电路实验报告
电路的实验报告

一、实验目的1. 熟悉数字温度传感器的工作原理和性能指标;2. 掌握基于单片机的数字温度传感器电路设计方法;3. 学会使用单片机进行温度数据的采集、处理和显示;4. 提高电路设计、调试和实验操作能力。
二、实验原理1. 数字温度传感器原理数字温度传感器是一种将温度信号转换为数字信号的传感器。
本实验采用DS18B20数字温度传感器,其具有以下特点:(1)高精度:±0.5℃(-10℃~+85℃);(2)高分辨率:9位分辨率(0.0625℃);(3)非易失性:存储温度数据;(4)单总线接口:简化电路设计。
2. 单片机原理本实验采用STC89C52单片机作为主控芯片,具有以下特点:(1)高性能:12MHz主频;(2)低功耗:工作电压2.0~5.5V;(3)丰富的I/O口:32个;(4)内置定时器/计数器:2个;(5)内部RAM:128字节;(6)外部存储器扩展:支持最大64KB。
三、实验设备及器材1. 实验仪器:数字温度传感器DS18B20、STC89C52单片机、万用表、示波器、实验板等;2. 实验软件:Keil C51、Proteus仿真软件。
四、实验内容及步骤1. 硬件电路设计(1)电路原理图设计:根据实验要求,设计基于DS18B20和STC89C52单片机的数字温度传感器电路原理图。
电路包括DS18B20温度传感器、单片机、显示模块(如LCD1602)等;(2)PCB板设计:根据电路原理图,设计PCB板布局图和布线图。
2. 软件设计(1)单片机程序编写:使用Keil C51编写单片机程序,实现DS18B20的初始化、温度数据的读取、显示等;(2)Proteus仿真:使用Proteus仿真软件对电路进行仿真,验证程序的正确性。
3. 硬件调试(1)电路焊接:根据PCB板设计,焊接电路板;(2)电路测试:使用万用表测试电路各部分电压、电流等参数,确保电路正常工作;(3)程序下载:使用串口下载线将单片机程序下载到STC89C52单片机中。
实验报告模板电路原理(3篇)

第1篇一、实验名称二、实验目的1. 理解电路原理图的基本构成和符号;2. 掌握电路基本元件(电阻、电容、电感等)的特性和应用;3. 学会电路分析方法,如基尔霍夫定律、节点电压法、回路电流法等;4. 提高电路仿真和实验操作能力。
三、实验原理1. 电路基本概念电路是由各种电子元件按照一定规律连接而成的整体。
电路的基本元件包括电阻、电容、电感、二极管、晶体管等。
电路中的电压、电流、功率等参数遵循一定的物理规律。
2. 电路分析方法(1)基尔霍夫定律基尔霍夫定律包括节点电压定律和回路电流定律。
节点电压定律指出,在电路中任意节点处,流入该节点的电流之和等于流出该节点的电流之和。
回路电流定律指出,在电路中任意回路中,沿回路方向各元件电压之和等于回路电源电压之和。
(2)节点电压法节点电压法是一种电路分析方法,通过求解电路中各个节点的电压来分析电路。
节点电压法的基本步骤如下:① 设定电路中各个节点的电压;② 根据基尔霍夫定律列出节点电压方程;③ 解方程求得各个节点的电压。
(3)回路电流法回路电流法是一种电路分析方法,通过求解电路中各个回路的电流来分析电路。
回路电流法的基本步骤如下:① 设定电路中各个回路的电流;② 根据基尔霍夫定律列出回路电流方程;③ 解方程求得各个回路的电流。
3. 电路仿真软件电路仿真软件可以帮助我们快速、准确地分析电路。
常用的电路仿真软件有Multisim、Proteus等。
四、实验内容及步骤1. 熟悉电路原理图的基本构成和符号;2. 分析电路的基本元件特性和应用;3. 根据电路原理图,运用基尔霍夫定律、节点电压法、回路电流法等方法分析电路;4. 利用电路仿真软件对电路进行仿真,验证理论分析的正确性;5. 对实验数据进行整理和分析,得出实验结论。
五、实验数据记录与分析1. 记录实验中测得的电路参数,如电压、电流、功率等;2. 将实验数据与理论分析结果进行对比,分析误差原因;3. 对实验结果进行总结,提出改进措施。
基本电路组成实验报告(3篇)

