九年级数学上册2.6《应用一元二次方程》教案2(新版)北师大版

合集下载

2.6应用一元二次方程(第1课时)-北师大版九年级数学上册教教案

2.6应用一元二次方程(第1课时)-北师大版九年级数学上册教教案

2.6 应用一元二次方程(第1课时)- 北师大版九年级数学上册教教案教学目标1.理解一元二次方程的概念和性质。

2.掌握应用一元二次方程解决实际问题的方法。

3.提高学生解决实际问题的思维能力和应用数学知识的能力。

教学内容1.一元二次方程的概念和性质。

2.应用一元二次方程解决实际问题的方法。

教学重点1.理解一元二次方程的概念和性质。

2.掌握应用一元二次方程解决实际问题的方法。

教学难点1.解决实际问题时,转化问题为一元二次方程的能力。

教学准备1.教师准备:课件、教案、黑板、白板、多媒体设备。

2.学生准备:课本、笔、纸。

1. 导入新知•教师通过引导学生回顾一元一次方程的解法,让学生回答两元一次方程的解法。

2. 引入新概念•教师引入一元二次方程的概念,告诉学生一元二次方程的一般形式为:ax2+bx+c=0,其中a eq0,x是未知数。

•教师解释方程中的系数a、b、c的含义,比较一元二次方程和一元一次方程的区别。

•教师给出一些一元二次方程的例子,让学生观察并总结规律。

3. 解一元二次方程•教师介绍解一元二次方程的方法。

首先,可以尝试因式分解法;如果无法因式分解,可以使用求根公式。

•教师通过例题演示两种解法的步骤和思路。

4. 应用一元二次方程解实际问题•教师给出一些实际问题,引导学生把问题转化为一元二次方程,并解决问题。

•学生进行小组活动,在小组内相互讨论和解决问题。

5. 练习•教师布置练习题,让学生独立完成,然后进行讲评。

6. 总结•教师总结本节课的内容和方法,强化学生对一元二次方程概念和解法的理解。

1.学生可以自行查找更多一元二次方程的应用问题,并尝试解决。

2.学生可以通过编写一元二次方程的计算机程序来加深对一元二次方程的理解。

课后作业1.完成课后习题,对本节课的知识进行复习和巩固。

2.分析一些实际问题,并尝试将其转化为一元二次方程,解决问题。

参考资料1.《北师大版九年级数学上册》2.《数学教育课程标准》。

初三数学上册(北师大版)《2.6应用一元二次方程(2)》【教案匹配版】最新中小学课程

初三数学上册(北师大版)《2.6应用一元二次方程(2)》【教案匹配版】最新中小学课程

(2900-50x-2500)×(8+4x)=5000
解得 x1=x2=3 2900-50×3=2750
答:每台冰箱的定价为2750元.
例题讲解
变换设未知数的方法
进价 售价 销量 每台利润 总利润
降价前 2500 2900
8
2900-2500 (2900-2500)×8
降价后 2500 292090-05-0xx
解得x1=x2=2750
答:每台冰箱的定价为2750元.
巩固练习
某商场将进货价为30元的台灯以40元售出,
平均每月能售出600个。调查发现:售价在40元 至60元范围内,这种台灯的售价每上涨1元,其 销售量就将减少10个。为了实现平均每月10000 元的销售利润,这种台灯的售价应定为多少? 这时应进台灯多少个?请利用方程解决这一问题。
本题的主要等量关系:
每个台灯的利润×每月的销量=10000元 解:设售价上涨x元 ,由题意得
(40+x-30)×(600-10x)=10000
解得x1=10,x2=40(不合题意,舍去) 则40+10=50,600-10×10=500
答:每个台灯的售价为50元,进货量为500个。
问题变式
例:新华商场销售某种冰箱,每台进货价为2500元,
问题引入
例:新华商场销售某种冰箱,每台进货价 为2500元,售价为2900元。 (1)求利润率;
利润率=
利润 成本
×100%
利润=售价-成本
解:
2900-2500 2500
×100%
=
16%
答:利润率为16%
问题引入
例:新华商场销售某种冰箱,每台进货价 为2500元,售价为2900元。

