高三数学一题多解一题多变试题及详解答案

合集下载

专题18多角度破解多变元范围问题--《2023年高考数学命题热点聚焦与扩展》2

专题18多角度破解多变元范围问题--《2023年高考数学命题热点聚焦与扩展》2

专题18 多角度破解多变元范围问题【热点聚焦】高考命题中多变元(量)确定范围问题,往往涉及多类知识内容,如不等式、三角、平面向量、平面解析几何等.此类问题,一般地可利用已知条件进行消元,将多变量表达式转化为一元表达式,便于求得范围(最值),且消元的方法较多.也可以利用基本不等式等,另外,数形结合法也是常见解法.【重点知识回眸】一.不等式 1.重要不等式当a 、b 是任意实数时,有a 2+b 2≥2ab ,当且仅当a=b 时,等号成立. 2.基本不等式 当a >0,b >0时有,当且仅当a=b 时,等号成立. 3.基本不等式与最值 已知x 、y 都是正数.(1)若x +y =s (和为定值),则当x =y 时,积xy 取得最大值. (2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值. 4.常用推论(1)()(2)(,); (3)5.简单线性规划(1)二元一次不等式(组)表示的平面区域(2ab ba ≥+222ab 2a b +≤,R a b ∈2ab ()2a b +≤0a >0b >222()22a b a b ++≥20,0)112a b a b a b+≤≤>>+(3)画二元一次不等式表示的平面区域的“直线定界,特殊点定域” ①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线.②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证. (4)点P 1(x 1,y 1)和P 2(x 2,y 2)位于直线Ax +By +C =0的两侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0;位于直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0. 二. 常见消元的方法:(1)利用等量关系消元:若题目中出现了变量间的关系(等式),则可利用等式进行消元,在消元的过程中要注意以下几点:① 要确定主元:主元的选取有这样几个要点:一是主元应该有比较明确的范围(即称为函数的定义域);二是构造出的函数能够解得值域(函数结构不复杂)② 若被消去的元带有范围,则这个范围由主元承担.例如选择t 为主元,且有(),x f t a x b =≤≤,则t 除了满足自身的范围外,还要满足()a f t b ≤≤(即解不等式) (2)换元:常见的换元有两种:①整体换元:若多元表达式可通过变形,能够将某一个含多变量的式子视为一个整体,则可通过换元转为一元表达式,常见的如,y y x x -等,例如在x y u x y -=+中,可变形为11yx u y x-=+,设y t x =,则将问题转化为求11tu t-=+的值域问题注:在整体换元过程中要注意视为整体的式子是否存在范围,即要确定新元的范围②三角换元:已知条件为关于,x y 的二次等式时,可联想到三角公式,从而将,x y 的表达式转化为三角函数表达式来求得范围.因为三角函数公式的变形与多项式变形的公式不同,所以在有些题目中可巧妙的解决问题,常见的三角换元有:平方和:联想到正余弦平方和等于1,从而有:22cos 1sin x x y y θθ=⎧+=⇒⎨=⎩[),0,2θπ∈推广:2222cos 1sin x a x y y b a b θθ=⎧+=⇒⎨=⎩[),0,2θπ∈平方差:联想到正割(1cos θ) 与正切(sin tan cos θθθ=)的平方差为1,则有[)221sec cos 1,0,2sin tan cos x x y y θθθπθθθ⎧==⎪⎪-=⇒∈⎨⎪==⎪⎩,推广:[)2222sec cos 1,0,2sin tan cos a x a x y b a b y b θθθπθθθ⎧==⎪⎪-=⇒∈⎨⎪==⎪⎩注:若,x y 有限定范围时,要注意对θ取值的影响,一般地,若(),x y 的取值范围仅仅以象限为界,则可用对应象限角的取值刻画θ的范围 三.消元后一元表达式的范围求法:(1)函数的值域——通过常见函数,或者利用导数分析函数的单调性,求得函数值域(2)均值不等式:若表达式可构造出具备使用均值不等式(a b +≥式快速得到最值. (3)三角函数:① 形如sin cos a b θθ+的形式:则可利用公式转化为()sin A ωθϕ+的形式解得值域(或最值) ② 形如()sin f θ:则可通过换元sin t θ=将其转化为传统函数进行求解 ③ 形如:sin cos abθθ--,可联想到此式为点()cos ,sin θθ和定点(),a b 连线的斜率,其中()cos ,sin θθ为单位圆上的点,通过数形结合即可解得分式范围 四.放缩消元法1、放缩法求最值的理论基础:不等式的传递性:若()()(),,f x y g x g x m ≥≥,则(),f x y m ≥ 2、常见的放缩消元手段:(1)抓住题目中的不等关系,若含有两个变量间的不等关系,则可利用这个关系进行放缩消元(2)配方法:通过利用“完全平方式非负”的特性,在式子中构造出完全平方式,然后令其等于0,达到消元的效果(3)均值不等式:构造能使用均值不等式的条件,利用均值不等式达到消元的效果(4)主元法:将多元表达式视为某个变量(即主元)的函数,剩下的变量视为常数,然后利用常规方法求得最值从而消去主元,达到消元的效果. 五.数形结合法【典型考题解析】热点一 基本不等式破解多变元范围 【典例1】(2017·山东·高考真题(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为________. 【典例2】(2021·天津·高考真题)若0 , 0a b >>,则21ab ab ++的最小值为____________. 【典例3】(2020·江苏·高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【总结提升】1. 常数代换法主要解决形如“已知x +y =t (t 为常数),求a b x y +的最值”的问题,先将a bx y+转化为()a b x yx y t++⋅,再用基本不等式求最值. 2.形如f (x )=2ax bx c dx e +++的函数,可化为f (x )=11[()]x k m x k+++的形式,再利用基本不等式求解.热点二 数形结合破解多变元范围【典例4】(2020·山东·高考真题)已知变量x ,y 满足某约束条件,其可行域(阴影部分)如图所示,则目标函数23z x y =+的取值范围是( )A .[]0,6B .[]4,6C .[]4,10D .[]6,10【典例5】(江苏·高考真题)已知正数a b c ,,满足:534ln ln c a b c a c b a c c -≤≤-≥+,,则ba的取值范围是___.【典例6】(2016·江苏·高考真题)已知实数,x y 满足240{220330x y x y x y -+≥+-≥--≤,,,则22xy +的取值范围是 .【典例7】(2022·全国·高三专题练习)已知函数()lg f x x =,若0a b <<且()()=f a f b ,则2+a b 的取值范围为___________. 【技法总结】1.利用简单线性规划求多变元范围,是常见解法之一;2.通过“消元”,将多元问题 “一元化”,借助函数图像破解多变元范围问题,要求画图必须准确. 热点三 “消元法”破解多变元范围【典例8】(2022·全国·高三专题练习)已知双曲线222:1(0)4x y C a α-=>的右支上的点0(P x ,0)y 满足121||3||(PF PF F =,2F 分别是双曲线的左右焦点),则00(cy c x +为双曲线C 的半焦距)的取值范围是( ) A.)∞+B .[2,25)2C.25)2D .[2,【典例9】已知函数()()1,ln 22xx f x e g x ==+,对任意的a R ∈,存在()0,b ∈+∞,使得()()f a g b =,则b a -的最小值为( )A. 1B. 212e -C. 2ln 2-D. 2ln 2+ 【典例10】(2017·北京·高考真题(文))已知0x ≥,0y ≥,且1x y +=,则22xy +的取值范围是_____.【典例11】(2021·全国·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【典例12】(福建·高考真题(理))对于实数a 和b ,定义运算“*”:22,,a ab a ba b b ab a b ⎧-≠=⎨->⎩设f (x )=(2x1)*(x1),且关于x 的方程为f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是_________________ 【典例13】若实数,x y 满足条件221x y -=,则212yx x+的取值范围是_________【典例14】设实数,,a x y 满足2222123x y a x y a a +=-⎧⎨+=+-⎩,则xy 的取值范围是__________【精选精练】一、单选题1.(2023·全国·高三阶段练习)若函数()ln bf x a x x=-在点(1,f (1))处的切线的斜率为1,则22a b +的最小值为( ) A .12BCD .342.(2022·浙江·高考真题)若实数x ,y 满足约束条件20,270,20,x x y x y -≥⎧⎪+-≤⎨⎪--≤⎩则34z x y =+的最大值是( )A .20B .18C .13D .63.(2016·北京·高考真题(文))已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x −y 的最大值为( ) A .−1B .3C .7D .84.(2022·全国·高考真题(文))若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A .2-B .4C .8D .125.(2021·全国·高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .66.(2023·全国·高三专题练习)如图,已知抛物线1C 的顶点在坐标原点,焦点在x 轴上,且过点()1,4,圆222:8120C x y x +-+=,过圆心2C 的直线l 与抛物线和圆分别交于点P ,Q ,M ,N ,则4PM QN +的最小值为( )A .23B .26C .36D .627.(2022·重庆南开中学高三阶段练习)已知02,1,1b a b a b <<<≠≠,且满足log b a a b =,则下列正确的是( ) A .1ab >B .1(1)b a a b +<+C .11a b a b a a b b ++->-D .52+>a b 8.(2022·北京·高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5,3]- B .[3,5]-C .[6,4]-D .[4,6]-二、多选题9.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤ D .221x y +≥三、填空题10.(2022·全国·高一课时练习)已知函数()23f x x =-,[]1,2x ∈-,实数a ,b 满足()()10f a f b +-=,则()1a b -的最大值为______.11.(2023·全国·高三专题练习)锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c,且满足)(sin sin )()sin A B a b Cc +-=-,若1b =,则22a c +的取值范围是__________.12.(2020·天津·高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 13.(2022·浙江·高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭________;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是_________.14.(2018·北京·高考真题(文))若ABC222)a c b +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.15.(2022·湖南·邵阳市第二中学高三阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为___________.四、解答题16.(2023·全国·高三专题练习)设函数()1ln f x x a x x=-+ (1)当3a =时,求()f x 的单调区间;(2)任意正实数12,x x ,当122x x +=时,试判断()()12f x f x +与()2122a --的大小关系并证明 17.(2019·全国·高考真题(文))已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.18. (2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.。

