离散数学平面图资料讲解
离散数学图论基础知识文稿演示

图的定义
定义8.1 一个图是一个序偶<V,E>,记为 G=<V,E>,其中: 1) V={v1,v2,v3,…,vn}是一个有限的非空集合,
vi(i=1,2,3,…,n)称为结点,简称点,V为结 点集; 2) E={e1,e2,e3,…,em}是一个有限的集合, ei(i=1,2,,…,m)称为边,E为边集,E中的 每个元素都有V中的结点对与之对应。即对任 意e∈E,都有e与<u,v>∈VV或者(u,v)∈ V&V相对应。
图论
▪ 一个图就是一个离散的拓扑结构,经常用于描 述和研究许多领域中的各种问题。
▪ 随着计算机科学的飞速发展,图论组合和算法 的研究在近代也成为计算机科学和数学中发 展最快的基础学科之一,也受到国际上的学术 界和高新技术企业方面特别重视。
图论
▪ 理论计算机科学中的算法理论经典问题(图中点对之 间最短路,货郎担问题,图重抅问题,HAMILTON 问 题,P-NP问题等),通信网络通讯(网络设计, 通讯速度 和容量, 网络可靠性和容错性等) ;
图论本身是应用数学的一部份,因此,历史上图论曾经 被好多位数学家各自独立地建立过。关于图论的文字 记载最早出现在欧拉1736年的论着中,他所考虑的原 始问题有很强的实际背景
图论
图论起源于著名的哥尼斯堡七桥 问题。
欧拉证明了这个问题没有解,并 且推广了这个问题,给出了对于 一个给定的图可以某种方式走遍 的判定法则。 这项工作使欧拉成为图论〔及拓 扑学〕的创始人。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学 的两台不同的电子计算机上,用了1200个小时,作了 100亿判断,终于完成了四色定理的证明。
不过不少数学家并不满足于计算机取得的成就,他们认 为应该有一种简捷明快的书面证明方法。
离散数学中的图的平面图与平面图的着色

图是离散数学中的重要概念,而平面图和平面图的着色是图论中的两个关键概念。
平面图是指在平面上绘制的图形,使得图中的边不会相交。
平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
平面图的概念最早由欧拉在1736年提出。
他发现,如果一个图是可以在平面上绘制而不会边相交的,那么这个图是一个平面图。
欧拉还引入了一个重要的公式,即欧拉定理,它描述了平面图中的顶点、边和面的关系:V - E + F = 2,其中V代表顶点数,E代表边数,F代表面数。
对于平面图的着色问题,四色定理是一个非常重要的结果。
四色定理指出,任何一个平面图,在不考虑多重边和自环的情况下,最多只需要使用四种颜色就能够对图的顶点进行染色,使得相邻的顶点不会有相同的颜色。
这个定理在1976年被由英国数学家Tomás Oliveira e Silva使用计算机辅助证明,被认为是图论史上的一大突破。
对于平面图的着色,有一种特殊的染色方法叫做四色标号。
四色标号是指对于任意一个平面图,都可以给图中的每个顶点赋予一个自然数,使得相邻的顶点之间的差值不超过3。
这种染色方法保证了相邻的顶点不会被染成相同的颜色,同时最多只需要使用四种颜色。
平面图的着色不仅在图论中有着重要的应用,同时在现实生活中也有很多实际的应用。
比如,考虑地图上的城市,如果我们希望将城市标记成不同的颜色,以表示它们的关系,那么可以利用平面图的着色来实现。
另外,平面图的着色还有很多其他的实际应用,比如在工程规划中用于规划电路的布线、在计算机科学中用于处理图像等等。
总之,离散数学中的图的平面图与平面图的着色是图论中的两个重要概念。
平面图是指在平面上绘制的图形,使得边不会相交;平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
四色定理是平面图着色的重要结果,它指出任意一个平面图可以使用最多四种颜色进行着色。
平面图的着色在现实生活中有着广泛的应用,是离散数学中的一个重要研究领域。
离散数学 第四章平面图与图【完全免费,强烈推荐】.ppt

