如何采用变频器控制恒压供水的高压电动机

如何采用变频器控制恒压供水的高压电动机
如何采用变频器控制恒压供水的高压电动机

高压变频器在热电厂锅炉恒压供水上的应用

High voltage inverter power plant boiler in the application of Water Supply

山东玲珑集团李建勋

深圳市微能科技有限公司欧荣华摘要:本文阐述了高压变频器在热电厂锅炉给水中的应用。利用变频系统自带的PID功能结合压力变送器实现闭环控制,为恒压供水提供一种可行的方案。文中所示的数据表明锅炉给水泵的高压电机的变频节能改造是可行的。

Abstract:In this paper explained the high voltage inverter in the power plant boiler water supply applications. Used` inverter system comes with the features of the PID closed-loop control to achieve pressure transmitter for Water Supply to provided with a viable option. The data in the text showed that the high-voltage boiler water supply pump motor’s frequency energy sawing modify is feasible.

一、引言

目前,我国大型异步电动机应用变频调速刚刚起步,可是,国外已经广泛使用,而且随着电力电子器件的发展,高压变频装置的型式也是多种多样。按拓扑结构分就有IGBT直接串联型,三电平型和多单元串联电压叠加型等。

通过长期的运行实践可以发现:大功率风机、水泵等需调速的设备运用高压变频调速系统驱动表现出良好的经济效益、其可靠性也得到保证。而且,变频调速以其优异的调速、起动和制动性能、易于自动化控制、高效率、高功率因数、良好的节电效果及广泛的适用范围等优点被国内外公认为是最有发展前途的调速方式

在低压变频器驱动的低压电动机进行节能改造后,驱动大型水泵和风机的高压大功率电动机的节能改造正在以惊人的速度推进,高压变频器、内馈调速等多种高压电动机的调速方法发展迅速,特别是高压频器以良好的调速性能和较高的效率得到了广大客户的认可。

二、工况

山东玲珑集团是世界轮胎20强、全国三大轮胎生产厂家和全国1000户最大工业企业之一。拥有橡胶、

水泥、机电和电厂等分公司,其中电厂有两个15MW的发电机组和一个30MW的发电机组,除了给自主产供电、供气外,还给市区供暧、供电。15MW的两个发电机组共有三台锅炉组成,三台锅炉的给水泵由四台355KW/10KV的高压电机驱动,正常运行的时候是三用一备。

经过多方的研究和论证,将锅炉给水泵由原来的阀门调节改为变频调速恒压给水。考虑到压力变化差不大,只将2#给水泵进行变频节能改造。

三、改造方案

近两年,高压变频器发展迅猛,涌现出生产高压变频器的大小厂数十家。但是,各厂家的主拓扑结构都相差无几。通过各种途径的考察与比较,玲珑集团最终选择深圳市微能科技有限公司的自主研发、生产的多单元串联的高─高形式的WIN—HV系列高压变频器,这种结构的高压变频器具有良好的输入、输出波形,非常高的性价比,可靠性高,即便个别单元有故障,也可将其所在的一组单元旁路,降频使用。这对于风机、水泵的运行特性具有相当的可靠性。

下面是WIN-HV系列高压变频器主回路原理图:

以下是输入、输出电流波形图和输出电压波形图。

(一)根据现场情况和可具备的各种条件,决定采取以下改造方案:

1.2#给水泵采用一拖一的方式,因有备用设备未使用工频旁路系统;

2.从母管上取压力变送器的4~20mA电流信号作为反馈,给定频率根据用户从DCS系统直接给定;

3.运行信号、停止信号从DCS系统给定;

4.高压变频器的状态信号从变频器的控制柜里送到DCS系统,以便实时观察;

5.改造后的母管压力值达到工艺要求

6.8MPa以上;

6.将每台水泵的旁通阀关闭,用高压变频器调节高压电机的转速来调节所需的流量。

(二)闭环控制:

将各泵的旁通阀关闭,利用变频系统自带的PID功能实现的闭环控制,由DCS给出给定连续可调的4~20mA对应0~10MP压力,由母管上的压力变压器0~10MP压力信号对应4~20mA反馈给变频器,通过PID功能来控制输出转速的高低,实现自动调整给水流量的目的。