2021年全国乙卷理科数学真题与答案解析(含一题多解及特殊解法)

2021年全国乙卷理科数学真题与答案解析(含一题多解及特殊解法)
解法1:如图,连接 ,因为 ∥ ,所以 或其补角为直线 与 所成的角,
因为 平面 ,所以 ,又 , ,
所以 平面 ,所以 ,
设正方体棱长为2,则 ,
,所以 .
故选:D
解法2:
如图,以D为坐标原点,DA,DC, DD1方向为x,y,z轴建立空间直角坐标系,设正方体棱长为2,则P(1,1,2),B(2,2,0),A(2,0,0), D1(0,0,2),所以 .
当 ,即 时, ,即 ,化简得, ,显然该不等式不成立.
故选:C.
解法二:因为 ,设 ,则
因为 ,所以
整理,得
所以
因为 ,所以 ,当 时, ,所以
,即离心率 。故选C.
解法三:利用选择题的特点,从备选答案入手,结合椭圆图象求解。如图,要使│PB│的最大值为2b,椭圆不可能很扁,其离心率应该很小,排除A,B,若答案为C,因为离心率可以为 ,所以 ,令a=2, ,则 , ,设 ,则
解法一: ,
所以 ;
下面比较 与 的大小关系.
记 ,则 , ,
由于
所以当0<x<2时, ,即 , ,
所以 在 上单调递增,
所以 即 ,即 ;
令 ,则 , ,
由于 ,在x>0时, ,
所以 ,即函数 在[0,+∞)上单调递减,所以 ,即 ,即b<c;
综上, ,
故选:B.
解法二:根据选择题的特点,以及答案的相似度,从备选答案入手,结合椭圆图象求解。因为a,b容易比较,易得a>b,排除A,D,有发现A,C的最大值都是c,具有极大迷惑性,故选C。本题属于一道难题,特殊问题采用特殊解法。
4.设函数 ,则下列函数中为奇函数的是()
A. B. C. D.

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”高考是中国教育系统中最为重要的一次考试,几乎决定了学生的未来走向。

为了选拔出最好的学生,高考试题往往是非常严谨和严密的。

在实际的考试过程中,有时会出现一题多解或一题多变的情况。

一题多解指的是一个问题有多种答案或多种解决方法。

高考试题通常设计成有唯一正确答案的形式,但由于问题的复杂性和广度,也有可能会有其他答案。

某道数学题要求求解一个方程,虽然通常只有一个解,但在某些特定条件下也可能有多个解。

这种情况下,如果考生能够给出其他解,并且解答过程正确,他们也可以得到分数。

一题多变指的是同一道题目在不同的考试中,可能会有不同的表述或要求。

高考试题是经过精心设计和审核的,但有时会有一些小的差异。

某个考试要求学生解答一道文学理解题,其中涉及到一个小说中的情节。

在不同的考试中,可能会有对情节的描述有细微差别,但要求学生进行相同的分析和理解。

这种情况下,考生需要根据实际题目做出相应的答案。

一题多解和一题多变可能是由于试题设计者的失误或主观性造成的,也可能是故意设置的。

试题设计者有时会故意设置一题多解或一题多变的情况,以考察学生的思维能力和灵活性。

这样的题目可以激发学生的创造力和思考能力,使他们更好地理解问题,发现不同的解决方法。

一题多解和一题多变也反映了学科知识的广度和复杂性。

一个问题可能涉及到多个知识点或技能,学生需要综合运用这些知识点和技能来解答问题。

这样的问题在一定程度上能够衡量学生的综合能力和深度理解能力。

一题多解和一题多变也存在一定的问题。

一些考生可能会误解题意,给出错误的答案。

而一些考生可能只掌握了解题的一种方法,导致无法应对不同的题目要求。

对于学生来说,重要的是要在高中阶段充分掌握各学科的知识和技能,提高解题的能力和思维的灵活性。

要注重对题目的理解和分析,切忌盲目套用模板答案。

对于教育机构和教师来说,应该注重培养学生的综合能力和创新能力,设计更有针对性的试题,对一题多解和一题多变进行更加科学和合理的评分。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”一题多解和一题多变是高考试题中常见的现象,它们既有利于考生发挥自己的思维能力,又能有效地检验他们的知识水平和解题能力。

