离散数学平面图及图的着色

合集下载

离散数学PPT课件10着色与对偶图(ppt文档)

离散数学PPT课件10着色与对偶图(ppt文档)






不同颜色.
四. 图G的正常着色(简称着色):
1. 对G的每个结点指定一种颜色,使得相邻接的两个结点
着不同颜色. 如果G着色用了n种颜色,称G是 n-色的.
2.对G着色时,需要的最少颜色数,称为G的着色数,记作
x(G) .
3.对G着色方法:(下面介绍韦尔奇.鲍威尔法)
3.对G着色方法:(介绍韦尔奇.鲍威尔法 Welch.Powell) ⑴将G中的结点按照度数递减次序排序,(此排序可能不唯 一,因为可能有些结点的度数相同) ⑵用第一种颜色对第一个结点着色,并按照排序,对与前面 着色点不邻接的每一个点着上相同颜色. ⑶用另一种颜色对尚未着色的点, 重复执行⑵和⑶,直到
⑶当且仅当ek只是一个面Fi的边界时, vi*上有一个环ek* 与ek相交.
v3*
则称图G*是G的对偶图.
v5
F1 v1*
F3
可见G*中的结点数等于
F2 v2*
G中的面数.
二. 自对偶图:如果图G对偶图G*与G同构,则称G是自对偶
图. (如下图) 三.对偶图与平面图着色的关系:

对平面图面相邻面用不同颜 色的着色问题,可以归结到对 其对偶图的相邻接的结点着
有共同的学生在读, 就在两门课程之间连一直线.得到图:
结点度数递减排序:
A
B,C,D,G,A,E,F 对图正常着色后, 标有同一种颜色的 G
课,可以同时考试.安排考试日程: 周一: A 周二: B,F 周三:C,E 周四: D,G
F E
作业 P189 – 8.16 8.17
B C
D
所有结点都着上颜色为止.
B C
例如:结点排序:A,B,E,F,H,D,G,C A

离散数学 平面图与着色

离散数学 平面图与着色
G2,…,Gm=G,使得Gk是恰含有k(k=1, 2, …, k)条边的连通图。构造方法如下: (1)任意选择Gk-1中的一条边来获得Gk :任意 的添加一条与Gk-1边中某个顶点相关联的边,若 与这条边关联的另一个顶点不在Gk-1里,则添加 这个顶点。
这样的构造是可能的,因为G是联通的。在 添加m条边之后就获得G。设rk,mk,nk和 分别为Gk的面数、边数和顶点数。 现在用归纳法来进行证明。对G1来说关系 r1=m1-n1 +2为真,因为m1=1,n1=2 而r1=1。 现在假定 rk=mk-nk +2,我们来考虑Gk+1。 设Gk+1= Gk +(ak+1,bk+1),此时分两 种情况来讨论。
【定理12.3】若G的每个面的边界至少含k kr k 条边,则 m (n 2)
2 k 2
【例12.4】 证明K5是不可平面图 。 【例12.5】 证明K3, 3是不可平面图。

【定义12.3】在图G的边(u, v)上添加k个 顶点v1,v2,…,vk,从而使得边(u, v)变为 (k+1)条边(u,v),(v1, v2), …,( vk, v), 则称为对边(u, v)的加细。两个图称为同 胚的,其中一个图是另一个图的加细图。 【定理12.4】一个图G是可平面图的充要条 件是G没有同胚于K5或K3, 3的子图。
Theorem If every vertex of G has degree d(v) < k, then G is k-colorable. Proof: Use induction on n (number of vertices). 1.If n = 1 or n = 2, the assertion is easily seen to be true. Suppose n > 2, and assume that the proposition is valid for all graphs with fewer than n vertices. 2.Choose any vertex v of G and delete it and all the edges incident to v. This leaves a subgraph H of G with n - 1 vertices satisfying the given hypothesis (i.e. that every vertex has degree less than k). By the inductive hypothesis, (H) k. Now, consider any particular k-coloring of H. Since d(v) < k, the vertices of H that were adjacent to v in G are colored with at most k 1 different colors. Thus, there’s at least one color left with which we may color v, so that it is of a different color to each of its neighbors. This gives a coloring of G using the same colors as H. Therefore, G is k-colorable.