四、效益分析

根据水泵的运行特性,流量与转速成正比,电机的功率与转速的立方成正比,即,因此,当然用水量降低的时候可以用降低电机的转速来满足生产需,而无需再用阀门调节,如此就可以省下用阀门调节损耗的电能了。以下是2#水泵变频改造前和改造后的数据对比(采集一个月的数据,得出平均值,每月按30天计算,每年按330天计算):

从上述表格的数据可以看出,每年的电费就可以省下32万多元。

五、结束语

随着国家对节能环保越来越重视和大量的节能减排优惠政策陆续出台,企业对生产过程当中能源的浪费现象日益重视,纷纷加强合理利用能源的管理,降低生产成本,提高企业的竞争力,为变频器的发展与推广起到了关键作用,也为风机与水泵的节能运行和提高其运行效率提供了有效途经。

作者简介:

李建勋现任职于山东玲珑集团热电厂,担任电气工程师。

欧荣华现任职于深圳市微能科技有限公司高压事业部,从事技术支持工作。

参考文献:

变频器应用手册吴忠智等

高压变频调速技术应用实践徐甫荣

PLC变频恒压供水的背景和意义

PLC变频恒压供水的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需 大量消耗能量,提高泵站效率:降低能耗,对国民经济有重 大意义。我国泵站的特点是数量大、范围广、类型多、发展 速度快,在工程规模上也有一定水平,但由于设计中忽视动 能经济观点以及机电产品类型和质量上存在的一些问题等 等原因,致使在技术水平、工程标准以及经济效益指标等方 面与国外先进水平相比,还有一定的差距。目前,大量的电 能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电 量在这类负载中占了相当的比例。这一方面是由于我国居民 多,用水量大,造成用电量大:另一方面是因为我国供水设 备工作效率低,控制方式不够科学合理。造成不必要的能量 浪费。因此,研究提水系统的能量模型,找出能够节能的控 制策略方法,这里大有潜力可挖,是减少能耗,保障供水的 一个很有意义的工作。 以变频器为核心结合PLC组成的控制系统具有高可靠性、 强抗干扰能力、组合灵活、编程简单、维修方便和低成本等 诸多特点,变频恒压供水系统集变频技术、电气技术、防雷 避雷技术、现代控制、远程监控技术于一体。采用该系统进 行供水可以提高供水系统的稳定性和可靠性,方便地实现供 水系统的集中管理与监控;同时系统具有良好节能性,这在 能量日益紧缺的今天尤为重要,所以研究设计该系统,对于

提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。 国内外研究概况 变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞典、瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 学生姓名阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计内容 (4) 二、设计要求 (4) 三、设计内容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC 一、设计内容 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计是电气工程及其自动化专业《交流调速》课程的实践性环节,其主要目的是培养学生初步掌握交流调速系统的设计方法及理论知识的应用能力。本课程设计的基本任务是提高学生在调速系统设计方面的实践技能,培养学生综合运用知识,分析和解决实际问题的能力。通过控制系统的设计,初步掌

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.360docs.net/doc/a03949525.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.360docs.net/doc/a03949525.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

测量电动机的绝缘电阻

测量电动机的绝缘电阻 电动机绝缘电阻的概念: 测量电动机的绝缘电阻以判断电动机的绝缘性能好坏。就是测量: (1)电动机绕组对机壳的绝缘电阻。 (2)绕组相互间的绝缘电阻。 各相绕组的始末端均引出机壳外,应断开各相之间的连接线或连接片,分别测量每相绕组的绝缘电阻值,即绕组对地的绝缘电阻;然后测量各相绕组之间的绝缘电阻值,即相间绝缘电阻。 测量前准备: (1)按ON/OFF一秒开机,开机时预设为测试电压为500V绝缘电阻连续测量档。 (2)当液晶屏左侧电池标记显示剩一格时,说明电池几乎耗尽需要更换电池,在此状态下还能做500V和1000V输出电压测量,准确 度也不受到影响。但是,如果当电池电量已到最低极限,必须更 换电池。 测量电动机绕组对地(外壳)的绝缘电阻时,接线端钮L与绕线接线端子连接,端钮E接电动机外壳或PE螺丝处;测量电动机的相间绝缘电阻时,L端钮和E端钮分别与两部分接线端子相接。 电动机绝缘电阻测量步骤如下: 绝缘电阻测量: *按IR 键设置到绝缘电阻测量档,无测试电压输出时,按“向上键” 和“向下键”选择测试电压500V/1000V/1500V/2500V中之一。