本文将以两道高考试题为例,探讨一题多解和一题多变的特点以及对考生的影响。

第一道例题是2015年全国高考数学(文)第27题:已知函数$f(x)=\dfrac{\sqrt{2x+1}}{4-x}$,则$f(x)$的对称中心为_____。

这道题的基本思路是求对称中心,解法比较简单,可以通过求导或根据对称性质直接得出答案。

但是,如果从不同的角度出发,采用不同的方法,也可以得到正确答案。

比如,我们可以将$f(x)$分解为两个函数相除的形式,即$f(x)=\dfrac{1}{4-x}\sqrt{2x+1}$。

这样,我们就可以将题目转化为求$\sqrt{2x+1}$的对称中心,进而得出$f(x)$的对称中心为$(-\frac{1}{2},0)$。

通过不同的解题方式,我们可以体会到数学思维的灵活性和多样性,也提高了我们解题的效率。

如图所示,两支长度为$L$的均匀刚体细杆与两个质量分别为$m_1$和$m_2$的小球构成物理摆。

将小球摆开一个角度$\theta$后两小球释放,小球始终保持与垂直方向投影重合,求一个小球到达下端时,与与支轴夹角的大小。

这道题目主要涉及到物理摆的知识。

解法有多种,可以利用机械能守恒或角动量守恒来计算,还可以采用简谐运动理论,利用振动的性质来求解。

此外,题目的变数也比较多,可以考虑改变小球的质量、刚体的长度等等来观察对答案的影响。

通过多种解题方法和变数的分析,考生能够更深入地理解物理学中的概念和原理,提高关键词的识别能力和应用能力。

在总结一题多解和一题多变的特点时,我们可以发现,这类试题常给考生带来一定的难度和不确定性,同时也促进他们发挥创新和探究的意识,提高自己的应变能力和解题技巧。

因此,考生在备考高考时,不应将重点放在“题海战术”和“应试技巧”上,而要注重学科知识的深度和广度,培养解决问题的能力和方法,才能更好地应对复杂多变的高考试题。

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”

基于两道高考试题的“一题多解”与“一题多变”高考试题是经过精心设计的,细节考究,语言准确,题目严谨,除了考察学生的知识掌握水平,还鼓励学生发挥创造力,出其不意地解答问题。

近年来,一些高考试题出现“一题多解”和“一题多变”的现象,即同一高考试题可以有多种不同的解答方式,或者通过改变题目条件或算法,可以得出不同的答案。

本文将以两道高考试题为例,来探讨“一题多解”和“一题多变”的现象及其对教育的启示。

第一道试题是2019年广东省高考数学试题(选修一)的第18题:三点在同一直线上,其中有两个点的坐标分别是(1,2),(3,4),求第三个点的坐标。

这题看似简单,但是有不同的思路,不同的方法,可以得出不同的解答。

传统的思路是,两点确定一条直线,根据两点式或斜截式即可求得第三个点的坐标;而另一种思路是,即使不知道三点在一条直线上,也可以构造一条直线,通过插入点、相似三角形、勾股定理等方法,不同的算法得到不同的坐标点。

例如,可以将(1,2)和(3,4)两点分别与(0,0)作两条直线,交点即为第三个点的坐标;也可以以(1,2)和(3,4)两点为直径作圆,圆心即为第三个点的坐标。

因此,同一道高考试题可以有不同的解答方式,考察学生的逻辑思维、创新思维和解决问题的能力。

第二道试题是2012年山东省高考物理试题(文理)第22题,题目为:一架质量为m的火箭以v的速度在真空中运动,初始质量为m。

当箭的质量减少了k之后,速度为v1。

计算箭喷射出去的气体速度v2。

(提示:为了简化问题,在计算中可将火箭看成一个系统,忽略细节部分。

)通常的解法是,根据动量守恒和能量守恒的定律,设置两个方程组,解出v2和k的关系,进而求出v2的值。

但是,同样的题目条件,为了增加难度和趣味性,可以采用数学模拟和实验检验的方法,得到不同的答案和结论。

例如,在计算过程中可以假设v1=0,k=m/2,通过确定其他条件,比如火箭的发射速度、燃料的比率和等等,结合牛顿第二定律和万有引力定律,可以运用Matlab或Python等数学软件,模拟喷射途中箭是否达到随着质量的减少而增加的最大速度,把结果和计算机模拟结果进行比较,在不同角度看待问题,得到不同的答案和见解。

(新高考Ⅰ卷)高考数学一题多解探寻圆锥曲线压轴破解之策与算法优化(含解析)

(新高考Ⅰ卷)高考数学一题多解探寻圆锥曲线压轴破解之策与算法优化(含解析)

