方程的根和函数的零点说课稿

合集下载

高中数学《方程的根与函数的零点》说课稿

高中数学《方程的根与函数的零点》说课稿

高中数学《方程的根与函数的零点》说课稿:老师聘请考试《说课》学问点|考点汇总恭敬的各位考官,大家好,我是今日的X号考生,今日我说课的题目是《方程的根与函数的零点》。

教学理论认为,同学是学习的主体,老师是学习的组织者和引导者。

依据这一教学理念,本节课我将从教材分析、学情分析、教学过程等几个方面来加以解释。

一、说教材首先说说我对教材的理解。

本节课选自人教A版高中数学必修1第三章第1节。

结合同学之前所学基本初等函数的图象及性质,引入本节课的学习,不仅能让同学感触到学问之间的联系,同时也为后面学习"用二分法求方程的近似解'奠定基础。

二、说学情下面谈谈同学的状况。

之前函数与方程的大量学习为本节课打下了良好的基础,但同学并未考虑过如何推断随意一个方程是否有解。

因此在教学过程中,我会注重对同学的启发引导,引导同学从详细到抽象,从特别到普通,一步步得出结果。

三、说教学目标按照以上对教材和学情的分析,我设计了如下教学目标:(一)学问与技能理解方程的根与函数零点之间的关系,控制函数零点存在的判定办法,会推断函数零点的个数。

(二)过程与办法经受观看、思量、分析、猜测、验证的过程,提升抽象和概括能力;体验从特别到普通的认知过程,进展函数与方程思想。

(三)情感、看法与价值观感触数学学问前后间的联系,并逐步养成擅长探究的思维品质。

四、说教学重难点结合教学目标确实立,我设置本节课教学重点为:函数零点与方程的根之间的联系,利用函数性质判定零点存在。

教学难点为:利用函数性质判定零点存在的探究及应用。

五、说教法和学法为了实现教学目标,突破教学重难点,本节课我采纳启发式、探究式教学办法,意在帮忙同学通过观看,自己动手,从实践中获得学问。

六、说教学过程下面我将重点谈谈我的教学过程。

(一)引入新课首先是导入环节。

我会带领同学复习到目前为止所学过的函数都有哪些。

按照同学的举例我会提问:若将函数改写成方程,是否都可以求解?如若不能,能否推断出该方程是否有解?同学很容易发觉,对于复杂方程或未接触过的方程,是没有方法求解的,由此引发认知矛盾,进而进入本节课的学习。