(1)在测量绝缘电阻前,待测电路必须完全放电,并且与电源电路完全隔离。 (2)将红测试线插入“LINE”输入端口,黑测试线插入”GUARD”输入端口,绿测试线插入“EARTH”输入端口。 (3)将红、黑鳄鱼夹接入被测电路,负级电压是从LINE端输出的。(4)用同样方法,依次测量每相绕相与机壳的绝缘电阻值。但应注意,表上标有“E”或“接地”的接线柱,应接到机壳上无绝缘的地方。 绝缘电阻AB BC CA A对外壳B对外壳C对外壳 15秒 60秒 吸收比 (5测量结束后,应将电机的线圈对地放电,防止伤人。 操作注意: *在测试前,确定待测电路没有电存在,请勿测量带电设备或带电 线路的绝缘。 *在测试时,本仪器有危险电压输出,一定要小心操作,确保被测 物已夹稳,手已离开测试夹后,再按TEST键输出高压。 *当500V测量电阻低于2MΩ、1000V测量电阻低于5MΩ、1500V 测量电阻低于8MΩ、2500V测量电阻低于10MΩ时,测量时不 要超过10秒。 操作特别注意: *请勿在高压输出状态短路两个测试表笔或高压输出之后再去测量 绝缘电阻,这种不当操作极易产生火花而引起火灾,还会损坏仪 器本身。

恒压供水变频柜

恒压供水变频柜 恒压供水变频柜变频控制原理 用变频调速来实现恒压供水,与用调节阀门来实现恒压供水相比,节能效果十分显着(可根据具体情况计算出来)。其优点是: 1、起动平衡,起动电流可限制在额定电流以内,从而避免了起动时对电网的冲击; 2、由于泵的平均转速降低了,从而可延长泵和阀门等的使用寿命; 3、可以消除起动和停机时的水锤效应; 一般地说,当由一台变频器控制一台电动机时,只需使变频器的配用电动机容量与实际电动机容量相符即可。当一台变频器同时控制两台电动机时,原则上变频器的配用电动机容量应等于两台电动机的容量之和。但如在高峰负载时的用水量比两台水泵全速供水量相差很多时,可考虑适当减小变频器的容量,但应注意留有足够的容量。 恒压供水变频柜的特点: 1.节能,可以实现节电20%-40%,能实现绿色用电。 2.占地面积小,投入少,效率高。 3. 配置灵活,自动化程度高,功能齐全,灵活可靠。 4. 运行合理,由于是软起和软停,不但可以消除水锤效应,而且电机轴上的平均扭矩和磨损减小,减少了维修量和维修费用,并

且水泵的寿命大大提高。 5. 由于恒压供水变频柜直接从水源供水,减少了原有供水方式的二次污染,防止了很多传染疾病的传染源头。 6. 通过通信控制,可以实现无人值守,节约了人力物力。 恒压供水变频柜性能特点: 1、恒压供水变频柜具有强大的贮能保压能力,特别是在夜间时应付少量供水时,可以大大节约电能。 2、调节容积(水泵每启动一次可供用户使用的水量)大.泵每启动一次,可以长时间地维持管网压力,设备启动次数少,运行费用低 3、恒压供水变频柜设备采用国际领先的补气技术 气压罐的补气采用微电脑电子检测、限量补气与排气技术,随时保证罐内气体有一定容积,根本解决了气体长期失效带来的水泵频繁启动问题,填补了国际、国内在该问题上的技术空白。 4、恒压供水变频柜的现场条件,无塔自动上水器可采取以下不同的配置 (1)、恒压供水变频柜的水源是自备井: 1)潜水泵+控制系统+气压罐 2)潜水泵+水池(水箱)+控制系统+气压罐 (2)恒压供水变频柜的水源是自来水: 1)离心管道泵+控制系统+气压罐 2)离心管道泵+水池(水箱)+ 控制系统+气压罐

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

基于 PLC 和变频器控制的恒压供水系统设计

基于PLC和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID功能的恒压供水 系统,采用了PLC控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID控制功能;供水系统方案如图1所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC控制的交流接触器组负责水泵的切换工作; PLC是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