北师大版九年级数学上册《应用一元二次方程》第2课时示范公开课教学设计

北师大版九年级数学上册《应用一元二次方程》第2课时示范公开课教学设计

第二章一元二次方程6 应用一元二次方程第2课时一、教学目标1.利用一元二次方程解决平均变化率问题和销售问题.2.经历分析具体问题中的数量关系、建立方程模型并解决问题的过程.3.在列方程解决实际问题的过程中,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤.4.能根据具体问题的实际意义检验结果的合理性,增强数学应用意识和能力.二、教学重难点重点:利用一元二次方程解决决平均变化率问题和销售问题.难点:分析具体问题中的数量关系、建立方程模型并解决问题.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1某公司1 月份的生产成本是400 万元,由于改进生产技术,生产成本逐月下降,3 月份的生产成本是361 万元. 假设该公司2,3 月每个月生产成本的下降率都相同. 求每个月生产成本的下降率.分析:设每月生产成本的下降率为x.等量关系:从1月份连续下降两个月后的生产成本=3月份的生产成本解:设该公司每个月生产成本的下降率为x,根据题意,得400(1-x)2=361.解得x1=5%,x2=1.95>1(不合题意,舍去).所以,每个月生产成本的下降率为5%.例2 某商场今年2月份的营业额为440万元,4月份的营业额达到633.6万元.求2月份到4月份营业额的月平均增长率.分析:设2月份到4月份营业额的月平均增长率为x.等量关系:从2月份开始连续增加两个月后的营业额=4月份的营业额解:设2月份到4月份营业额的月平均增长率为x,根据题意,得440(1+x)2=633.6.解得x1=0.2=20%,x2=-2.2(舍去).所以,3月份到5月份营业额的月平均增长率为20%.注意:增长率不可为负,但可以超过1.例3新华商场销售某种冰箱,每台进货价为2500 元.市场调研表明:当销售价为2900 元时,平均每天能售出8 台;而当销售价每降低50 元时,平均每天就能多售出4 台.商场要想使这种冰箱的销售利润平均每天达到5000 元,每台冰箱的降价应为多少元?分析:售价- 进价= 利润,每台利润×每天的销售量= 每天的总利润设每台冰箱降价x元,售价每降低50 元,多售出4 台.台.售价每降低100 元,多售出4×10050售价每降低x元,多售出4×x台.50解:设每台冰箱降价x元,根据题意,得) = 5000.( 2900-x-2500)(8+4×x50解这个方程,得x1 = x2 = 150.2900-150 = 2750(元).所以,每台冰箱应定价为2750 元.【做一做】某商场将进货价为30 元的台灯以40 元售出,平均每月能售出600 个.调查发现:售价在40 元至60 元范围内,这种台灯的售价每上涨1 元,其销售量就将减少10 个.为了实现平均每月10 000 元的销售利润,这种台灯的售价应定为多少?这时应购进台灯多少个?解:设这种台灯售价上涨x元,根据题意,得(40+x-30)(600-10x) = 10000.解这个方程,得x1 = 10,x2 = 40(舍).售价为:40+x = 40+10 = 50(元).应购置台灯:600-10x = 600-10×10 = 500(个).所以,这种台灯的售价应定为50元,这时应购进台灯500个.【方法归纳】思维导图的形式呈现本节课的主要内容:。

北师大课标版初中数学九年级上册第二章2.6应用一元二次方程教学设计

北师大课标版初中数学九年级上册第二章2.6应用一元二次方程教学设计

北师大课标版初中数学九年级上册第二章2.6应用一元二次方程教学设计一元二次方程的应用——营销问题教学设计教学目标:1.知识与技能目标(1)以一元二次方程解决的实际问题为载体,学生初步掌握数学建模的基本方法.(2)通过对一元二次方程应用问题的学习和研究,学生体验数学建模的过程,从而学会发现、提出日常生活、生产或其他学科中可以利用一元二次方程来解决的实际问题,并正确地用语言表述问题及其解决过程.2.过程与方法目标通过自主探索、合作交流,使学生经历动手实践、展示讲解、探究讨论等活动,发展学生数学思维,培养学生合作学习意识、动手、动脑习惯,激发学生学习热情。