f (Tn , t ) t (t 1)n1.
这由 (Tn ) 2即可得证。当 t 2时,f (Tn ,t) 2.
色数与色数多项式
定理 4.6.7
设i,j是G的不相邻结点,则
_
0
—0
f (G, t) f (Gij , t) f (Gij , t). 其中Gij ,Gij 由定义4.6.3给出
d0
,因此
(G' ) d0
1.即
d0
1 种颜
色可以对G '的结点着色,放回结点 vi 恢复成G,由
于d (vi ) d0 ,所以比有一种与 vi邻点都不同的颜色可
对vi 着色.
色数与色数Байду номын сангаас项式
定理 4.6.3 对于任意一个图G. γ(G) <= 1 + maxδ(G’) 其中δ(G’)是G的导出子图G’中结点的最小度, 极大是对所有的G’而言.
定理 4.5.4 若任何一个3-正则平面图的域可四着色,则任何 一个平面的域也可以四着色.
4.6 色数与色数多项式
定义 4.6.1 给定图G,满足相邻点结点着以不同颜色的最少 颜色数为G的色数,记为γ(G).
定义 4.6.2 给定图G,满足相邻边着以不同颜色的最少颜色 数目称为G的边色数,记为β(G).
色数与色数多项式
定理 4.6.1 一个非空图,γ(G) = 2,当且仅当它没有奇回路.
证明:充分性:在G中确定一个林 T ',其每个连通子
图都是树T, (T ) 2.由于每个回路都是偶回路.所
以加入每一条余树边都不会使结点着色发生变化,因
此 (G) 2.
必要性:如果G中有奇回路,则 (G) 3 .矛盾.
离散数学PPT课件 9平面图(ppt文档)

v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v2 v7 v6 v10 v5
v8 v9
v3
v4
v1 v3 v8 v2v7 v6
v9 v10 v4
v5
本节要求掌握: 平面图的概念, 平面图的边界, 欧拉公式及其应用 平面图的判定.
面的边界中出现, 所以所有面的边界总数=2e, 所以有:
2e=(r个面边界总数)≥ 3r, 即2e≥3r 所以r≤
2 3
e
由欧拉公式: v-e+r=2
得
v-e+
2 3
e≥2
整理得 e≤3v-6
用此定理可以判定一个图不是平面图, 例如证明K5不是
平面图: K5中有v=5 e=10 3v-6=3×5-6=9 不满足e≤3v-6,
K5
e条边的连通简单平面图, 若v≥3, 则e≤3v-6.
证明:⑴ 当e=2 时, 因为G是简单连通图, 所以v=3, 显然有
2≤3×3-6 即e≤3v-6
⑵当e>2时, (通过计算每个面的边界来证明)
设G有r个面, 因为G是简单图, 所以每个面至少由三条边
围成, 所以r个面的总边界数≥3r, 另外由于每条边在两个
例如右图.就是
v1
可平面化的图. v2
v3
下面是两个
重要的非平面图: v4
v5
K5和K3,3
v1
v2
v3
v4
v5
1 3 5 2 4 6
a b
c
f e
d
v1
v2
v3
v4
离散数学平面图

又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
《离散数学平面》课件

2 图的连通性和路径
了解图的基本概念,学习图的节点、边和 路径的定义。
研究图的连通性,探索不同类型的路径和 它们的应用。
3 图的欧拉性质和哈密顿性质
4 平面图和Euler公式
深入了解图的欧拉性质和哈密顿性质,并 学习如何应用它们。
介绍平面图的概念和Euler公式的推导与 应用。
代数结构
1
代数系统的定义
学习代数系统的定义、基本运算和性
群、环、域等代数结构
2
质。
深入研究群、环、域等典型代数结构
的定义和性质。
3
同态和同构
探索同态和同构在代数结构中的作用 和应用。
离散数学的应用
计算机科学和信息技术中的应用
了解离散数学在计算机科学和信息技术领域 中的实际应用。
编码理论和数据压缩
深入探索离散数学在编码理论和数据压缩中 的应用。
《离散数学平面》PPT课件
深入学习离散数学平面,掌握重要概念。本课件包含引言、平面几何、图形 理论、代数结构和离散数学应用等内容。
引言
离散数学的重要性
了解为什么离散数学在计 算机科学和信息技术中如 此重要。
离散数学平面介绍
介绍离散数学平面的基本 概念和特点。
PPT课件概述
简要概述本PPT课件的内 容和结构。
感谢您观看本离散数学平面 PPT课件。
数据加密和解密
学习离散数学在数据加密和解密中的关键角 色。
离散数学在科学和工程中的应用
了解离散数学在科学和工程领域中的广泛应 用。
总结
回顾离散数学平面的知 识点
总结离散数学平面课件中的重 要知识点和要点。
强调离散数学在实际中 的应用
重点强调离散数学在实际情境 中的广泛实际应用。
离散数学课件17平面图共48页