变频恒压供水设备工作原理及原理图片

变频恒压供水设备工作原理及原理图 变频恒压供水设备工作原理这一相关知识,由兴崛供水为您全面讲述并提供工作原理图。 变频恒压供水设备工作原理:交流电动机的旋转速度与输入电的频率成正比,变频调速供水设备就是基于上述原理,采用压力传感器、可编程控制器、变频器及水泵电机构成以及设定压力为基准的闭环自动调节系统,具有控制水泵恒压供水的功能;通过压力传感器按受管网的压力信号,经微机与设定压力进行比较运算,输出调节参数送给变频器控制其频率的变化。用水量多时,频率提高,电机泵转数加快;反之频率降低,电机泵转数下降,既能保证用户用水又节省电能。 变频恒压供水设备一台变频器控制多台水泵”的多泵控制系统。在这里兴崛供水利用PLC设计一套变频调速恒压供水系统,该系统可根据管网瞬间压力变化自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的流量需求,使整个系统始终保持高效节能的最佳状态。可实现恒压变量、双恒压变量等控制方式,多种启停控制方式,该系统可以通过人意修改参数指令(如压力设定值、控制顺序、控制电机数量、压力上下限、PID值、加减速时间等);具有完善的电气安全保护措施,对过流、过压、欠压、过载、断水等故障均能自行诊断并报警。 兴崛变频恒压供水设备是非常理想的一种节能供水设备,节能效果好,结构紧凑,占地面积小,运行稳定可靠,使用寿命长,方案设计灵活,供水压力可调,流量可大可小,完全可以取代水塔、高位水箱及各种气压式供水设备,可彻底免除水质的二次污染。全自动变频恒压供水设备亦用于改造原有老式泵房设备,改造后同样可以达到高效节能、自动恒压供水的目的。 变频恒压供水设备组成: 变频恒压供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能

关于ABB变频器的恒压供水PID控制详细讲解(精品范文).doc

【最新整理,下载后即可编辑】 关于ABB变频器的恒压供水PID控制详细讲解 本人在造纸行业工作多年,对造纸行业的控制有一定的了解,平时苦恼于手下的员工对于造纸行业的电控了解不够.后来将造纸行业常用的控制汇编成一本培训资料,发给部门的所有工人熟读.收到一定的效果,本培训材料完全针对造纸行业的控制按照实际的电路来详细讲解其工作原理和工作的过程,涵盖造纸电控的外围设备控制,包括电机的直接启动,变频控制,软启动控制,正反转控制,多速电机控制.两地控制,纸机传动控制,复卷机.切纸机,复合机,包装输送系统.行车控制.可以说覆盖了造纸厂所有的电气控制.现先将其中的一小节发上来和大家交流,希望高手指正. 恒压供水PID控制 PID控制 P:比例环节。也称为放大环节,它的输出量与输入量之间任何时候都是一个固定的比例关系。 I: 积分环节:指输出量等于输入量对时间的积分。 D: 微分环节:指输出等于输入的微分。微分只与变化率有关,而与变化率的绝对值无关,偏差越大,控制越强。其主要作用就是对变化的波动有更强的抑制能力。 PID:比例积分微分调节器。 工作过程:当波动作用的瞬间,由于微分的超前作用,使微分的输出量最大,同时比例控制也开始作用。然后由于波动的变化率为零(理想状态)。故微分输出开始衰减,曲线开始下降。这时由于偏差的作用。积分开始作用,使曲线上升,。随着微分作用的逐渐消失,积分起主导作用,直到偏差完全消失(理想状态)。积分的输出也不再增加。而比例的控制是贯穿始终的。 ABB变频器的过程PID控制 ABB变频器内部有一个内置的PID控制器,它可用于控制压力,流量和液位等过程变量。启动过程PID控制后,过程给定信号将取代速度给定信号。另外一个实际值(过程反馈值)也会反馈给传动单元,过程PID控制会调节传动单元的速度使实际测量值等于给定值。