方程的根与函数的零点教案 说课稿 教学设计

方程的根与函数的零点教案 说课稿 教学设计

方程的根与函数的零点教学目标知识与技能1.结合方程根的几何意义,理解函数零点的定义;2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.过程与方法1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力.情感、态度与价值观1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯;3.使学生感受学习、探索发现的乐趣与成功感.教学重点与难点教学重点:零点的概念及零点存在性的判定.教学难点:探究判断函数的零点个数和所在区间的方法.教学的方法与手段【环节一:揭示意义,明确目标】揭示本章意义,指明课节目标教师活动:用屏幕显示方程的根与函数的零点教师活动:这节课我们来学习第三章函数的应用.通过第二章的学习,我们已经认识了指数函数、对数函数、幂函数、分段函数等函数的图象和性质,而这一章我们就要运用函数思想,建立函数模型,去解决现实生活中的一些简单问题.为此,我们还要做一些基本的知识储备.方程的根,我们在初中已经学习过了,而我们在初中研究的“方程的根”只是侧重“数”的一面来研究,那么,我们这节课就主要从“形”的角度去研究“方程的根与函数零点的关系”.教师活动:板书标题(方程的根与函数的零点).【环节二:巧设疑云,轻松渗透】设置问题情境,渗透数学思想教师活动:请同学们思考这个问题.用屏幕显示判断下列方程是否有实根,有几个实根?(1)x2-2x-3=0;(2)ln x+2x-6=0.学生活动:回答,思考解法.教师活动:第二个方程我们不会解怎么办?你是如何思考的?有什么想法?我们可以考虑将复杂问题简单化,将未知问题已知化,通过对第一个问题的研究,进而来解决第二个问题.对于第一个问题大家都习惯性地用代数的方法去解决,我们应该打破思维定势,假如第一个方程你不会解,也不会应用判别式,你要怎样判断其实根个数呢?学生活动:思考作答.教师活动:用屏幕显示函数y=x2-2x-3的图象.学生活动:观察图象,思考作答.教师活动:我们来认真地对比一下.用屏幕显示表格,让学生填写x2-2x-3=0的实数根和函数图象与x轴的交点.学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论.教师活动:我们就把使方程成立的实数x称为函数的零点.【环节三:形成概念,升华认知】引入零点定义,确认等价关系教师活动:这是我们本节课的第一个知识点.板书(一、函数零点的定义:对于函数y =f(x),使方程f(x)=0的实数x叫做函数y=f(x)的零点).教师活动:我们可不可以这样认为,零点就是使函数值为0的点?学生活动:对比定义,思考作答.教师活动:结合函数零点的定义和我们刚才的探究过程,你认为方程的根与函数的零点究竟是什么关系?学生活动:思考作答.教师活动:这是我们本节课的第二个知识点.板书(二、方程的根与函数零点的等价关系).教师活动:检验一下看大家是否真正理解了这种关系.如果已知函数y=f(x)有零点,你怎样理解它?学生活动:思考作答.教师活动:对于函数y=f(x)有零点,从“数”的角度理解,就是方程f(x)=0有实根,从“形”的角度理解,就是图象与x轴有交点.从我们刚才的探究过程中,我们知道,方程f(x)=0有实根和图象与x轴有交点也是等价的关系.所以函数零点实际上是方程f(x)=0有实根和图象与x轴有交点的一个统一体.在屏幕上显示:教师活动:下面就检验一下大家的实际应用能力.【环节四:应用思想,小试牛刀】数学思想应用,基础知识强化教师活动:用屏幕显示求下列函数的零点.(1)y=3x;(2)y=log2x;(3)y=1x;(4)y=(4)(1),4,(4)(6), 4.x x xx x x-+<⎧⎨---≥⎩学生活动:由四位同学分别回答他们确定零点的方法.画图象时要求用语言描述4个图象的画法.教师活动:根据学生的描述,在黑板上作出图象(在接下来探究零点存在性定理时,图象会成为同学们思考问题的很好的参考).教师活动:我们已经学习了函数零点的定义,还学习了方程的根与函数零点的等价关系,在这些知识的探究发现中,我们也有了一些收获,那我们回过头来看看能不能解决ln x+2x -6=0的根的存在性问题?学生活动:可受到化归思想的启发应用数形结合进行求解.教师活动:用屏幕显示学生所论述的解题过程.这种解法充分运用了我们前面的解题思想,将未知问题转化成已知问题,将一个图象不会画的函数转化成了两个图象都会画的函数,利用两个函数图象的交点解决实根存在性问题.看来我们的探究过程是非常有价值的.教师活动:如果不转化,这个问题就真的解决不了吗?现在最棘手的问题是y=ln x+2x-6的图象不会画,那我们能不能不画图象就判断出零点的存在呢?【环节五:探究新知,思形想数】探究图象本质,数形转化解疑教师活动:我们看到,当函数图象穿过x轴时,图象就与x轴产生了交点,图象穿过x 轴这是一种几何现象,那么如何用代数形式来描述呢?用屏幕显示y=x2-2x-3的函数图象,多次播放抛物线穿过x轴的画面.学生活动:通过观察图象,得出函数零点的左右两侧函数值异号的结论.教师活动:好!我们明确一下这个结论,函数y=f(x)具备什么条件时,能在区间(a,b)上存在零点?学生活动:得出f(a)·f(b)<0的结论.教师活动:若f(a)·f(b)<0,函数y=f(x)在区间(a,b)上就存在零点吗?学生活动:可从黑板上的图象中受到启发,得出只有在[a,b]上连续不断的函数,在满足f(a)·f(b)<0的条件时,才会存在零点的结论.【环节六:归纳定理,深刻理解】初识定理表象,深入理解实质教师活动:其实同学们无形之中已经说出了我们数学中的一个重要定理,那就是零点存在性定理.这是我们本节课的第三个知识点.板书(三、零点存在性定理).教师活动:用屏幕显示(函数零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.)教师活动:这个定理比较长,找个同学给大家读一下,让大家更好地体会定理的内容.学生活动:读出定理.教师活动:大家注意到了吗,定理中,开始时是在闭区间[a,b]上连续,结果推出时却是在开区间(a,b)上存在零点.你怎样理解这种差异?学生活动:思考作答.教师活动:虽然我们已经得到了零点存在性定理,但同学们真的那么坦然吗?结合黑板上的图象,再结合定理的叙述形式,你对定理的内容可有疑问?学生活动:通过观察黑板上的板书图象,大致说出以下问题:1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则f(x)在区间(a,b)内会是只有一个零点吗?2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)>0,则f(x)在区间(a,b)内就一定没有零点吗?3.在什么条件下,函数y=f(x)在区间(a,b)上可存在唯一零点?教师活动:那我们就来解决一下这些问题.学生活动:通过黑板上的图象举出反例,得出结论.1.若函数y=f(x)在区间[a,b]上连续,且f(a)·f(b)<0,则只能确定f(x)在区间(a,b)内有零点,有几个不一定.2.若函数y=f(x)在区间[a,b]上连续,且f(a)·f (b)>0,则f(x)在区间(a,b)内也可能有零点.3.在零点存在性定理的条件下,如果函数再具有单调性,函数y=f(x)在区间(a,b)上可存在唯一零点.【环节七:应用所学,答疑解惑】把握理论实质,解决初始问题教师活动:现在我们不用画出图象也能判断函数零点是否存在,存在几个了.那解决ln x+2x-6=0的根的存在性问题应该是游刃有余了.用屏幕显示学生活动:【环节八:归纳总结,梳理提升】总结基础知识,提升解题意识教师活动:本节课的知识点已经在黑板上呈现出来了,但最重要的,也是贯穿本节课始终,起到灵魂作用的却是三大数学思想,即化归与转化的数学思想,数形结合的数学思想,函数与方程的数学思想.数学思想才是数学的灵魂所在,也是数学的魅力所在,对我们解决问题起着绝对的指导作用.愿我们每个同学在今后的学习中体味、感悟、应用、升华!。