本章的主要内容
–平面图的基本概念 –欧拉公式 –平面图的判断 –平面图的对偶图
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
17.2 欧拉公式
17.3 平面图的判断
17.4 平面图的对偶图
本章小结
习题
作业
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上,
类似地,v2与v4也必相邻,且边(v2,v4)也必在Ri外部,于是必 产生(v1,v3)与(v2,v4)相交于Ri的外部,这又矛盾于G是平面图, 所以必有s=3,即G中不存在次数大于或等于4的面,所以G的
每个面为3条边所围,也就是各面次数均为3。
只有右边的图为极大平面图。 因为只有该图每个面的次数都为3。
K5和K3,3都不是平面图。 定理17.1 设GG,若G为平面图,则G也是平面图。
设GG,若G为非平面图,则G也是非平面图。
由定理可知, Kn(n5)和K3,n(n3)都是非平面图。
定理17.2 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。 无限面(外部面)——面积无限的面,记作R0。 有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。 面Ri的边界——包围面Ri的所有边组成的回路组。 面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、极大平面图的主要性质
定理17.4 极大平面图是连通的,并且n(n3)阶极大平面图 中不可能有割点和桥。
离散数学(Ch15平面图及色数)

定理15.4 设G为任一平面图, 则(G)≤5. (五色定理)
用第一数学归纳法对G的顶点数n进行归纳: 显然, 当n≤5时, 有(G)≤5. 假设 n–1 (n≥6)时, (G)≤5成立.
显然, 平面图G中必有度数小于6的顶点u0. (因m≤3n-2) 将顶点u0从G中去掉(含u0邻接的边), 得G0=G – u0, 则G0仍是平面图且顶点数为n-1, 根据假设, 有(G0)≤5. 再从G0加入顶点u0及邻接的边, 还原为G. ⑴如果d(u0)≤4, 则与u0邻接顶点最多涂4色, 有(G)≤5成立. ⑵如果d(u0)=5, 令与u0邻接的顶点按顺时钟排为u1,u2,u3,u4,u5. 并设这5个顶点涂色为C1,C2,C3,C4,C5.
3
定义15.2 设G是一个平面图, 如果连接G的任意两个 不邻接顶点u和v, 都会使G+(u,v)变成非平 面图, 则称G为极大平面图. (边数极大)
极大平面图
K5非平面图
K3
定理15.2 设G是至少具有三个顶点的极大平面图, 则G的任何一个面都是K3.
假设G是极大平面图, 但有一个面不是K3面, 不妨设为{u1,u2,u3,u4,…,u1}, 考察: ⑴ (u1,u3)邻接, (u2,u4)邻接 两边会在圈外相交 ⑵ (u1,u3)不邻接 可加边(u1,u3), 仍是平面图 ⑶ (u2,u4)不邻接 可加边(u2,u4), 仍是平面图
6
§15.2 色数
1. 对偶图 定义15.3 设G是一个平面图, 具有k个面F1,F2,…,Fk, 其中包括无限面, 构造对偶图G*: ⑴ 在G的每个面Fi的内部取一点fi, 作为G*的顶点; ⑵ 对应于G的任意一条边e,
如果e是Fi和Fj的公共边, 则与e交叉连接fi和fj, 使(fi, fj)G* 如果e仅是Fj的悬挂边或桥, 则连一个自环, 使(fj, fj)G*
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 平面图与平面嵌入 ▪ 平面图的面、有限面、无限面 ▪ 面的次数 ▪ 极大平面图 ▪ 极小非平面图 ▪ 欧拉公式 ▪ 平面图的对偶图
1
平面图和平面嵌入
定义 如果能将图G除顶点外边不相交地画在平面上, 则称G是平面图. 这个画出的无边相交的图称作G 的平面嵌入. 没有平面嵌入的图称作非平面图.
上面两个平面图是同构的, 但它们的对偶图不同构.
18
平面图的对偶图(续)
平面图与对偶图的阶数、边数与面数之间的关系: 设G*是平面图G的对偶图,n*, m*, r*和n, m, r分别 为G*和G的顶点数、边数和面数,则 (1) n*= r (2) m*=m (3) r*=n-p+1, 其中p是G的连通分支数 (4) 设G*的顶点vi*位于G的面Ri中, 则d(vi*)=deg(Ri)
例如 下图中(1)~(4)是平面图, (2)是(1)的平面嵌入, (4)是(3)的平面嵌入. (5)是非平面图.
2
平面图和平面嵌入(续)
• 今后称一个图是平面图, 可以是指定义中的平面图, 又可以
是指平面嵌入, 视当时的情况而定. 当讨论的问题与图的画
法有关时, 是指平面嵌入.