高压电机绝缘测量标准

测量定子绕组绝缘电阻和吸收比应符合下列规定 测量定子绕组绝缘电阻和吸收比应符合下列规定: 1 各相绝缘电阻的不平衡系数不应大于 2; 2 吸收比:对沥青浸胶及烘卷云母绝缘不应小于1.3;对环氧粉云母绝缘不应小于1.6。对于容量200MW及以上机组应测量极化指数,极化指数不应小于2.0。 注:1进行交流耐压试验前,电机绕组的绝缘应满足本条的要求; 2 测量水内冷发电机定子绕组绝缘电阻,应在消除剩水影响的情况下进行; 3 对于汇水管死接地的电机应在无水情况下进行;对汇水管非死接地的电机,应分别测量绕组及汇水管绝缘电阻,绕组绝缘电阻测量时应采用屏蔽法消除水的影响。测量结果应符合制造厂的规定; 4 交流耐压试验合格的电机,当其绝缘电阻折算至运行温度后(环氧粉云母绝缘的电机在常温下)不低于其额定电压1MΩ/KV 时,可不经干燥投入运行。但在投运前不应再拆开端盖进行内部作业。 1.0.3 测量定子绕组的直流电阻,应符合下列规定: 1 直流电阻应在冷状态下测量,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内; 2 各相或各分支绕组的直流电阻,在校正了由于引线长度不同而引起的误差后,相互间差别不应超过其最小值的2%;与产品出厂时测得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。 1.0.4定子绕组直流耐压试验和泄漏电流测量,应符合下列规定: 1 试验电压为电机额定电压的3 倍; 2 试验电压按每级 0.5 倍额定电压分阶段升高,每阶段停留1min,并记录泄漏电流;在规定的试验电压下,泄漏电流应符合下列规定: 1)各相泄漏电流的差别不应大于最小值的100%,当最大泄漏电流在 20μA 以下,根据绝缘电阻值和交流耐压试验结果综合判断为良好时,各相间差值可不考虑; 2)泄漏电流不应随时间延长而增大; 当不符合上述规定之一时,应找出原因,并将其消除。 3)泄漏电流随电压不成比例地显著增长时,应及时分析。 3 氢冷电机必须在充氢前或排氢后且含氢量在 3% 以下时进行试验,严禁在置换氢过程中进行试验; 4 水内冷电机试验时,宜采用低压屏蔽法;对于汇水管死接地的电机,现场可不进行该项试验。 1.0.5 定子绕组交流耐压试验所采用的电压,应符合表1.0.1 的规定。现场组装的水轮发电机定子绕组工艺过程中的绝缘交流耐压试验,应按现行国家标准《水轮发电机组安装技术规范》GB/T 8564的有关规定进行。水内冷电机在通水情况下进行试验,水质应合格;氢冷电机必须在充氢前或排氢后且含氢量在 3% 以下时进行试验,严禁在置换氢过程中进行。大容量发电机交流耐压试验,当工频交流耐压试验设备不能满足要求时,可采用谐振耐压代替。表1.0.1定子绕组交流耐压试验电压 容量(kW) 额定电压(V) 试验电压(V) 10000以下 36 以上(1000+2Un)×0.8

变频恒压供水系统组成及工作原理

变频恒压供水系统组成及工作原理变频恒压供水最简单的方式:一台变频器,一个电接点压力表。变频器是电子元件,没有机械运动;水泵总的转速还是跟水量成比例的。另外,供水系统对水压没精度要求,况且压力波动不会超过0.02MPa(设定0.3MPa时)。变频器在恒压供水系统中的应用变频恒压供水主要有分为:恒压变流量和变压变流量两大类。 一、变频恒压供水系统组成 系统为变频恒压的供水系统,分为冷水、热水两大供水系统,系统为1拖1的恒压供水,两台电机为互备,可选择使用1#泵或2#泵运行,KM3、 KM8为手动工频运行选择,作为变频的维修系统备用,KM2 ,KM3、 KM7,KM8为机械互锁的接触器,保证选择变频运行和工频运行的正确切换。 变频恒压供水的基本原理:以压力传感器和变频器组成闭环系统,根据系统管网的压力来调节电机的转速,实现高峰用户的水压恒定,和低峰时的变频的休眠功能,得到恒压供水和节能的目的。 二、系统硬件参数 热水系统: 电机参数: Pe=15kw Ue=380v Ie=26.8A Ne=1490rpm 变频器型号: 6SE64430-2AD31-8DA0 Pe=18.5kw Ie=38A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5Mpa 冷水系统: 电机参数: Pe=22kw Ue=380v Ie=39.4A Ne=2940rpm 变频器型号: 6SE64430-2AD33-7EA0 Pe=30.5kw Ie=62A 压力传感器: GYG2000 反馈信号4-20mA 供电+24V 量程0-0.5MPa 三、PID闭环控制功能原理及调试方法 变频器的内置PID功能,利用装在水泵附近的主出水管上的压力传感器,感受到的压力转化为4-20mA电信号作为反馈信号。根据变频恒压的层高设定压力值作为给定值,变频器内置调节器作为压力调节器,调节器将来自压力传感器的压力反馈信号与出口压力给定值比较运算,其结果作为频率指令输送给变频器,调节水泵的转速使出口压保持一定。即当用水量增加,水压降低时,调节器使变