离散数学中的着色问题研究

离散数学中的着色问题研究

离散数学中的着色问题研究离散数学是数学的一个分支,主要研究集合、函数、关系、图论等离散结构及其应用。

在离散数学中,着色问题是一个经典的研究方向。

着色问题是指在给定的图或图的某个特定部分上,给每个顶点或每条边分配一个颜色,使得相邻的顶点或边颜色不相同的一类问题。

着色问题最早可以追溯到1852年,当时英国著名数学家弗朗西斯·格思欧提出了“四色猜想”,即地图着色问题的一个特例。

他猜测,任意平面图都可以用四种颜色进行着色,使得任意两个相邻区域颜色不同。

虽然直到1976年才由凯尼思·阿普尔、沃尔夫冈·赫登和约翰·哈姆顿等人证明了这个猜想的正确性,但这个问题奠定了着色问题研究的基础。

在着色问题的研究中,最为著名的是顶点着色问题和图的边着色问题。

顶点着色问题是指对于给定的图,为图的每个顶点分配一个颜色,并且相邻的顶点颜色不能相同。

而图的边着色问题是指为图的每条边分配一个颜色,要求相邻的边颜色不相同。

这两个问题都是在给定一定的约束条件下,寻找合理的颜色分配方案,是离散数学中的基础问题。

着色问题在实际应用中有着广泛的意义和应用。

例如,在地图着色中,不同颜色的区域表示不同的行政区域或国家,通过合理的着色可以方便地进行区分。

此外,在调度问题中,着色问题也具有重要作用。

例如,在一条生产线上的任务安排,可以通过着色问题来确定每个任务在不同时间段的执行顺序,从而实现资源的优化分配。

在着色问题的研究中,有很多经典的算法和策略。

其中最著名的算法是所谓的贪心算法,即每次选择未被染色的顶点或边中与已染色顶点或边相邻且颜色不同的进行染色,直到所有顶点或边都被染色。

贪心算法是一种简单而有效的算法,但并不总是能够找到最优解。

其他的算法包括回溯算法、深度优先搜索算法等,它们在着色问题的求解中各有特点,可以根据具体情况进行选择和应用。

此外,在着色问题的研究中,还涉及到很多扩展和变种。

例如多重集着色问题,指的是允许相邻的顶点或边可以有相同的颜色;带权着色问题,指的是为每个颜色分配一个权重,并寻找使总权重最大的颜色分配方案等。

离散数学中的图的平面图与平面图的着色

离散数学中的图的平面图与平面图的着色

图是离散数学中的重要概念,而平面图和平面图的着色是图论中的两个关键概念。

平面图是指在平面上绘制的图形,使得图中的边不会相交。

平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。

平面图的概念最早由欧拉在1736年提出。

他发现,如果一个图是可以在平面上绘制而不会边相交的,那么这个图是一个平面图。

欧拉还引入了一个重要的公式,即欧拉定理,它描述了平面图中的顶点、边和面的关系:V - E + F = 2,其中V代表顶点数,E代表边数,F代表面数。

对于平面图的着色问题,四色定理是一个非常重要的结果。

四色定理指出,任何一个平面图,在不考虑多重边和自环的情况下,最多只需要使用四种颜色就能够对图的顶点进行染色,使得相邻的顶点不会有相同的颜色。

这个定理在1976年被由英国数学家Tomás Oliveira e Silva使用计算机辅助证明,被认为是图论史上的一大突破。

对于平面图的着色,有一种特殊的染色方法叫做四色标号。