3.情感态度与价值观目标学生认识到数学与生活紧密相连,数学活动充满着探索与创造,他们在学习活动中获得成功的体验,建立自信心,从而更加热爱数学、热爱生活.教学重点:列一元二次方程解利润问题应用题.教学难点:发现利润问题中的等量关系,将实际问题提炼成数学问题.关键:建立一元二次方程的数学模型教法:创设情境——引导探究——类比归纳——鼓励创新.学法:自主探索——合作交流——反思归纳——乐于创新.教学过程:一、复习回顾,引入新知1、提问1、以前我们学习了列几次方程解应用题?①列一元一次方程解应用题;②列二元一次方程组解应用题;③列分式方程解应用题提问2、列方程解应用题的基本步骤怎样①审(审题);②找(找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系);③设(设元,包括设直接未知数和间接未知数);④表(用所设的未知数字母的代数式表示其他的相关量);⑤列(列方程);⑥解(解方程);⑦检验(注意根的准确性及是否符合实际意义).2.某糖厂2019年食糖产量为at,如果在以后两年平均增长的百分率为x,•那么预计2019年的产量将是________.3. 某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出元(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000解得:x1=80,x2=60当x1=80时,进货500-10(80-50)=200kg<250kg,满足题意.当x2=60时,进货500-10(60-50)=400kg>250kg,(舍去).四、小结通过本课的学习,大家有什么新的收获和体会?本节课应掌握什么?五、作业:教材P53,第7题.。

新北师大版九年级上册第二章一元二次方程全章教案

新北师大版九年级上册第二章一元二次方程全章教案

第二章 一元二次方程 2.1认识一元二次方程-(1) 晋公庙中学数学组学习目标:1、会根据具体问题列出一元二次方程。

通过“花边有多宽”,“梯子的底端滑动多少米”等问题的分析,列出方程,体会方程的模型思想,2.通过分析方程的特点,抽象出一元二次方程的概念,培养归纳分析的能力 3.会说出一元二次方程的一般形式,会把方程化为一般形式。

学习重点:一元二次方程的概念学习难点:如何把实际问题转化为数学方程 学习过程:一、导入新课:什么是一元一次方程?什么是二元一次方程?? 二、自学指导:1、自主学习:自学课本31页至32页内容,独立思考解答下列问题:1)情境问题:列方程解应用题:一个面积为120 m 2的矩形苗圃,它的长比宽多2m 。

苗圃的长和宽各是多少?设未知数列方程。

你能将方程化成ax 2+bx+c=0的形式吗? 阅读课本P48,回答问题: 1)什么是一元二次方程?2)什么是一元二次方程的一般形式?二次项及二次项系数、一次项及一次项系数、常数项?2、合作交流:1.一元二次方程应用举例:1)一块四周镶有宽度相等的花边的地毯,如图所示,它的长为8m ,宽为5m ,如果地毯中央长方形图案的面积为18m 2,那么花边有多宽?列 方程并化成一般形式。

2)求五个连续整数,使前三个数的平方和等于后两个数的平方和。

如果设中间的一个数为x ,列 方程并化成一般形式.3)如图,一个长为10m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m ,如果梯子的顶端下滑1m ,那么梯子的底端滑动多少米? 列出方程并化简。

如果设梯子底端滑动x m ,列 方程并化成一般形式。

2。

知识梳理:1)一元二次方程的概念:强调三个特征:①它是______方程;②它只含______未知数;③方程中未知数的最高次数是__________.一元二次方程的一般形式: 在任何一个一元二次方程中,_______是必不可少的项.2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0) ② ___________ (a ≠0,b ≠0,c=0) ③____________ (a ≠0,b=0,c ≠0) ④___________ (a ≠0,b=0,c=0) 三、当堂训练81、判断下列方程是不是一元二次方程,并说明理由。