A 变频器的恒压供水PID控制详细讲解

关于ABB变频器的恒压供水PID控制详细讲解 本人在造纸行业工作多年,对造纸行业的控制有一定的了解,平时苦恼于手下的员工对 于造纸行业的电控了解不够.后来将造纸行业常用的控制汇编成一本培训资料,发给部 门的所有工人熟读.收到一定的效果,本培训材料完全针对造纸行业的控制按照实际的 电路来详细讲解其工作原理和工作的过程,涵盖造纸电控的外围设备控制,包括电机的 直接启动,变频控制,软启动控制,正反转控制,多速电机控制.两地控制,纸机传动控制,复卷机.切纸机,复合机,包装输送系统.行车控制.可以说覆盖了造纸厂所有的电气控制.现先将其中的一小节发上来和大家交流,希望高手指正. 恒压供水PID控制 PID控制 P:比例环节。也称为放大环节,它的输出量与输入量之间任何时候都是一个固定的比例关系。 I: 积分环节:指输出量等于输入量对时间的积分。 D: 微分环节:指输出等于输入的微分。微分只与变化率有关,而与变化率的绝对值无关,偏差越大,控制越强。其主要作用就是对变化的波动有更强的抑制能力。 PID:比例积分微分调节器。 工作过程:当波动作用的瞬间,由于微分的超前作用,使微分的输出量最大,同时比例控制也开始作用。然后由于波动的变化率为零(理想状态)。故微分输出开始衰减,曲线开始下降。这时由于偏差的作用。积分开始作用,使曲线上升,。随着微分作用的逐渐消失,积分起主导作用,直到偏差完全消失(理想状态)。积分的输出也不再增加。而比例的控制是贯穿始终的。 ABB变频器的过程PID控制 ABB变频器内部有一个内置的PID控制器,它可用于控制压力,流量和液位等过程变量。启动过程PID控制后,过程给定信号将取代速度给定信号。另外一个实际值(过程反馈值)也会反馈给传动单元,过程PID控制会调节传动单元的速度使实际测量值等于给定值。 下图是一个不带PLC控制的一脱二恒压供水电气原理图: 变频器通过3个24V中间继电器来控制外部备用泵。 假设:当前水压的期望值为4.2kg。压力变送器PT的量程为0-10kg。变送器的输出为0 -20mA的电流信号。水泵为2台,一主一备。 要求:供水压力需长期保持在4.2kg,压力波动小于正负0.3kg。当水压小于3.6kg需启动备用泵(此泵为直接启动),当水压高于5.5kg时,停止备用泵。平时有单台主泵保持压力,根据压力不同调节电机的转速。

教你如何绝缘电阻测试

一、口诀:电机运行保安全,使用之前测绝缘。测量采用兆欧表,仪表产生高压电。电压规格分四级,常用五百和一千,二百五和两千五,根据被测电压选。五百以下用五百,一千用到三千三,再高使用两千五,二百五为安全 手摇式兆欧表的使用方法:在使用手摇式兆欧表时,若测量绕组对机壳四、的一端应与电机外标有E其标有的绝缘电阻,L的一端应与电机绕组相接,转为宜(“转120壳相接。测量时,摇动的转速应尽可

能地均匀,以每分钟动两圈用一秒”)。待表针稳定到一个位置后,再读数确定测量结果,一般分钟左右另外,为防止仪表的两条引线接触部位存在绝缘情况下,应摇动1损伤造成对测量的影响,应使用单独的两条引线,有必要时,在正式测量之前,先摇动发电机检查引线和仪表其他部件的绝缘情况,正常时,仪表指示应为无穷大(∞)word 编辑版. 在电机额定负载工作到稳定状五、关于电机绕组绝缘电阻的合格标准问题:Ω)应符合下式所表示(单位为M态时,其绕组与机壳之间的绝缘电阻Rm为被试电机的;P的关系。式中:U为被试电机绕组的额定电压,单位为V。额定功率,单位为kw1000+P/100)≥U/(Rm而言很小,所以可以忽略不计,此时上述公式1000因P/100相对于U/1000 Rm≥就简化为“电机电压每千伏,绝缘电阻超一兆”电机,在热态时,其绝缘电阻应不小于380v对于我们常见的0.38M Ω=0.38 MΩ,即Rm≥)(380/1000MΩMΩ考核。0.38 上式计算值低于0.38 MΩ时,则按但日常使用电机时,一般都是在冷态下测量,以确定该电机绕组绝缘1100V对低压电机(GB14711—2006中规定,是否正常。此时的标准怎样给出,Ω。高压电机没有具体规定,一般需要由供需及以下的电机)应不低于5M双方协商确定。:对于较大容量的电机绕组,应通过测量吸收比的办法检查关于吸收比六、其受潮情况,受潮严重时,即使绝缘电阻合格,也不可投入使用。确的方法是先设法将电机绕组烘干,再测量吸收比,若达到要求,再投入正常使用。时,两个绝缘电阻值60s15s和到第绕组的吸收比,是从开始摇测到第时的两个60s和第Rm60分别代表第15s和用的比值。B