2022新高考Ⅰ卷21题解析几何压轴题解法探究2022新高考Ⅰ卷数学试题,据称是近20年来史上第二难高考数学试题(史上最难2003).本文将对该卷21题解析几何压轴题,从不同的角度进行解析剖析.以期总结方法规律,优化思考方向,破解难点疑点,为广大的2023届高考师生提供有益的参考和帮助.【2022新高考1卷21题】已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.【答案】(1)1-(2)9方法一:直线双参+韦达法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线PQ 的方程为y kx m =+,设1122(,),(,)P x y Q x y , 联立2212x y y kx m ⎧-=⎪⎨⎪=+⎩消去y 得222(21)4220k x kmx m -+++=2121222422,2121km m x x x x k k +∴+=-=--, 由121211022AP BP y y k k x x --+=+=--可得1221(1)(2)(1)(2)0y x y x --+--= 即1221(1)(2)(1)(2)0kx m x kx m x +--++--=展开整理得12122(12)()4(1)0kx x m k x x m +--+--= 即2222242(12)()4(1)02121m km k m k m k k +⋅+--⋅---=-- 即2(1)210m k k k +++-=,(1)(21)0k m k ++-=故1k =-或12m k =-当12m k =-时的方程为12y kx k =+-,其恒过定点(2,1)A ,与题意不符故直线PQ 的斜率1k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP的方程为12)y x -=-,直线AP的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以2Q x +=,Q x =于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=.【点评】联立方程韦达定理,是解析几何压轴大题最流行的方法套路.本题引入直线PQ 的双参方程y kx m =+,参与计算变形,使得运算过程相对繁复,产生了较大的运算量.要想变形到(1)(21)0k m k ++-=这一步,没有过硬的计算能力是很难达到的.方法二:直线单参+设点求点【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,设直线AP 的倾斜角为θ,不妨设其斜率0k >,则直线AQ 的斜率为k -直线AP 的方程为1(2)y k x -=-,代入2212x y -=整理得点,A P 的横坐标为方程的两根,故2122(21)2221k x k -+=-,22122(21)14422121k k k x k k -+-+∴==--,2112241(2)121k k y k x k -+-=-+=-于是点P 坐标为2222442241(,)2121k k k kP k k -+-+---,用k -代换k 可得2222442241(,)2121k k k kQ k k ++----- 故22222222241241212114424422121PQ k k k k k k k k k k k k k ----+----==-++-+---(2)由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ= 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=±因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在,P Q的坐标中令k =P Q x x ==于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】直线过圆锥曲线上已知一点时,可尝试设点求点的套路求出另一点的坐标.本题引入直线AP 的单参方程1(2)y k x -=-,可直接求出点P 的坐标,用k -代换k 立即可得点Q 的坐标,从而顺利求得PQ 的斜率.本解法思路清晰自然,单参变形所产生的运算量适中,无需特殊方法技巧.方法三:点差法+整体代换【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 代入0AP BP k k +=化简整理得122112122240x y x y x x y y +----+=⋅⋅⋅⋅⋅⋅①点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=-+即12122()PQ x x k y y +=+ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 代入0AP BP k k +=化简整理得122112122240x y x y x x y y ++++++=⋅⋅⋅⋅⋅⋅⑤①-⑤得12122()4()0x x y y +++=,所以12122()x x y y +=-+所以1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式进行整体变形,轻松求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.方法四:齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 双曲线可化为22[(2)2][(1)1]12x y -+--+=即22(2)2(1)4[(2)(1)]0x y x y ---+---=设直线PQ 的方程为(2)(1)1a x b y -+-=联立22(2)2(1)4[(2)(1)]0(2)(1)1x y x y a x b y ⎧---+---=⎨-+-=⎩可得22(2)24[(2)(1)][(2)(1)]0x y x y a x b y --+----+-=即22(41)(2)4()(2)(1)(42)(1)0a x b a x y b y +-+----+-=两边同除2(2)x -整理得211(42)()4()(41)022y y b a b a x x --++--+=-- 其中12y x --表示直线AP 与BP 的斜率,AP AQ k k 由于4()024AP AQ a b k k b-+=-=+ 所以a b =,直线PQ 的斜率为1a k b =-=-. (2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=±因为双曲线2212x y -=渐近线斜率为±tan θ=因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==直线AP 的方程为12)y x -=-,直线AP 的方程为12)y x -=-,221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x ++-+= 方程的两根为点,A P的横坐标,所以1623P x -+=,103P x -=221212)x y y x ⎧-=⎪⎨⎪-=-⎩消去y得22316)2(120x x -+++= 方程的两根为点,A Q的横坐标,所以1623Q x ++=,103Q x +=于是||2|1)P AP x =-=,||2|1)Q AQ x =-=而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】齐次化在解决圆锥曲线同构问题上往往有奇效.本题直线,AP AQ 的斜率具有相同的结构,即12y x --的形式,于是可考虑构造关于1y -与2x -的二次齐次方程.直接将直线PQ 的方程设为(2)(1)1a x b y -+-=,进行“1代换”,为齐次化带来了方便.本解法思路奇巧,运算简洁明了.但需要考生平时付出大量训练才能掌握此方法的精髓和技巧! 方法五:坐标平移+齐次化【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 对坐标系进行平移,使坐标原点与点A 重合,在新坐标系下: 双曲线方程为22(2)(1)12x y ---=即2224()0x y x y -+-= 设直线PQ 的方程为1ax by +=联立2224()01x y x y ax by ⎧-+-=⎨+=⎩可得2224()()0x y x y ax by -+-+=即22(41)4()(42)0a x b a xy b y ++--+=两边同除2x 得2(42)()4()(41)0yy b a b a x x++--+= 其中y x表示直线AP 与BP 的斜率,AP AQ k k 由于平移不改变直线的斜率,故4()024AP AQ a b k k b -+=-=+ 所以a b =,直线PQ 的斜率为1-.(2)不妨设直线AP 的斜率0AP k >,设其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为±tan θ= 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==在新坐标系下,直线,AP BP的方程分别为,y y ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13P x =,于是|||1)P AP x ==联立2224()0x y x y y ⎧-+-=⎪⎨=⎪⎩解得4(13Q x =-,于是|||1)Q AQ x ==而由tan PAQ ∠=sin PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】坐标平移后,在新坐标系下的齐次化过程更加直观自然.运算也变得简单明了了.方法六:参数方程法【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设直线AP :112cos 1sin x t y t θθ=+⎧⎨=+⎩,其中θ为AP 的倾斜角 则直线AQ :222cos()1sin()x t y t πθπθ=+-⎧⎨=+-⎩,即222cos 1sin x t y t θθ=-⎧⎨=+⎩代入双曲线方程得 解得1222224cos 4sin 4cos 4sin ,cos 2sin cos 2sin t t θθθθθθθθ-++==-- 直线PQ 的斜率12121212sin 1cos y y t t k x x t t θθ--==⋅=--+ (2)不妨设直线AP 的斜率0AP k >,其倾斜角为θ由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan 2θ=± 因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=可得sin θθ==于是12t t ==而由tan PAQ ∠=sin PAQ ∠=所以121||||sin 29PAQ S t t PAQ ∆=∠=. 【点评】直线参数方程的介入,使问题转化为对两参数12,t t 的讨论,思路自然,运算量适中.新教材《选择性必修第一册》68P 探究与发现栏目,对直线的参数方程进行了简单的介绍.所以新高考使用直线参数方程解题是被允许的.此方法同样需要考生付出大量训练才能掌握精髓和技巧!方法七:点差法+分式合分比定理【解析】(1)将点(2,1)A 代入2222:11x y C a a -=-解得22a =,所以双曲线为2212x y -= 设1122(,),(,)P x y Q x y ,则121211,22AP BP y y k k x x --==--, 点,,P Q A 在双曲线上,故221122222212122112x y x y ⎧-=⋅⋅⋅⋅⋅⋅⎪⎪⎪-=⋅⋅⋅⋅⋅⋅⎨⎪⎪-=⋅⋅⋅⋅⋅⋅⎪⎩②③④-②③整理得121212122()y y x x x x y y -+=⋅⋅⋅⋅⋅⋅-+⑤ 同理②-④,③-④可得121222,2(1)2(1)AP AQ x x k k y y ++==++ 由0AP BP k k +=可得121212*********(1)2(1)AP y y x x k x x y y --++==-==---++ 由分式合分比定理可得12121212121212121442(2)2()AP y y y y x x x x k x x x x y y y y -+--++====+--++- 变形得1212121242(2)y y x x x x y y -+-=-++ 结合⑤得121212121212121212124(4)()12(2)2()2(2)2()y y x x x x x x x x x x y y y y y y y y -+-++--+====--+++++-+ 即1PQ k =-.(2)不妨设0AP k >,其倾斜角为θ,由0AP BP k k +=可知22PAQ θπθ∠=-或而tan PAQ ∠=tan 2θ=±即22tan 1tan θθ=±-tan θ=或tan θ=因为双曲线2212x y -=渐近线斜率为2±,故舍去tan 2θ=± 因为tan 0θ>,故舍去tan θ=tan θ=故AP AQ k k ==由11111222(1)AP y x k x y -+===-+142(13x -=由22221222(1)AQ y x k x y -+===-+解得242(13x -=-故1||2|1)AP x =-=,2||2|1)AQ x =-=而由tan PAQ ∠=sin 3PAQ ∠=所以1||||sin 29PAQ S AP AQ PAQ ∆=∠=. 【点评】点差法在解决圆锥曲线上两点连线斜率有关问题时往往事半功倍.本题充分利用点差法及两点斜率公式,得到直线,AP AQ 斜率的两种表达形式,结合分式合分比定理进行整体变形,求得直线PQ 的斜率.本解法运算简洁,思路清晰自然,求斜率事半功倍.但要求考生对分式合分比定理有较深刻的认识并能较熟练的应用.【总结】解决解析几何压轴题的方法策略主要有三种:1、根与系数的关系法(主流方法).设出动直线的方程:①y kx m =+,②x my n =+,③00()y y k x x -=-, ④{00cos sin x x t y y t αα=+=+(t 为参数),与圆锥曲线方程联立消元得到关于(x y t )或参数的一元二次方程,得两根之和两根之积,同时兼顾0,0∆>∆=或的要求,利用两根之和两根之积进行整体代换整体变形而求解.2、多变量多参数联动变换法.此种方法有别于方法1,不联立方程消元求解,而是直接将所设出点的坐标代入曲线(直线)方程和题设中,得到若干个关于点的坐标与参数间的关系式,对这些关系式进行整体变形整体代换而求解.如弦中点问题常用点差法处理.同构问题齐次化处理.此种方法对多变量多参数的代数式的驾驭能力及变换技巧是一种考验.3、设点求点法.方法1、2均采用了设而不求的策略.当问题中直线与曲线的交点易求时,可考虑直接求出点的坐标进行求解,即设点求点法.如:动直线过曲线上一已知点时,则另一交点坐标可直接求出;再如动直线y kx =与椭圆22221x y a b+=的交点易求出. 以上七种解决方案中,本人最青睐的是方法三点差整体变形法,轻巧灵动四两拔千斤!其次是方法二设点求点法,思路清晰自然运算简单明了!。