四色标号是指对于任意一个平面图,都可以给图中的每个顶点赋予一个自然数,使得相邻的顶点之间的差值不超过3。

这种染色方法保证了相邻的顶点不会被染成相同的颜色,同时最多只需要使用四种颜色。

平面图的着色不仅在图论中有着重要的应用,同时在现实生活中也有很多实际的应用。

比如,考虑地图上的城市,如果我们希望将城市标记成不同的颜色,以表示它们的关系,那么可以利用平面图的着色来实现。

另外,平面图的着色还有很多其他的实际应用,比如在工程规划中用于规划电路的布线、在计算机科学中用于处理图像等等。

总之,离散数学中的图的平面图与平面图的着色是图论中的两个重要概念。

平面图是指在平面上绘制的图形,使得边不会相交;平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。

四色定理是平面图着色的重要结果,它指出任意一个平面图可以使用最多四种颜色进行着色。

平面图的着色在现实生活中有着广泛的应用,是离散数学中的一个重要研究领域。

离散数学中的图的颜色数与四色定理

离散数学中的图的颜色数与四色定理

离散数学是研究离散结构和离散运算的数学分支,它在计算机科学、信息技术、密码学等领域中具有重要的应用价值。

而图论作为离散数学的一个重要分支,在实际应用中扮演着重要的角色。

图是由节点和连接节点的边组成的抽象表示,可以用来描述许多现实生活中的问题,如交通网络、社交网络等。

而图的着色问题,即如何给图的节点上色,是图论中一个重要的课题。

在离散数学中,图的颜色数是指给图的每个节点赋予的不同颜色的数量。

解决图的着色问题,即求解最小的颜色数,是离散数学中的一个经典问题。

根据图的邻接关系,我们可以将图分为不相邻的节点集合,或称为独立点集。

而在每个独立点集中,节点之间不存在连接,即没有边相连。

因此,在同一个独立点集中的节点可以赋予相同的颜色。

而对于连接的节点,我们需要确保相邻的节点颜色不同。

基于这样的思想,我们可以使用贪心算法来给图的节点进行着色。

贪心算法的基本思路是从一个初始节点开始,每次选择一个尚未被上色的节点,并且给它赋予不同于相邻节点的颜色。

重复这个过程,直到所有的节点都被着色。

但是,通过贪心算法所得到的着色结果并不一定是最优解。

这引出了著名的四色定理。

四色定理是图论中一个重要的定理,指出任何平面图都可以使用不超过四种颜色进行着色,使得相邻节点的颜色不同。

该定理是由基姆和罗伯特森等人在1976年通过计算机模拟方法得到的,随后在1997年由托马斯·韦伦斯顿等人通过使用图论方法进行证明。

证明四色定理的过程非常复杂,但基本思想是从数学的角度证明了四色定理的逻辑正确性。

简单来说,四色定理的证明过程是通过构造方法,将平面图转化为一种特殊的图结构,即棋盘染色问题。

然后通过分析棋盘染色问题的特征和规律,进行推理和证明。

四色定理的证明不仅仅具有理论意义,也具有重要的实际应用。

例如,在地图着色中,四色定理可以用于保证地图上相邻地区的颜色不同。

此外,在计算机图像处理中,也可以采用四色定理的方法,有效地减少图像的颜色数量,从而节省存储空间和运算时间。

离散数学平面图

离散数学平面图
则满足欧拉公式 v – e + r = 2 即:6-9+r=2,解得r=5
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,