方程的根与函数的零点说课课件

方程的根与函数的零点说课课件

y
+c(a≠0)的图象 x1 0
x2 x
0 x1
x
0
x
让函学数生的图自象主得出结论:
二次与 函x 轴数的图交点象与x轴(x1,交0) ,点(x2,的0) 横坐标(x1,0就) 是相应方没有程交的点 实数根。
启发引导,形成概念
概念
1、函数零点的概念: 对于函数y=f(x),我们把使f(x)=0
的实数x叫做函数y=f(x)的零点。
本节课的主要教 学内容是函数零点 的概念和函数零点 存在的判定方法, 这又是学习下一节 “用二分法求方程 近似解” 的基础。
学情分析
学生具备的
学生缺乏的
(1)基本初等函数的图象 和性质; (2)初步了解一元二次方 程的根和相应二次函数 图像与x 轴的关系; (3)初步具备将“数”与 “形”相结合及转化的 意识。
原理
零点的存在性原理:如果函数y=f(x)
在区间[a,b]上的图象是连续不断的一条曲线,并 且有f(a)•f(b)<0,那么,函数y=f(x)在区间(a,b) 内有零点,即存在c ∈(a,b),使得f(c)=0,这个c 也就是方程f(x)=0 的根.
巩固深化,发展思维
回到引入
例1.求函数f (x) = ln x + 2x - 6的零点的个数.
[0.5 , 1.5] f(0.5)<0 f(1.5)>0 f(0.5)·f(1.5)<0
1
(0.5 , 1.5) x=1 lgx=0的一个根.
.
1.
0.
2
x
设计意图:
通过观察两个 具体的函数图 像,进一步说 明函数零点存 在的判定方法. 由特殊到一般, 由直观到抽象, 符合学生的认 知特点,从而