一题多解的高中数学题

一题多解的高中数学题

当然可以,以下是一道可以用多种方法解决的高中数学题目:题目:已知函数f(x) = x^2 + ax + b (a < 0) 有两个不同的零点x1,x2,且x1 ∈(1,2),x2 ∈(2,4),求f(1) 的取值范围。

方法一:利用二次函数的性质求解。

首先,由于函数f(x) = x^2 + ax + b (a < 0) 有两个不同的零点x1 和x2,且x1 ∈(1,2),x2 ∈(2,4),则可以根据二次函数的性质知道,函数的对称轴为x = -a,且该对称轴在1 和2 的中间,即-a = 1.5。

由于a < 0,所以函数开口向上,且在区间(1,2) 和(2,4) 内各有一个零点,因此有f(1) > 0,f(2) < 0,f(4) > 0。

将x = 1, 2, 4 代入函数表达式,可以得到三个不等式:f(1) = 1 + a + b > 0,f(2) = 4 + 2a + b < 0,f(4) = 16 + 4a + b > 0。

解以上三个不等式,得到f(1) 的取值范围为(-7,-5)。

方法二:利用根与系数的关系求解。

由于函数f(x) = x^2 + ax + b (a < 0) 有两个不同的零点x1 和x2,且x1 ∈(1,2),x2 ∈(2,4),则可以根据根与系数的关系知道:x1 + x2 = -a < 3,即a > -3。