离散数学7-5平面图7-6对偶图与着色

离散数学7-5平面图7-6对偶图与着色
7、库拉托夫斯基定理(Kuratowski定理) 定理7-5.4:一个图是平面图的充要条件是它不含 与K5或K3,3在二度结点内同构的子图。
第十六页,编辑于星期二:九点 四十六分。
K5和K3,3常称作库拉托夫斯基图。
K3,3
K5
第十七页,编辑于星期二:九点 四十六分。
作业
P317: (1)(2)
一、对偶图
1、对偶图 定义7-6.1 对具有面F1 ,F2,..., Fn的连通平面图 G=<V,E>实施下列步骤所得到的图G*称为图G的对偶 图(dual of graph):
第二十二页,编辑于星期二:九点 四十六分。
如果存在一个图G*=<V*,E*>满足下述条件: (a)在G的每一个面Fi的内部作一个G*的顶点vi* 。 即对图G的任一个面Fi内部有且仅有一个结点vi*∈V*。
第十八页,编辑于星期二:九点 四十六分。
7-6 对偶图与着色
掌握对偶图的定义,会画图G的对偶图 G* 掌握自对偶图的定义及必要条件。
第十九页,编辑于星期二:九点 四十六分。
与平面图有密切关系的一个图论的应用是图形的着色问 题,这个问题最早起源于地图的着色,一个地图中相邻国 家着以不同颜色,那么最少需用多少种颜色? 一百多年前,英国格色里(Guthrie)提出了用四种颜色即 可对地图着色的猜想,1879年肯普(Kempe)给出了这个 猜想的第一个证明,但到1890年希伍德(Hewood)发现肯 普证明是错误的,但他指出肯普的方法 虽不能证明地图 着色用四种颜色就够了,但可证明用五种颜色就够了,即 五色定理成立。
(c)当且仅当ek只是一个面Fi的边界时(割边),vi*存在 一个环e*k与ek相交。
即当ek为单一面Fi的边界而不是与其它面的公共边 界时,作vi*的一条环与ek相交(且仅交于一处)。所作的 环不与 G*的边相交。

