅与数学基础知识密切相关,而且与训练学生的思维、小编整理了7种初中数学常用数学思想 数学最强计算技巧总结,欢迎参考借鉴。 7种初中数学常用数学思想 一、整体思想 整体思想是从问题的整体性质出发,突出对问题的整体结构的分析和改造,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。 例1 已知a-b=3,求2a-2b-1=____。 解析:把“a-b”看成一个整体代入,2a-2b-1=2(a-b)-1=5。 二、方程思想 方程思想是指在确定变量后,找到它们之间的关系,将实际问题转化成方程或不等式,通过建立方程模型来解决实际问题。 例2 一个凸多边形的内角和是外角和的2倍,它是____边形。 解析:由于任意多边形的外角和都是360°,而n边形的内角和是(n-2) 180°。设这个多边形是n边形,根据题意,得:(n-2)180°=2×360°,解得n=6。 三、函数思想 函数的思想是用运动和变化的眼光,分析和研究数学中的数量关系,从而建立函数模型,如一次函数、反比例函数、二次函数等,解决实际问题。 例3 某市出租车收费标准:不超过3千米计费为10.0元,3千米后按2.4元/千米计费。 (1)当路程表显示7千米时,应付费多少元? (2)写出车费 y (元)与路程 x (千米)之间的函数表达式。 (3)小明乘出租车从家到人才市场,付费34元,求小明的车程。 解析:(1)当路程为7千米时,费用为10+(7-3)×2.4=19.6元。 (2)当x≤3时,y=10;当x≥3时,y=10+(x-3)×2.4,即y=2.4x+2.8。 (3)当y=34时,有2.4x+2.8=34,即x=13。答:小明的车程为13千米。 四、转化思想 转化思想是指把我们遇到的问题由陌生知识转化为已学知识,化繁为简,化未知为已知,从而解决实际问题。 解析:把分式方程去分母转化为整式方程即可。 两边乘(x+3)(x-1)得:2(x-1)=(x+3), 即2x-2=x+3, 解得x=5。 经检验:x=5是方程的解。 五、类比思想 把两个(或两类)不同的数学对象进行对比,如果发现它们有共同特质,可以根据其中一个数学对象的特征来推出另一个对象的特征。例如通过研究正比例函数的图象、性质及应用,类比研究反比例函数的图象、性质及应用。 六、数形结合思想 数形结合思想就是在研究问题时把数和形结合起来考虑,或者把问题的数量关系转化为图形的性质,或者把图形的性质转化为数量关系,从而使复杂的问题简单化,抽象的问题形象化、具体化。“数无形,少直观,形少数,难入微”,利用“数形结合”可使要研究的问题化难为易,化繁为简。 七、分类讨论思想 分类讨论就是把研究对象按同一分类标准分成几个部分或几种情况,然后逐个解决,最后予以总结做出结论的思想方法,其实质是化整为零,各个击破,化大难为小难的策略。 例6 若等腰三角形的一个内角为70°,求它的顶角的度数。 解析:分类讨论: (1)该内角为顶角时,顶角为70°。 (2)该内角为底角时,则顶角为:180°-70°×2=40°。 故顶角为70°或40°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学思想方法有哪七种
1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

4、整体思想
从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

5、类比思想
把两个(或两类)不同的数学对象进行比较,如果发现它们在某
些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

6、配方法
将一个式子设法构成平方式,然后再进行所需要的转化。

当在求二次函数最值问题、解决实际问题最省钱、盈利最大化等问题时,经常要用到此方法。

7、待定系数法法
当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待定的字母的值就可以了,为此,需要把已知的条件代入到这个待定的式子中,往往会得到含待定字母的方程或者方程组,然后解这个方程或者方程组就可以使问题得到解决。

相关文档
最新文档