• K5和K3,3是非平面图 • 设G G, 若G为平面图, 则G 也是
5
极大平面图
定义 若G是简单平面图, 并且在任意两个不相邻的顶点之 间加一条新边所得图为非平面图, 则称G为极大平面图.
性质
• 若简单平面图中已无不相邻顶点,则是极大平面图. 如
K1, K2, K3, K4都是极大平面图.
• 极大平面图必连通. • 阶数大于等于3的极大平面图中不可能有割点和桥. • 设G为n(n3)阶极大平面图, 则G每个面的次数均为3. • 任何n(n4)阶极大平面图G均有δ(G)3.
9
欧拉公式(续)
欧拉公式的推广 设G是有 p (p2) 个连通分支的平面图, 则
nm+r=p+1 证 设第 i 个连通分支有 ni个顶点, mi 条边和 ri 个面. 对各连通分支用欧拉公式,
ni mi + ri = 2, i = 1, 2, … , p 求和并注意 r = r1+…+rp+ p1, 即得
K5
平面图; 若G 为非平面图, 则G也
是非平面图.
• Kn(n5), K3,n(n3)都是非平面图.
K3,3
• 平行边与环不影响图的平面性.
3
平面图的面与次数(续)
例1 右图有4个面, deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8. 请写各面的边界.
例2 左边2个图是同一个平面 图的平面嵌入. R1在(1)中是 外部面, 在(2)中是内部面; R2 在(1)中是内部面, 在(2)中是 外部面. 其实, 在平面嵌入中 可把任何面作为外部面.
则 K5 : n=5, m=10, l=3
K3,3 : n=6, m=9, l=4 与定理矛盾.
K5
K3,3
11
与欧拉公式有关的定理(续)
定理: 设G为有 p (p2) 个连通分支的平面图, 且每个面的次数不小于l (l 3), 则
m l (np1) l2
定理 设G为简单平面图,则 (G)5.
12
nm+r=p+1
10
与欧拉公式有关的定理
定理 设G为n阶连通平面图, 有m条边, 且每个面的次数不
小于l (l 3), 则 m l (n2) l 2
证 由定理 (各面次数之和等于边数的2倍)及欧拉公式得
2m lr = l (2+m-n) 可解得所需结论.
推论 K5 和 K3,3不是平面图. 证 用反证法, 假设它们是平面图,
(1) G中无圈, 则G必有一个度数为1的顶点v, 删除v及它关 联的边, 记作G . G 连通, 有n-1个顶点, k条边和r个面. 由归 纳假设, (n-1)-k+r=2, 即n-(k+1)+r=2, 得证m=k+1时结论成立.
(2) 否则,删除一个圈上的一条边,记作G . G 连通, 有n个顶 点,k条边和r-1个面. 由归纳假设, n-k+(r-1)=2, 即n-(k+1)+r=2, 得证m=k+1时结论也成立. 证毕.
6
实例
3个图都是平面图, 但只有右边的图为极大平面图.
7
极小非平面图
定义 若G是非平面图, 并且任意删除一条边所得图 都是平面图, 则称G为极小非平面图. 说明:
K5, K3,3都是极小非平面图 极小非平面图必为简单图 下面4个图都是极小非平面图
8
欧拉公式
定理8.11 (欧拉公式) 设G为n阶m条边r个面的连通平面图, 则 nm+r=2. 证 对边数m做归纳证明. m=0, G为平凡图, 结论为真. 设m=k(k0)结论为真, m=k+1时分情况讨论如下:
E*={ ek*| k=1,2, …,m }.
16
平面图的对偶图(续)
例 黑色实线为原平面图, 红色虚线为其对偶图
17
平*是平面图,而且是平面嵌入. • G*是连通图 • 若边e为G中的环,则G*与e对应的边e*为桥; 若e
为桥,则G*中与e对应的边e*为环.
• 在多数情况下,G*含有平行边. • 同构的平面图的对偶图不一定同构.
同胚与收缩
消去2度顶点v 如上图从(1)到(2) 插入2度顶点v 如上图从(2)到(1) G1与G2同胚: G1与G2同构, 或 经过反复插入、或消去2度顶 点后同构 收缩边e 如下图从(1)到(2)
13
库拉图斯基定理
定理 G是平面图G中不含与K5同胚的子图, 也不 含与K3,3同胚的子图.
定理 G是平面图G中无可收缩为K5的子图, 也无 可收缩为K3,3的子图.
14
非平面图证明
例 证明下述2个图均为非平面图.
证
图中红色部分分别与K3,3和 K5 同胚
15
平面图的对偶图
定义 设平面图G, 有n个顶点, m条边和r个面, 构造G 的对偶图G*=<V*,E*>如下: 在G的每一个面Ri中任取一个点vi*作为G*的顶点,
V*= { vi*| i=1,2,…,r }. 对G每一条边ek, 若ek在G的面Ri与Rj的公共边界上, 则作边ek*=(vi*,vj*), 且与ek相交; 若ek为G中的桥且在 面Ri的边界上, 则作环ek*=(vi*,vi*).