变频恒压供水工作原理

变频恒压供水工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

变频恒压供水工作原理 产品工作原理: 全自动变频调速供水设备是应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。该设备通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。 产品特点: ※采用先进的供水专用变频器 ※最新供水专利技术 ※全中文人机界面,操作简单 ※RS485远程通讯 ※压力控制精度5‰ ※压力频率全数字显示 ※一次水高、低水位报警 ※供水压力过压、欠压保护 ※系统故障自诊断 ※水泵过载、过流保护 ※水泵软启动,软切换 ※适用于各种泵站 ※故障水泵自动切除运行系统 ※体积小,安装调试方便 ※全部进口低压电器集成,运行更安全可靠 ※优化的控制软件更利于系统节能运行 变频恒压供水控制器采用最新微电脑设计处理器设计制造配备液晶中文显示,参数显示、设定一目了然,故障时弹出供货商公司名称及2个服务电话(可按要求设置),多达75个功能参数项、9种应用宏选择,能满足五台以下的所有运行程序,其主要特点有: 1.外部接线简单:用户只需通过菜单设置,即可使控制器适用于不同的供水控制系统;无需改变复杂的外部接线。 2.可靠性:由于控制器已将各种功能模块集成于内部,外部配件少,、进一步降低了整个系统出现故障的机会。 3.调试简单方便:丰富而完美的汉字提示。使一般的操作人员无需经过复杂的培训,也能对各种操作应用自如。

V20-变频器PID-控制恒压供水操作指南

V20-变频器PID-控制恒压供水 操作指南 1.硬件接线 西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。 通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示: 图1-1.V20变频器用于恒压供水典型接线 2调试步骤 2.1 工厂复位 当调试变频器时,建议执行工厂复位操作: P0010 = 30 P0970 = 1 (显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。)

2.2 快速调试 表2-1 快速调试参数操作流程 参数功能设置 P0003 访问级别=3 (专家级) P0010 调试参数= 1 (快速调试) P0100 50 / 60 Hz 频率选择根据需要设置参数值: =0: 欧洲[kW] ,50 Hz (工厂缺省值) =1: 北美[hp] ,60 Hz P0304[0] 电机额定电压[V] 范围:10 (2000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0305[0] 电机额定电流[A] 范围:0.01 (10000) 说明:输入的铭牌数据必须与电机接线 (星形/ 三角形)一致 P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0 说明:如P0100 = 0 或2 ,电机功率 单位为[kW] 如P0100 = 1 ,电机功率单位为[hp] P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000 说明:此参数仅当P0100 = 0 或 2 时可见 P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9 说明:仅当P0100 = 1 时可见 此参数设为0 时内部计算其值。 P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00 P0311[0] 电机额定转速[RPM] 范围:0 (40000) P0314[0] 电机极对数设置为0时内部计算其值。 P0320[0] 电机磁化电流[%] 定义相对于电机额定电流的磁化电流。 设置为0时内部计算其值。 P0335[0] 电机冷却根据实际电机冷却方式设置参数值 = 0: 自冷(工厂缺省值) = 1: 强制冷却 = 2: 自冷与内置风扇 = 3: 强制冷却与内置风扇 P0507 应用宏=10: 普通水泵应用 P0625 电机环境温度范围:-40... 80℃(工厂设置20) P0640[0] 电机过载系数[%] 范围:10.0 ... 400.0 (工厂缺省值:150.0 ) 说明:该参数相对于P0305 (电机额定电 流)定义电机过载电流极限值。建议 保留工厂缺省值。

相关文档
最新文档