北师大版九年级数学上册教案:2.6应用一元二次方程

北师大版九年级数学上册教案:2.6应用一元二次方程
4.能够运用上述方法解决实际问题,并检验结果是否符合实际意义;
5.通过实际问题的解决,培养学生的逻辑思维能力和解决实际问题的能力。
本节课将围绕以上内容进行讲解和练习,使学生更好地理解和掌握一元二次方程的应用。
二、核心素养目标
1.理解与运用:通过实际问题情境,使学生能够理解一元二次方程的实际意义,掌握建立方程的方法,培养解决实际问题的能力。
在教学过程中,教师应针对上述重点和难点内容,设计具有针对性的教学活动,通过实例讲解、互动讨论、个别辅导等方式,帮助学生理解和掌握一元二次方程的应用。同时,教师应关注学生的个别差异,提供不同层次的练习题,以便于学生逐步克服难点,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《应用一元二次方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决面积、速度或加速度等问题的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元二次方程在现实生活中的应用。
5.数学情感与态度:通过解决实际问题,激发学生学习数学的兴趣,增强克服困难的信心,培养学生积极向上的数学情感和态度。
三、教学难点与重点
1.教学重点
-重点一:掌握根据实际问题抽象出一元二次方程的能力。例如,从实际情境中提炼出关键信息,正确设定未知数,建立一元二次方程。
-重点二:熟练运用一元二次方程的常用解法(直接开平方法、因式分解法、配方法、求根公式)解决问题。
五、教学反思
在上完这节课后,我进行了深入的思考。首先,我发现学生在建立一元二次方程解决实际问题时存在一定难度。他们往往难以从实际问题中抽象出数学模型,这让我意识到需要在这方面加强引导和练习。在接下来的教学中,我会多设计一些与生活密切相关的实际问题,帮助学生逐步培养这种能力。

北师大版九年级数学上册说课稿:2.6 应用一元二次方程

北师大版九年级数学上册说课稿:2.6 应用一元二次方程

北师大版九年级数学上册说课稿:2.6应用一元二次方程一. 教材分析北师大版九年级数学上册第2.6节“应用一元二次方程”是学生在学习了二元一次方程组、一元一次方程和一元二次方程的基础上进行学习的。

这一节的主要内容是通过实例让学生了解并掌握一元二次方程的应用,培养学生的实际问题解决能力。

教材中提供了丰富的例题和练习题,旨在帮助学生巩固所学知识。

二. 学情分析九年级的学生已经具备了一定的代数基础,对一元一次方程和一元二次方程有了初步的了解。

但是,学生在解决实际问题时,往往会将数学知识与实际问题脱节,不能很好地将数学知识应用于解决实际问题。

因此,在教学过程中,教师需要引导学生将数学知识与实际问题相结合,提高学生的问题解决能力。

三. 说教学目标1.知识与技能目标:使学生了解一元二次方程在实际问题中的应用,掌握一元二次方程的解法,提高学生解决实际问题的能力。

2.过程与方法目标:通过实例分析,培养学生将实际问题转化为数学模型的能力,提高学生的数学思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生积极解决问题的态度,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:一元二次方程在实际问题中的应用,一元二次方程的解法。

2.教学难点:将实际问题转化为一元二次方程,灵活运用一元二次方程解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,通过实例引导学生自主探究,合作交流,发现并总结一元二次方程的解法及其在实际问题中的应用。

2.教学手段:利用多媒体课件辅助教学,通过动画演示和实例分析,帮助学生更好地理解一元二次方程的应用。

六. 说教学过程1.导入:通过一个简单的实际问题引出一元二次方程,激发学生的学习兴趣。

2.新课讲解:讲解一元二次方程的定义、解法及其在实际问题中的应用。

通过丰富的例题和练习题,让学生在实践中掌握一元二次方程的解法。

3.课堂练习:让学生在课堂上独立完成练习题,巩固所学知识。

北师大初中数学九上《26应用一元二次方程》word教案(2)

北师大初中数学九上《26应用一元二次方程》word教案(2)