5号选手 说课比赛 方程的根与函数的零点 说课稿

5号选手 说课比赛 方程的根与函数的零点 说课稿
(2)理解函数零点存在的判定条件。
四 学情分析
本课在必修1中的最后一章内容,学生已经学习了函数的概念,对初 等函数的性质,图像已经有了一个比较系统的认识与理解。特别是对一 元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经 有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用, 但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察, 归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多 的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环 紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位。
设计意图:1 培养学生的观察及归纳能力。2.培养学生的数形结合思想。
y
三 探索研究
ቤተ መጻሕፍቲ ባይዱ
归纳总结
定理辨析:判断正误 (1) f(a)· f(b)<0则函数y=f(x)在区间(a,b)内有零点。 (2) 函数y=f(x)在区间(a,b)内有零点f(a)· f(b)<0。 (3) f(a)· f(b)<0 函数y=f(x)在区间(a,b)内只有一个零点。 y
多 媒 体 演 示
(2) ……
设计意图:画龙点睛的作用。

课堂小结,布置作业。
课堂小结: 1.知识点小结:一个定义和四个结论。 2.思想方法小结:数形结合(以数解形以形解数)。
设计意图:通过师生共同反思,优化学 生的认知结构,把课堂教学传授的知识 较快转化为学生的知识. 进一步培养学 生的归纳概括能力。
二. 本节课涉及多种思想方法,是数学教学走向本质的一大尝试,也是 在实际教学中需要不断思考的一个课题.
教 材 分 析
目 标 分 析
重 难 点 分 析
学 情 分 析

说课比赛 方程的根与函数的零点 说课稿

说课比赛 方程的根与函数的零点 说课稿

意图:一方面通过选择题促进 学生对定理的活用,另一方面 为突破后面的例题铺设台阶.
综合应用,拓展思维 6、例题讲解
零点存在性定理的应用: 例2 求函数f(x)=lnx+2x- 6的零点的个数,并确定 零点所在的区间[n,n+1](n∈Z)
x f(x) 1 2 3 4 5 6 7
y 10 8 f(x)=lnx+2x- 6 6 4 2 x
—— 说课过程 ——
为学习 二分法 打基础 函数零点 与方程根 的关系 函数方程 思想 函数零点 存在性 定理 体现认识 规律
函数零点 概念
★ 教学重点:了解函数零点概念;掌握函数零点存在性定理
1
学生具备必要的知识与心理基础 基本初等函数→看图识图能力 函数用于方程→心理情感基础 学生缺乏函数与方程联系的观点 对函数的不适→孤立函数知识 建立联系观点→树立应用意识 直观体验与准确理解定理的矛盾
辨析讨论,明确概念 3、函数零点概念及其与对应方程根的关系
函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点 零点.
函数零点的定义: 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点 零点. 问题4:函数的零点与方程的根有什么联系和区别? 问题4:函数的零点与方程的根有什么联系和区别?
y= lnx
O 1234 x
由于函数f(x)在定义域(0,+∞)内是增函数, O 123456 所以它仅有一个零点. -2
-4
y=-2x +6
意图:通过例题分析,能根据零点存在性定理,使用多种方法 确定零点所在的区间,并且结合函数性质,判断零点个数.
总结整理,提高认识 一个关系:函数零点与方程根的关系: 函数 方程