x1 * x2 = b > 0。

又因为a < 0,所以有-3 < a < 0。

由于f(1) = 1 + a + b,结合b > 0 和-3 < a < 0 可以得到f(1) 的取值范围为(-7,-5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学一题多解一题多变试题及详解答案乐享集团公司,写于2021年6月16日高三一题多解 一题多变题目一题多解 一题多变一原题:482++=x mx x f )( 的定义域为R,求m 的取值范围 解:由题意0482≥++x mx 在R 上恒成立0>∴m 且Δ0≤,得4≥m变1:4823++=x mx x f log )(的定义域为R,求m 的取值范围 解:由题意0482>++x mx 在R 上恒成立0>∴m 且Δ0<,得4>m变2:)(log )(4823++=x mx x f 的值域为R,求m 的取值范围 解:令=t 482++x mx ,则要求t 能取到所有大于0的实数,∴当0=m 时,t 能取到所有大于0的实数当0≠m 时,0>m 且Δ0≥4≤0⇒m <变3:18223+++=x nx mx x f log )(的定义域为R,值域为[]20,,求m,n 的值解:由题意,令[]911822,∈+++=x n x mx y ,得0-8--2=+n y x x m y )( m y ≠时,Δ0≥016-)(-2≤++⇒mn y n m y -∴ 1和9时0162=++-)(-mn y n m y 的两个根∴ 当m y =时,08==mn x - R x ∈ ,也符合题意 一 题 多 解-解不等式523<<3-x解法一:根据绝对值的定义,进行分类讨论求解 1当03-≥x 2时,不等式可化为53-<<x 2343<<x ⇒2当03-<x 2时,不等式可化为0x -1⇒53-2x <<<+<3 综上:解集为}{0x 1-<<<<或43x x 解法二:转化为不等式组求解原不等式等价于综上:解集为}{0x 1-<<<<或43x x 解法三:利用等价命题法 原不等式等价于-33-2x 5-53-<<<<或x 23,即0x 1-<<<<或43x 解集为}{0x 1-<<<<或43x x 解法四:利用绝对值的集合意义原不等式可化为2523<<23-x ,不等式的几何意义时数轴上的点23到x 的距离大于23,且小于25,由图得, 解集为}{0x 1-<<<<或43x x一题多解 已知n s 是等比数列的前n 想项和,963s s s ,,成等差数列,求证:852a a a ,,成等差数列法一:用公式qq a s n n 一一111)(=,因为963s s s ,,成等差数列,所以9632s s s =+且1≠q 则 所以8716141152222a q a q q a q a q a a a ===+=+)( 所以 852a a a ,,成等差数列` 法二用公式qqa a s n n 一一11=,q q a a q q a a q q a a s s s 一一一一一一12112916131963)(∴,=+=+则q a q a q a a a a 85296322=+⇒=+8522a a a =+⇒,所以 852a a a ,,成等差数列`证法三:用公式)(),(n n n n n n n q q s s q s s 23211++=+=解得213一=q 下略变题:已知54=αsin 且α是第二象限角,求αtan解:α是第二象限角,54=αsin 345312一一一一===αααtan ,sin cos ⇒变1:54=αsin ,求αtan解:054>=αsin ,所以α是第一或第二象限角若是第一象限角,则3453==ααtan ,cos若是第二象限角,则3454一一==ααtan ,cos变2:已知)(sin 0>=m m α求αtan 解:由条件10≤<m ,所以当 10<<m 时,α是第一或第二象限角 若是第一象限角时2211mm αm α一一==tan ,cos 若是第二象限角2211mm αm α一一一一tan ,cos ==当1=m 时αtan 不存在 变3:已知)(sin 1≤=m m α,求αtan 解:当11一,=m 时,αtan 不存在 当0=m 时, 0=αtan当α时第一、第四象限角时,21mm α一=tan当α是第二、第三象限角时,21mm α一一=tan一题多解 一题多变三题目:求函数)()(01 x xx x f +=的值域 方法一:判别式法 --设xx y 1+= ,则01yx -=+2x ,由Δ2y =-204≥⇒≥y 当2=y 时,2x -012=+x 1=⇒x , 因此当1=x 时,)()(01x xx x f +=有最小值2,即值域为[)+∞,2方法二:单调性法先判断函数)()(01 x xx x f +=的单调性 任取210x x ,则212121211x x x x x x x f x f )-)(-()(-)(=当2021≤x x 时,即)()(21x f x f ,此时)(x f 在(]10,上时减函数 当212x x 时,)()(21x f x f )(x f 在()+∞,2上是增函数由)(x f 在(]10,上是减函数,)(x f 在()∞,+1上是增函数,知 1=x时,)(x f 有最小值2,即值域为[)+∞,2方法三:配方法 2112+=+=)-()(xx xx x f ,当01=xx -时,1=x ,此时)(x f 有最小值2,即值域为[)+∞,2方法四:基本不等式法)(x f 有最小值2,即值域为[)+∞,2变 题原题:若函数1212++=x ax x f )(的定义域为R,求实数a 的取值范围解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式一:函数)(log )(1222++=x ax x f 的定义域为R,求实数a 的取值范围 解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式二:函数)(log )(1222++=x ax x f 的值域为R,求实数a 的取值范围 解:令=u 122++x ax 能取到所有大于0的实数,则 0=a 时,1+=zx u 能取到所有大于0的实数 0≠a 时,0 a 且Δ1a 004a -≤⇒≥= 4综上10≤≤a一题多解 一题多变四题目:求函数)()(01 x xx x f +=的值域 方法一:判别式法 --设xx y 1+= ,则01yx -=+2x ,由Δ2y =-204≥⇒≥y当2=y 时,2x -012=+x 1=⇒x , 因此当1=x 时,)()(01x xx x f +=有最小值2,即值域为[)+∞,2方法二:单调性法先判断函数)()(01 x xx x f +=的单调性任取210x x ,则212121211x x x x x x x f x f )-)(-()(-)(=当2021≤x x 时,即)()(21x f x f ,此时)(x f 在(]10,上时减函数 当212x x 时,)()(21x f x f )(x f 在()+∞,2上是增函数由)(x f 在(]10,上时减函数,)(x f 在()∞,+1上是增函数,知 1=x时,)(x f 有最小值2,即值域为[)+∞,2方法三:配方法 2112+=+=)-()(xx xx x f ,当01=xx -时,1=x ,此时)(x f 有最小值2,即值域为[)+∞,2方法四:基本不等式法)(x f 有最小值2,即值域为[)+∞,2变 题原题:若函数1212++=x ax x f )(的定义域为R,求实数a 的取值范围解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式一:函数)(log )(1222++=x ax x f 的定义域为R,求实数a 的取值范围 解:由题意得0122 ++x ax 在R 上恒成立,则要求0 a 且Δ1044 a a ⇒=-变式二:函数)(log )(1222++=x ax x f 的值域为R,求实数a 的取值范围 解:令=u 122++x ax 能取到所有大于0的实数,则0=a 时,1+=zx u 能取到所有大于0的实数 0≠a 时,0 a 且Δ1a 004a -≤⇒≥= 4综上10≤≤a一题多解 一题多变五题目:椭圆1162522=+y x 的焦点是21F F 、,椭圆上一点P 满足21PF PF ⊥,下面结论正确的是——————————————————————— AP 点有两个 BP 点有四个 CP 点不一定存在 DP 点一定不存在 解法一:以21F F 为直径构圆,知:圆的半径b c r =<==43,即圆与椭圆不可能有交点;故选D 解法二:由题知124321)(21max 21=⨯=•⨯=∆b F F S F pF ,而在椭圆中:164tan221==∆πb S F PF ,∴不可能成立,1612>故选D解法三:由题意知当p 点在短轴端点处21PF F <最大,设α221=<PF F ,∴<⇒<=,4,143tan παα此时21PF F <为锐角,与题设矛盾;故选D 解法四:设)sin 4,5(θθcon P ,由,21PF PF ⊥知02121=•⇒⊥PF PF PF PF ,而⇒-=⇒=+-=+-=•970sin 16925)sin 4,35)(sin 4,35(22221θθθθθθθcon con con con PF PF 无解,故选D解法五:设θ=∠21F PF ,假设21PF PF ⊥,则26)4sin(26sin 66||||21≤+=+=+πθθθcon PF PF ,而102||||21==+a PF PF即:2610≤,不可能;故选D解法六:=-=--+=-+=<||||2|||264||||236||||2)|||(|||||36||||21212121222121222121PF PF PF PF PF PF PF PF PF PF PF PF PF PF PF F con 025*******)2||||(321||||3222121≠=-=-+≥-PF PF PF PF ,故212190PF PF PF F ⊥∴≠< 不可能;故选D解法七:设),(00y x P 由焦半径知:∴⊥-=-=+=+=21002001,535||,535||PF PF x ex a PF x ex a PF 2212221||||||F F PF PF =+962550251810)535()535(202022020=⇒=⇒=-++⇒x x x x 而在椭圆中5||0≤x 而325||0=x >8,故不符合题意,故选D解法八.