2.6 应用一元二次方程教学目标:知识技能目标通过探索,学会解决有关增长率的问题. 过程性目标经历探索过程,培养合作学习的意识,体会数学与实际生活的联系.情感态度目标 通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神.重点和难点: 重点:列一元二次方程解决实际问题.难点:寻找实际问题中的相等关系.教学过程:一、创设情境我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q 元,比去年同期增长x %;环境污染比去年降低y %;某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.二、探究归纳分析 翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.解 设原值为1,平均年增长率为x ,则根据题意得2)1(12=+⨯x解这个方程得 12,1221--=-=x x . 因为122--=x 不合题意舍去,所以%4.4112≈-=x .答 这两年的平均增长率约为41.4%.例2 为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%,求这个年级每年植树数的平均增长率.(精确到0.1%)分析 至今已成活2000棵,指的是连续三年春季上山植树的总和.解 设这个年级每年植树数的平均增长率为x ,则第二年种了400(1+x )棵; 第三年种了400(1+x )2棵;三年一共种了400+400(1+x )+400(1+x )2棵;三年一共成活了[400+400(1+x )+400(1+x )2]×95%棵.根据题意列方程得[400+400(1+x )+400(1+x )2]×95%=2000解这个方程得x 1≈0.624=62.4%x 2≈-3.624=-362.4%但x 2=-362.4%不合题意,舍去,所以x =62.4%.答这个年级每年植树数的平均增长率为62.4% .课堂练习1.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0. 1%)三、交流反思这节棵学习了两个有关增长率的问题,通过探索,掌握了增长率问题的解题方法,学会了解相同增长率和不同增长率的问题.四、检测反馈五、布置作业习题2.10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.6 应用一元二次方程
教学目标:
知识技能目标
通过探索,学会解决有关增长率的问题.
过程性目标
经历探索过程,培养合作学习的意识,体会数学与实际生活的联系
情感态度目标
通过合作交流进一步感知方程的应用价值,培养学生的创新意识和实践能力,通过交流互动,逐步培养合作的意识及严谨的治学精神
重点和难点:
重点:列一元二次方程解决实际问题.
难点:寻找实际问题中的相等关系.
教学过程:
一、创设情境
我们经常从电视新闻中听到或看到有关增长率的问题,例如今年我市人均收入Q元,比去年同期增长x%环境污染比去年降低y%某厂预计两年后使生产总值翻一番……由此我们可以看出,增长率问题无处不在,无时不有,这节课我们就一起来探索增长率问题.
二、探究归纳
例1阳江市市政府考虑在两年后实现市财政净收入翻一番,那么这两年中财政净收入的平均年增长率应为多少?
分析翻一番,即为原净收入的2倍.若设原值为1,那么两年后的值就是2.
解设原值为1,平均年增长率为x,则根据题意得
1 (1 X)
2 2
解这个方程得x1 2 1 , x2 2 1 .
因为X2 2 1不合题意舍去,所以
x 2 1 41.4% .
答这两年的平均增长率约为41.4%.
探索若调整计划,两年后的财政净收入值为原值的 1.5倍、1.2倍、…,那么两年中的平均年增长率相应地调整为多少?
又若第二年的增长率为第一年的2倍,那么第一年的增长率为多少时可以实现市财政
净收入翻一番?
例2为了绿化学校附近的荒山,某校初三年级学生连续三年春季上山植树,至今已成活了2000棵.已知这些学生在初一时种了400棵,若平均成活率95%求这个年级每年植树
数的平均增长率.(精确到0.1%)
分析至今已成活2000棵,指的是连续三年春季上山植树的总和
解设这个年级每年植树数的平均增长率为x,则
第二年种了400(1+X)棵;
第三年种了400(1 + x)2棵;
三年一共种了400+ 400(1 +x) + 400(1+x)2棵;
三年一共成活了[400 + 400(1+x) + 400(1+x) ] X 95 %棵.
根据题意列方程得
[400 + 400(1+ x) + 400(1 +x)2] X 95%= 2000
解这个方程得
X仟 0.624=62.4%
X2~ -3.624=-362.4%
但X2=-362.4%不合题意,舍去,所以
x=62.4%.
答这个年级每年植树数的平均增长率为62.4% .
课堂练习
1. 某工厂准备在两年内使产值翻一番,求平均每年增长的百分率. (精确到0. 1%)
2. 某服装店花1200元进了一批服装,按40%的利润定价,无人购买,决定打折出售,
但仍无人购买,结果又一次打折后才售完,经结算这批服装共盈利280元,若两次打折相同,
问每次打了多少折?
三、交流反思
这节棵学习了两个有关增长率的问题,通过探索,掌握了增长率问题的解题方法,学会了解相同增长率和不同增长率的问题.
四、检测反馈
1. 水果店花1500元进了一批水果,按50%勺利润定价,无人购买.决定打折出售,但仍
无人购买,结果又一次打折后才售完•经结算,这批水果共盈利500元•若两次打折相同,
每次打了几折?(精确到0.1折)
2. 某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名
家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利
润.这批演出服共生产了多少套?
3. 一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?
五、布置作业
习题2.10。

相关文档
最新文档