方程的根与函数零点的说课稿

方程的根与函数零点的说课稿

方程的根与函数零点的说课稿(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--方程的根与函数零点的说课稿方程的根与函数零点的说课稿“方程的根与函数的零点”说课稿各位老师,你们好!我说课的课题是“方程的根与函数的零点”说课内容分为六个部分,首先对教材进行简要分析一、教材分析方程的根与函数的零点是普通高中课程标准实验教科书必修数学1数学(A版)第三章第一节第一课时的内容,学生学习了基本初等函数的图象和性质以及一元二次方程根的求解方法为本节奠定了基础,本节课有着承上启下的作用,且承载建立函数与方程数学思想的任务;同时本课的内容将为下一节用二分法求方程的近似解提供了理论依据。

方程的根与函数的零点在高考中一般以选择题或填空题的形式出现,且一般与其他知识点结合起来进行考查,像20xx年全国及各省高考考查函数与导数的题目中大约有5%涉及到函数的零点,所以本节是函数的应用内容中的基础及重点之一。

二、教学目标根据上述教材分析,结合课程标准的要求,本节课的教学目标为以下三个方面:1.知识与技能目标理解函数零点的概念;领会函数零点与相应方程的关系,掌握零点的存在条件;掌握函数在某个区间上存在零点的判定方法。

2.过程与方法目标让学生经历探究函数零点与方程根的联系和函数在某区间存在零点的判别方法,使学生领悟方程与函数的区别与联系,进一步体会数形结合方法。

3.情感态度与价值观目标通过探究过程逐步形成用函数处理问题的意识。

三、教学重点、难点为了实现上述教学目标,根据上述教材分析,结合内容特点,本节课的教学重点是函数的零点与方程的根之间的联系,函数零点在某区间存在性的判定方法重点函数的零点与方程的根之间的联系,函数零点在某区间存在性的判定方法由于高中生年龄特点及现阶段的认知能力,通过函数图象的直观认识得到其中所蕴含的某种性质具有一定的难度,所以本课的教学难点是函数在某区间存在零点的判别方法。

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿各位评委老师,各位同仁,下午好!今天我说课的题目是《方程的根与函数的零点》,选自人教版《普通高中课程标准实验教科书》A 版必修1 第三章第一节第一课时。

下面我就教材、教法、学法、教学过程四个方面进行说课。

1 说教材1.1 教材分析。

函数与方程是中学数学的重要内容,它既是初等数学的基础,又是初等数学与高等数学的连接纽带。

无论是数学条件自身的理论研究,还是在实际生活中的应用,函数与方程都有着不可替代的作用。

从更高层次上来讲,函数的思想贯穿整个高中数学内容的始终,因此本节内容是高中数学教学中的重中之重。

1.2 目标分析。

根据上述我对教材的分析,同时考虑到高一学生现有的认知结构和认知心理特征,制定如下教学目标:1.2.1 知识与技能:①了解方程的根与函数的零点之间的关系;②结合函数图象和性质学会判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法。

1.2.2 过程与方法:①探究方程的根与函数的零点的关系;②发现在某区间上的图象连续的函数存在零点的判定方法。

1.2.3 情感、态度与价值观:①培养学生主动参与、积极探究的主体意识;②体会数形结合的数学思想,由特殊到一般的归纳思想,培养学生用新的数学语言对原有的数学现象加以概括和解决的能力。

③培养学生的辩证思维以及分析问题解决问题的能力。

1.3 重点、难点:重点:是判定函数零点存在及其个数的方法。

难点:是探究发现函数零点的存在性,利用函数单调性判断函数零点的个数。

2 说教法基于本节课内容的设计和高一学生的认知心理特征,坚持“学生主体,教师主导” 的教学原则。

本节课我借助多媒体和几何画板软件,采用“启发———探究———讨论”式教学模式,充分发挥教师的主导作用,让学生真正成为教学活动的主体。

在教学过程中,多次创设问题情境,使学生对问题加以置疑、思索,想办法解决问题,通过教师的启发点拨,在积极的双边互动中,使学生达到了解疑答难的目的。

【说课教案】方程的根与函数的零点说课(教案)

【说课教案】方程的根与函数的零点说课(教案)