设圆方程为:922=+y x椭圆方程为:1162522=+y x两者联立解方程组得: 不可能故圆922=+y x 与椭圆1162522=+y x 无交点即 1PF 不可能垂直2PF 故选D一题多解 一题多变六一变题:课本P110 写出数列}{n a 的前5项:1-111,14n n a a a =-=- 变题:已知函数1()22,[,1]2f x x x =-+∈,设)(x f 的反函数为)(x g y =,)(,1211a g a a ==)(1-n n a g a =,求数列}{n a 的通项公式;解:由题意得,x x g y 211-)(==,1--n n a a 211=1212()323n n a a -∴-=-,令32-n n a b =,则}{n b 是以31为首项,21-为公比的等比数列,故)()-(1-12131≥=n b n n从而,)(23)-(1-n 1-11232≥×+=+=n b a n n n n 二、一题多解已知函数),[,)(+∞∈++=122x xax x x f 1当21=a 时,求函数)(x f 的最小值;-2若对于任意01>+∞∈)(),,[x f x 恒成立,试求实数a 的取值范围, 解:1当21=a 时,222212+≥++=xx x f )(,当且仅当22=x 时取等号 由)()(0>+=k xkx x f 性质可知,)(x f 在),[+∞22上是增函数 ),[+∞∈1x ,所以)(x f 在)∞,[+1是增函数,)(x f 在区间)∞,[+1上的最小值为271=)(f2法一:在区间上)∞,[+1,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立设a x x ++=22y ,),[+∞∈1x 11222-)(y a x a x x ++=++=在)∞,[+1上增 所以1=x 时,3min +=a y ,于是当且仅当03min >+=a y 时,函数0>)(x f 恒成立,故-3>a法二:),[,)(+∞∈++=12x xax x f当0≥a 时,函数)(x f 的值恒为正;当0<a 时,函数)(x f 为增函数,故当1=x 时,3min +=a y ,于是当且仅当03min >+=a y 时,函数0>)(x f 恒成,故-3>a法三:在区间)∞,[+1上,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立 x x a 22- -⇔>恒成立,故a 应大于x x 22- -u =,)∞,[∈+1x 时的最大值-3,所以-3>a一题多解 一题多变七原题::若)()(0112>++=x x x xf ,则=)(x f 分析:用倒数换元解: 令tx xt 11==则, 所以 将t 换成x 得到:变题1:设)(x f 满足关系式,)()(x xf x f 312=+求)(x f 的解析式 解:tx xt 11==则将t 换成x 得到:与原式联立方程组消去)(xf 1得到变题2:已知()()af x f x bx +-=,其中12≠a 试求)(x f 的解析式解:用相反数换元 令,t x x t =-=-代入到原式当中得到: 将t 换成x 得到:与原式联立方程组,得到:变题3:已知22(43)(34)2,af x bf x x a b -+-=≠,试求)(x f 的解析式解:令43x t -=,则232+=t x 将()1 中t 换-t 得到: 与()1联立方程组得到:变题4:已知2()()1,n n af x f x bx a n +-=≠,其中为奇数,求)(x f解:设n n t x t x ==, 代入原式得: 将t 换成—t 得到:n t b t f t af ——=+)()( 与上式联立方程组得到∴ )(x f 的解析式为:()f x ==一题多解题目:设二次函数)(x f 满足,———)()(22x f x f =且函数图象y 轴上的截距为1,被x 轴截的线段长为22,求)(x f 的解析式分析:设二次函数的一般形式)()(02≠++=a c bx ax x f ,然后根据条件求出待定系数a,b,c解法一:设)()(02≠++=a c bx ax x f由,———)()(22x f x f = 得:04=b a — 又2284a ac b =∴— 由题意可知 1=c 解之得:解法二:,———)()(22x f x f =故函数)(x f y =的图象有对称轴2—=x 可设k x a y ++=22)(函数图象与y 轴上的截距为1,则14=+k a又被x 轴截的线段长为22,则2221==d x x Δ—整理得:02=+k a 解之得: 解法三::,———)()(22x f x f =故 函数)(x f y =的图象有对称轴2—=x ,又2221=x x —∴ )(x y =与x 轴的交点为:∴故可设)(222++=x a y一题多解 一题多变八原题 设()x f y =有反函数)(-1x f y =,又)(2+=x f y 与)1-(-1x f y = 互为反函数,则__________)(-)(-1-1=01f f 教学与测试P 77变题 设()x f y =有反函数)(-1x f y =,又)(1+=x f y 的图象与)(-11+=x f y 的图象关于x y =对称(1) 求)(-)(01f f 及)(-)(-1-101f f 的值;(2) 若b a ,均为整数,请用b a ,表示()()f a f b 及)(-)(-1-1b f a f解1因)(-11+=x f y 的反函数是()1-x f y =,从而()11-)(x f x f =+,于是有()11--)(=+x f x f ,令1=x 得-1(0)-)(=f f 1;同样,)(1+=x f y 得反函数为()1--1x f y =,从而()11-)(-1-1x f x f =+,于是,()11--)(-1-1=+x f x f .2 -11)(-)(=++x f x f 2,而()11--)(=+x f x f ,故()12-1)-(-)(=+x f x f ,即()22--)(=+x f x f , …()n x f n x f --)(=+,从而()[]()a b a f a b a f b f a f --)-(-)(=+=.同理,()-1-1()f a f b b a -=-.一题多解1.函数2(),(1)(3)f x x bx c f f =++-=,则 A (1)(1)f c f >>- B (1)(1)f c f <<- C (1)(1)c f f >-> D (1)(1)c f f <-<解法1. 由(1)(3)f f -=知()x f 的图象关于1=x 对称,得2b =-而22(1)1(2)11,(1)(-1)(2)(1)3f c c f c c =+-•+=--=+-•-+=+,且31c c c +>>-,因此(1)(1)f c f <<-.解法2.由(1)(3)f f -=知()x f 的图象关于1=x 对称,而)(0f c =,而()x f 在-1,1上递减,易得答案为B .y-1 0 1x一题多解 一题多变九姜忠杰变 题原题:若在区间y =2a -ax -2x 在区间)3-,1∞-(是减函数,则a 的取值范围是多少变1:若函数y =2a -ax -2x 在)3-,1∞-(上是减函数,则a 的取值范围是多少变2、若函数y =)a -ax -(log 2221x 在)3-,1-(∞上是增函数,则a 的取值范围是多少变3、若函数y =)a -ax -(log 2221x 在)3-,1∞-(上是增函数,且函数的值域为R,则a 的取值范围是多少解: 函数2a -ax -2x y =的减区间为]-2a ,(∞,∴⊆)3-,1∞-(]-2a,(∞∴),∞32-2[+ -变1、设2a -ax -2x u =,则u 在)3-,1∞-(为减函数,且在)3-,1∞-(,u ≥0 所以有3-12a ≤且u 3-10≥,∴a 的取值范围是],[)51)(1-3()5-1)(1-(223+变2:设2a -ax -2x u =,则u 在为减函数,且在]3-,1∞-(,u ≥0- 所以有3-12a ≤且u 3-10≥,∴a 的取值范围是],[)51)(1-3()5-1)(1-(223+变3:设2a -ax -2x u =,则u 在)3-,1∞-(减区间,u 在)3-,1∞-(取到一切正实数3-12a ≤,01=)3-(u ,所以=a 23)5-1)(1-(或2)51)(1-3(+一题多解:设10=+a a lg ,1010=+b b ,求b a +的值;解法一构造函数:设x x x f lg )(+=,则)(lg )(b b b b f b a f 1010101010=+=+==,由于)(x f 在),(+∞0上是单调递增函数,所以b a 10=,故1010=+=+b b a b ; 解法二图象法因为a 是方程10=+x x lg 的一个根,也就是方程x x -lg 10=的一个根b 是方程1010=+x x 的一个根,也就是方程x -1010=x 的一个根令x x g lg )(=,x x h 10=)(,x x -)(10=Φ,在同一坐标系中作出他们的图象,如图所示:a 是方程)()(x x g Φ=的根,即图中OA=ab 是方程)()(x x h Φ=的根,即图中OB=b易得OA+OB=10,所以10=+b a解法三:方程10=+x x lg ,1010=+x x 的根为a ,b 由1010=+x x ,得x x -1010=,∴x)-lg(10=x ,又10=+x x lg 10lgx x)-lg(=+∴10, 1010x )-x (10=即,02=+101010x -x 即一题多解 一题多变十课本P 102 证明:222221212122121)()(≤)(,)()(;)()()(,)(x f x f x x f b ax x x f x f x f x x f b ax x f ++++=+=++=则若则)若(变题:1、如图所示,),,,)((4321=i x f i 是定义在0,1上的四个函数,其中满足性质:“对0,1中的任意的21x x ,,任意1212[0,1],[(1)]()(1)()f x x f x f x λλλλλ∈+-≤+-恒成立”的只有 AA 、 )(),(31x f x fB 、)(2x fC 、)(),(32x f x fD 、)(4x f变题2、定义在R 上的函数)(x f 满足:如果对于任意R x x ∈21,都有222121)()(≤)(x f x f x x f ++ 则称函数)(x f 是R 上的凹函数;已知二次函数),()(02≠∈+=a R a x ax x f 1求证:当0>a 时,函数)(x f 是凹函数;2如果],[10∈x 时,1≤|)(|x f ,试求实数a 的取值范围; 1证明:略2实数a 的取值范围是[2,0)- 二、一题多解不查表计算:5235233lg lg lg lg ++解法一:原式=3lg2lg55)lg lg2lg5-2lg )(lg (lg 22+++52 =523552222lg lg lg lg lg -lg ++ =5522222lg lg lg lg ++ =1522=+)lg (lg解法二:原式=322(lg 2lg5)3lg 2lg5-3lg 2lg 53lg 2lg5+-+=1-3lg 2lg5(lg 2lg51)+- =1解法三:原式=52352523523lg lg )lg (lg lg lg -)lg (lg +++=5235231lg lg lg lg -+ =1解法四:原式=52352352352352352222233lg lg lg lg -lg lg -lg lg lg lg lg lg ++++=)-lg (lg lg lg -)lg (lg 152523523++ =1解法五:原式=15235233×++lg lg lg lg=)lg (lg lg lg lg lg 525235233+×++ =352)lg (lg + =1一题多解 一题多变十一一题多解- 1. 已知212x x f -)(=-1)<x ,求-12()3f -的值解法1 先求反函数 由221xy =-得221y x =- ∴ y2-1-=x 且0<y故原函数的反函数是x2-1-)(1-=x f )(0<x 解法2从互为反函数的函数的关系看 令32-x -2=12解得2±=x 即 -2)32-(1-=f变题2. 已知)(x f 对于任意实数y x .满足)()()(y f x f y x f +=+,当0>x 时,0<)(x f (1) 求证)-(-)(x f x f = (2) 判断)(x f 的单调性证明 1令,0==y x 得)()()(000f f f += -令-y =x ,得0-x)()()(=+=f x f f 02设21x x <,则)()-()()]-([)(11211212x f x x f x f x x x f x f <+=+= ∴ )(x f 在R 上是单调函数变题 1. 已知函数是定义R 在上的增函数,且满足-)()(x f yxf =)(y f(1) 求)(1f 的值(2) 若,)(16=f 解不等式215<+)(-)(xf x f 解 1 令1==y x ,得∴ 01=)(f -(3) 在)(-)()(y f x f yx f =中,令61==y x ,得 从而261636==)(-)()(f f f又原不等式可化为 )()]([365f x x f <+, 且)(x f 是),(+∞0上的增函数,∴ 原不等式等价于又 0>x 05>+x 解得 40<<x∴ 原不等式的解集为0,4一题多解 一题多变十二考查知识点:函数的对称中心原题:函数)lg(12++=x x y 的图象关于原点对称;解:该函数定义域为R,且))-(-lg()()-(12++=+x x x f x f +)lg(12++x x =))(-lg(1122++++x x x x =01=lg)(-)-(x f x f =∴,∴该函数图像关于原点对称变题1:已知函数)(x f y =满足)(-)-(11+=+x f x f 则)(x f y =的图象的关于),(01对称解: )(-)-(11+=+x f x f ∴)(1+=x f y 为奇函数,即)(1+=x f y 的图象关于原点),(00对称,故)(x f y =的图象关于),(01对称;变题2:已知函数)(x f y =满足2=+)-()(x f x f ,则函数)(x f y =的图象关于),(10对称解:由2=+)-()(x f x f 得,∴]-)([--)-(11x f x f =,)(x f y =-1为奇函数,即)(x f y =-1的图象关于0,0对称,∴)(x f y =的图象关于),(10对称变题3:已知函数)(x f y =满足22=++)()(x f x f ,则)(x f y =的图象关于1,1对称解:令1-t x =,则t x --1=,故由22=++)()(x f x f 得211=++)-()(t f t f ,即)(x f 满足211=++)-()(x f x f ,即]-)([--)-(1111+=+x f x f ,∴11-)(+=x f y 的图象关于原点0,0对称,故)(x f y =的图象关于1,1对称;结论:若函数)(x f y =满足b x c f x a f =++)-()(,则)(x f y =的图象关于()22bc a ,+对称;变题4:已知244+=x xx f )(求证:111=+)-()(x f x f 2指出该函数图象的对称中心并说明理由;3求)()()(100110001000210001f f f +++ 的值;1证明:1242244244244111=+++=+++=+xx x x x x x x f x f --)-()(,得证;- 2解:该函数图象的对称中心为),(2121,由11=+)-()(x f x f 得12121=++)-()(x f x f 即]-)([--)-(21212121+=+x f x f ,∴2121-)(+=x f y 的图象关于原点中心对称,故)(x f y =的图象关于),(2121对称; 3解:11=+)-()(x f x f ,故11001100010011=+)()(f f ,1100199910012=+)()(f f ,……,∴ )()()(100110001000210001f f f +++ =500变题5:求证:二次函数)()(02≠++=a c bx ax x f 的图象没有对称中心;证明:假设),(n m 是)()(02≠++=a c bx ax x f 的图象的对称中心,则对任意R x ∈,都有n x m f x m f 2=++)-()(,即n c x m b x m a c x m b x m a 222=+++++++)-()-()()(恒成立,即有n c bm am ax =+++22恒成立,也就是0=a 且02=++n c bm am -与0≠a 矛盾 所以)()(02≠++=a c bx ax x f 的图象没有对称中心;一题多解 一题多变十三题目:已知函数[)∞∈+++=,)(122x xax x x f 若对任意[)01)>(,,x f x ∞+∈恒成立,试求实数a 的取值范围;解法一:在区间[)∞+,1上,022>++=xax x x f )(恒成立022>++⇔a x x 恒成立,设a x x y ++=22在[)∞+,1递增 ,∴当x=1时a y +=3min ,于是当且仅当03>+=a y min 时,函数恒成立,故 a>—3;解法二:[)∞+∈++=,,)(12x xax x f 当a 0≥的值恒为正,当a<0时,函数)(x f 为增函数故当x=1时a x f +=3)(min 于是当且仅当3+a>时恒成立, 故 a>—3;解法三:在区间[)∞+,1上xax x x f ++=22)(恒成立022>++⇔a x x 恒成立x x a 22——>⇔恒成立,故a 应大于[)∞+∈=,,——122x x x u 时的最大值—3, ()112++>∴x a — 当x=1时,取得最大值 —3 。

相关文档
最新文档