离散第23讲 平面图的着色与树

离散第23讲 平面图的着色与树
(2)(3) 设T连通且m=n–1 。先证T无回路,为此对n归纳。
n = 1时显然T无回路,因这时m=n–1=0。
设顶点数为n–1 的满足题设的图无回路,顶点数为n的图T至少有 两个悬挂点。去掉一悬挂点构成T’。显然T’仍连通,且m’=m– 1=n–2 = n’–1 ,因此由归纳假设T’无回路。在T’上加回所删去的 悬挂点得T,故T亦无回路。
第23讲 平面图的着色与树
-5-
对偶图例
第23讲 平面图的着色与树
-6-
对偶图例
同构图的对偶图可能不同构 左边的对偶图有5度顶点, 右边的对偶图却没有 平面图的对偶图仍为平面图
第23讲 平面图的着色与树
-7-
可k着色
定义: 无环图G称为可k-着色的,如果可用k种颜色 给G的所有顶点着色,使每个顶点着一种颜色,而同 一边的两个端点着不同颜色。
v5 v4
v1 v2
v0
v3
第23讲 平面图的着色与树
-10-
5色定理
为叙述简明,令RY表示G-v0中所有着红、黄顶点的集合,BW表 示G - v0中所有着黑、白顶点的集合。考虑RY生成的G的子图 G(RY)。
若v1,v3分属于G(RY)的两个不同的连通分支,那么只要将v 1所在分支的红、黄顶点的着色作一对换(从而v1着黄色), 便可给v0着红色以完成对G的5-着色。
若任意平面图可k-着色,则任意平面图的面可用k种 颜色之一着色,使得相邻的面着不同颜色
第23讲 平面图的着色与树
-8-
5色定理
定理: 任何平面图都是可5-着色的。 证:
连通分支、环和平行边与着色问题无关,因此 可只讨论平 面连通简单图。 设G为任一平面连通简单图,顶点个数为n 。对n归纳。 当n≤5时命题显然成立。 设n-1个顶点的平面图都是可5-着色的。考虑n个顶点的图G。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实线边图为平面图,虚线边图为其对偶图。
从定义不难看出G的对偶图G*有以下性质: G*是平面图,而且是平面嵌入。 G*是连通图。 若边e为G中的环,则G*与e对应的边e*为桥,若e为桥, 则G*中与e对应的边e*为环。 在多数情况下,G*为多重图(含平行边的图)。
同构的平面图(平面嵌入)的对偶图不一定是同构的。
无限面(外部面)——面积无限的面,记作R0。
有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。
面Ri的边界——包围面Ri的所有边组成的回路组。
面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、几点说明 若平面图G有k个面,可笼统地用R1, R2, …, Rk表示,不需 要指出外部面。 回路组是指:边界可能是初级回路(圈),可能是简单回 路,也可能是复杂回路。特别地,还可能是非连通的回路 之并。
设e为G的任意一条边,
若e在G的面Ri 与Rj 的公共边界上,做G*的边e*与e相交, 且e*关联G*的位于Ri与Rj中的顶点vi*与vj*,即e*=(vi*,vj*) ,e*不与其它任何边相交。 若e为G中的桥且在面Ri的边界上,则e*是以Ri中G*的顶点 vi*为端点的环,即e*=(vi*,vi*)。
图的同构
2、图之间的同胚 定义17.6 若两个图G1与G2同构,或通过反复插入或消去2 度顶点后是同构的,则称G1与G2是同胚的。
上面两个图分别与K3,3, K5同胚 。
17.4 平面图的对偶图
一、对偶图的定义 定义17.7 设G是某平面图的某个平面嵌入,构造G的对偶图 G*如下: 在G的面Ri中放置G*的顶点vi* 。
证明
设G的连通分支分别为G1、G2、…、Gk,并设Gi的顶点数、 边数、面数分别为ni、mi、ri、i=1,2,…,k。
由欧拉公式可知: ni-mi+ri = 2,i=1,2,…,k 易知, m mi,n ni
i 1 i 1 k k
(17.1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
于是每条边在计算总次数时,都提供2,因而deg(Ri)=2m。
三、极大平面图 1、 定义 定义17.3 若在简单平面图G中的任意两个不相邻的顶点之 间加一条新边所得图为非平面图,则称G为极大平面图。
注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图。
(2)m*=m
(3)r*=nk+1
(4)设G*的顶点v*i位于G的面Ri中,则dG*(v*i)=deg(Ri)
本章主要内容
平面图及平面嵌入。 平面图的面与次数。 极大平面图及性质。 极小非平面图。 欧拉公式及其推广。 平面图的边数m与顶点数n的关系。
简单平面图G中,δ(G)≤5。
m l (n k 1) l 2
定理17.12 设G为n(n3)阶m条边的简单平面图,则m3n6。
证明
设G有k(k1)个连通分支, 若G为树或森林,当n3时,m=n-k3n6为真。
若G不是树也不是森林,则G中必含圈,又因为G是简单图 ,所以,每个面至少由l(l3)条边围成,又在l=3达到最大 值,由定理17.11可知
m l 2 (n k 1) (1 )(n k 1) 3(n 2) 3n 6 l 2 l 2
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6。
证明
由于极大平面图是连通图,由欧拉公式得:
r=2+m-n
(17.4)
又因为G是极大平面图,由定理17.7的必要性可知,G的每个 面的次数均为3,所以:
定理17.2 设GG,若G为非平面图,则G也是非平面图。 推论 Kn(n5)和K3,n(n3)都是非平面图。 定理17.3 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入而言) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。
17.3 平面图的判断
一、为判断定理做准备 1、 插入2度顶点和消去2度顶点 定义17.5 设e=(u,v)为图G的一条边,在G中删除e,增加新的顶点w, 使u、v均与w相邻,称为在G中插入2度顶点w。 设w为G中一个2度顶点,w与u、v相邻,删除w,增加新边 (u,v),称为在G中消去2度顶点w。
小节结束
17.2 欧拉公式
一、欧拉公式相关定理 1、 欧拉公式 定理17.8 对于任意的连通的平面图G,有 n-m+r=2 其中,n、m、r分别为G的顶点数、边数和面数。
定理17.9 对于具有k(k≥2)个连通分支的平面图G,有 n-m+r = k+1 其中n,m,r分别为G的顶点数,边数和面数。
2、极大平面图的主要性质 定理17.5 极大平面图是连通的。(根据注意!) 定理17.6 n(n3)阶极大平面图中不可能有割点和桥。
定理17.7 设G为n(n3) )阶简单连通的平面图,G为极大平面图 当且仅当G的每个面的次数均为3。
四、极小非平面图 定义17.4 若在非平面图G中任意删除一条边,所得图G为平面 图,则称G为极小非平面图。 由定义不难看出: K5, K3,3都是极小非平面图。 极小非平面图必为简单图。 例如:以下各图均为极小非平面图。
G的平面嵌入——画出的无边相交的平面图。
(2)是(1)的平面嵌入,(4)是(3)的平面嵌入。
2、 几点说明及一些简单结论 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时, 一定是指平面嵌入。 很显然:K5和K3,3都不是平面图。见P181
定理17.1 设GG,若G为平面图,则G也是平面图。
m
证明
l (n 2) l 2
由定理17.4(面的次数之和等于边数的2倍)及欧拉公式得
2m deg( Ri ) l r l (2 m n)
r i 1
l (n 2) 解得 m l 2
推论 K5, K3,3不是平面图。
证明
若K5是平面图,由于K5中无环和平行边,所以每个面的次数 均大于或等于l≥3,由定理17.10可知边数10应满足
10≤(3/(3-2))(5-2) = 9
这是个矛盾,所以K5不是平面图。 若K3,3是平面图,由于K3,3中最短圈的长度为l≥4,于是边数9 应满足 9≤ (4/(4-2))(6-2) = 8
这又是矛盾的,所以K3,3也不是平面图。
定理17.11 设G是有k(k≥2)个连通分支的平面图,各面的次数 至少为l(l≥3),则边数m与顶点数n应有如下关系:
二、平面图与对偶图的阶数、边数与面数之间的关系。 结论 设G*是连通平面图G的对偶图,n*、m*、r*和n、 m 、r分别为G*和G的顶点数、边数和面数,则 (1)n*= r
(2)m*=m
(3)r*=n (4)设G*的顶点v*i位于G的面Ri中,则dG*(vi *)=deg(Ri)
定理17.18 设G*是具有k(k2)个连通分支的平面图G的 对偶图, n*, m*, r*, n, m, r分别为G*和G的顶点数、边数 和面数, (1)n*= r
平面图的对偶图。
i 1
于是,对(17.1)的两边同时求和得
2k (ni mi ri ) ni mi ri n m r k 1
i 1 i 1 i 1 i 1 k k k k
经整理得 n-m+r = k+1。
2、 与欧拉公式有关的定理 定理17.10 设G为连通的平面图,且每个面的次数至少为 l(l<=3),则 G的边数与顶点数有如下关系:
2m= d (vi ) 6n
i 1 n
因而m 3n,这与定理17.12(m3n6)矛盾。 所以,假设不成立,即G的最小度(G)5。
说 明
本定理在图着色理论中占重要地位。
定理17.7 设G为n(n3) )阶简单连通的平面图,G为极大平面 图当且仅当G的每个面的次数均为3。
小节结束
R1
R0 R2
R3
平面图有4个面,deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8。
定理17.4 平面图G中所有面的次数之和等于边数m的两倍,即
deg( R ) 2m
证 明
i 1 i
r
其中r为G的面数
本定理中所说平面图是指平面嵌入。
e∈E(G),
当e为面Ri和Rj(i≠j)的公共边界上的边时,在计算Ri和Rj的次 数时,e各提供1。 当e只在某一个面的边界上出现时,则在计算该面的次数时 ,e提供2。
江苏科技大学本科生必修课程
离散数学
第17章 平面图及图的着 色
计算机系 周塔
本章–平面图的判断
–平面图的对偶图 –顶点着色及点色数 –地图的着色与平面图的点着色 –边着色及边色数
特别说明:
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 如果图G能以这样的方式画在曲面S上,即除顶点处外无 边相交,称图G为平面图。
2m deg( Ri ) 3r
i 1 r
(17.5)
将(17.4)代入(17.5),整理后得 m = 3n-6。
二、一个意义重大的定理 定理17.14 设G为简单平面图,则G的最小度(G)5。
证明
若阶数 n6,结论显然成立。
若阶数n7时,用反证法。
假设(G) 6,由握手定理可知:
相关文档
最新文档