《方程的根与函数的零点》说课稿老师们:您们好!我说课的课题是《方程的根与函数的零点》。

教材依据高中数学必修(1)第三章函数的应用第一节函数与方程第一课时《方程的根与函数的零点》。

下面我将从教材分析、学情分析、目标分析、教法分析、教学过程这五个过程进行说课。

一、教材分析函数与方程这一章属于新课标中新增的内容,是近年来高考关注的热点。

给出函数零点概念的目的是把函数与方程联系起来,把所有的中学代数问题都统一到函数的思想指导之下。

另外本节课内容是在学习了函数的概念和基本的初等函数的大背景下展开的,同时又是“用二分法求方程的近似解”的理论基础,可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节非常重要。

二、学情分析学生具备的(1)了解基本初等函数的图象和性质(2)会求简单方程的根(3)掌握了函数图象的一般画法(4)具备一定的看图识图的能力学生欠缺的(1)对函数零点概念的本质理解以及函数应用的意识(2)函数与方程的联系以及函数与方程的转换意识依据以上教材与学情分析,并结合学生的认知基础制定如下教学目标以及教学重难点:三、教学目标(1)知识与技能目标①了解函数零点的概念②理解函数零点存在性定理③掌握零点存在的判定方法(2)过程与方法目标①经历“类比—归纳—应用”的过程②感悟由具体到抽象的研究方法②培养学生的归纳概括能力。

(3)情感与价值观目标①体会“形”与“数”、“动”与“静”、②“整体”与“局部”的内在联系教学重点:①掌握函数零点的概念②理解零点与方程根的联系③掌握函数零点存在性定理教学难点:准确理解零点存在性定理四、教法和学法“授人以鱼,不如授人以渔” ,因此我以培养学生探究精神为出发点,着眼于知识的形成和发展,注重学生的学习体验,采用“启发—探究—讨论”教学模式,注重由特殊到一般的直观归纳;重视对概念的准确理解;精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,给不同层次的学生提供思考、创造、表现和成功的舞台。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方程的根和函数的零点说课稿
《方程的根与函数的零点》说课稿
博罗县博师高级中学张雪玲
尊敬的领导、专家评委、老师你们好!
今天我要进行说课的课题是高中数学必修一3.1.1《方程的根和函数的零点》。

我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。

恳请在座的专家评委批评指正。

一、教材分析
1、教材的地位和作用
方程的根与函数的零点是新课程中新增的内容,选自人教版《普通高中课程标准实验教科书》A版必修1第三章第一节
学生已经比较系统的学习了函数的概念,性质,图像及相关的初等函数模型,本节内容能把函数的图像与方程的根能更好的结合来,使数学中的数与形联系在一起。

为“二分法求方程的近似解”以及之后知识的学习做好一个铺垫作用
2、教材重、难点
重点:零点的概念及存在性的判定。

难点(1)理解函数的零点就是方程的根。

(2)理解函数零点存在的判定条件
疑点:数形结合
二、教学目标
(一)认知目标:
1.理解函数的零点与方程的根的联系.
2.理解并会用零点存在定理判断函数的零点.
(二)能力目标:
体会数形结合思想,转化思想以及函数与方程思想的意义和价值,培养学生自主发现、探究实践的能力.
(三)情感目标:
培养学生锲而不舍的探索精神和严密思考的良好学习习惯。

三、教法、学法分析
本节课采用的是问题导学、数学探究的教学方式:通过问题引导、师生互动,并辅以多媒体教学手段,创设问题情景,学生自主探究方程的根和函数的关系,函数零点概念,判断特定区间的零点存在情况。

1、教学方式体现了以学生为主的教学理念
2、创设贴近学生生活的情境,激发兴趣,让学生在活动中体会数学思想本节课开始,老师从学生解决实际问题中引出课题,通过这样来创设情境,不仅对学生产生很强的吸引力,学生也在思考的过程中体会方程的根和函数的零点关系的思想。

通过分步提问,启发得出求方程的根和数形结合,分散难点。

四、教学过程分析
具体的思路如下:
(一)创问题1、求方程0322=--x x 的根。

2、求函数 322--=x x y 与x 轴交点的横坐标。

设计意图:从熟悉的二次函数入手,对函数图像与方程的根的关系有初步的认识,从简单入手顺应学生的认知结构,调动学生的知识储备,观察这两者的关系,引出函数零点的概念设情景,揭示课题
1、提出问题:一元二次方程a x 2+bx+c=0 (a ≠0)的根与二次函数
y=a x 2+bx+c(a ≠0)的图象有什么关系?
2.先来观察几个具体的一元二次方程的根及其相应的二次函数的图象:(用投影仪给出)
①方程0322=--x x 与函数322--=x x y ②方程0122=+-x x 与函数122+-=x x y
③方程0322=+-x x 与函数322+-=x x y
1.师:引导学生解方程,画函数图象,分析方程的根与图象和x 轴交点
坐标的关系,引出零点的概念.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行
交流.
师:上述结论推广到一般的一元二次方程和二次函数又怎样?
方程ax 2 +bx+c=0(a>0)的根
函数y= ax 2 +bx
+c(a>0)的图象
判别式△=b 2-4ac
△>0
△=0
△<0函数的图象与x 轴交点
有两个相等的实数根x 1 = x 2没有实数根
x
y
x 1x 20
x
y
0x 1x
y
(x 1,0) , (x 2,0)(x 1,0)没有交点
两个不相等
的实数根x 1、x 2推广:
若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x 轴交点的关系,上述结论是否仍然成立?设计意图:1 从特殊到一般的思想。

2 培养学生的归纳能力。


归纳推广技能演练
(二)互动交流研讨新知
函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数
)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点.
函数零点的求法:求函数)(x f y =的零点:
①(代数法)求方程0)(=x f 的实数根;
②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点.
练习1 求下列函数的零点. (1)f(x)=2x-3 (2)f(x)=Lnx-1 引出新问题
问3.零点存在性的探索.
(Ⅰ)观察二次函数32)(2--=x x x f 的图象:
① 在区间]1,2[-上有零点______;=-)2(f _______,=)1(f _______,
)2(-f ·)1(f _____0(<或>=).
② 在区间]4,2[上有零点______;)2(f ·)4(f ____0(<或>
=).(Ⅱ)观察下面函数)(x f y =的图象
① 在区间],[b a 上______(有/无)零点;)(a f ·)(b f _____0(<或>=).② 在区间],[c b 上______(有/无)零点;)(b f ·)(c f _____0(<或>=).③ 在区间],[d c 上______(有/无)零点;)(c f ·)(d f _____0(<或>=).
设计意图
四、教学过程
定理的发现过程体现了数形结合的思想和转化的思想。

()y f x =[],a b 如果函数在区间上的图象是连续不断的一条曲线,函数零点函数图象
端点处函数值符号
并且有()()0f a f b ?<,那么,函数()y f x =在区间(),a b 内有零点零点存在定理
即存在(),c a b ∈,使得()0f c =. 这个c 也就是方程()0f x =的根。

(三)、巩固深化,发展思维
(1)f(a)·f(b)<0则函数y=f(x)在区间(a,b)内有零点。

(2)函数y=f(x)在区间(a,b)内有零点f(a)·f(b)<0。

(3)f(a)·f(b)<0 函数y=f(x)在区间(a,b)内只有一个零点。

2
-2
-4-6
-8
-10
-5
x 1
a
b
a
b
a
b
三探索研究归纳总结
设计意图:强调函数零点存在定理的三个注意点:1 函数是连续的。

2 定理不可逆。

3 至少只存在一个零点。

定理辨析:判断正误0
y
x
x y
y
x
(四)、归纳整理,整体认识
1.请学生回顾本节课所学知识内容有哪些,所涉及到的主要数学思想又有哪些;
2.在本节课的学习过程中,还有哪些不太明白的地方,请向老师提出。

3、课后作业
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

相关文档
最新文档