第1篇一、实验目的1. 理解并掌握基本电路元件(电阻、电容、电感、二极管、晶体管等)的特性及其在电路中的应用。
2. 学习电路基本分析方法,包括串联、并联电路的等效变换,基尔霍夫定律的应用。
3. 通过实验,加深对电路理论知识的理解和实际应用能力的提高。
二、实验器材1. 电阻器(1kΩ、10kΩ、100kΩ)2. 电容器(0.1μF、0.01μF、1μF)3. 电感器(100μH、10μH、1μH)4. 二极管(1N4148、1N4007)5. 晶体管(2N3904、2N2222)6. 万用表7. 信号发生器8. 电路板9. 连接线三、实验原理电路由基本元件组成,通过不同的连接方式,实现电路的各种功能。
本实验主要研究以下几种基本电路:1. 电阻串联电路2. 电阻并联电路3. 电容串联电路4. 电容并联电路5. 电感串联电路6. 电感并联电路7. 二极管电路8. 晶体管放大电路四、实验内容及步骤1. 电阻串联电路(1)连接电路:将电阻R1、R2串联,两端接电源。
(2)测量电阻值:用万用表测量R1、R2的电阻值。
(3)计算总电阻:根据串联电路的等效电阻公式,计算总电阻Rt。
(4)测量总电阻:用万用表测量电路的总电阻值。
2. 电阻并联电路(1)连接电路:将电阻R1、R2并联,两端接电源。
(2)测量电阻值:用万用表测量R1、R2的电阻值。
(3)计算总电阻:根据并联电路的等效电阻公式,计算总电阻Rt。
(4)测量总电阻:用万用表测量电路的总电阻值。
3. 电容串联电路(1)连接电路:将电容C1、C2串联,两端接电源。
(2)测量电容值:用万用表测量C1、C2的电容值。
(3)计算总电容:根据串联电路的等效电容公式,计算总电容Ct。
(4)测量总电容:用万用表测量电路的总电容值。
4. 电容并联电路(1)连接电路:将电容C1、C2并联,两端接电源。
(2)测量电容值:用万用表测量C1、C2的电容值。
(3)计算总电容:根据并联电路的等效电容公式,计算总电容Ct。
电路课实验报告总结(3篇)

第1篇一、实验背景电路课是一门理论与实践相结合的课程,通过实验可以加深对电路理论知识的理解,提高动手能力和解决问题的能力。
本实验报告总结了我在电路课中所完成的几个实验,包括基本放大电路、差分放大电路、稳压电路等,并对实验过程、实验结果及心得体会进行了总结。
二、实验内容及过程1. 基本放大电路实验(1)实验目的:掌握放大电路直流工作点的调整与测量方法,研究交流放大器的工作情况,加深对其工作原理的理解。
(2)实验过程:搭建基本放大电路,调整电路参数,测量静态工作点,分析电路性能。
(3)实验结果:通过实验,掌握了放大电路直流工作点的调整方法,分析了电路的增益、带宽、输入输出阻抗等性能指标。
2. 差分放大电路实验(1)实验目的:提高对差分放大电路性能及特点的理解,学习其性能指标测试方法。
(2)实验过程:搭建差分放大电路,调整电路参数,测量差模电压放大倍数、共模电压放大倍数、共模抑制比等性能指标。
(3)实验结果:通过实验,了解了差分放大电路的工作原理,掌握了性能指标测试方法,分析了电路的共模抑制能力、温度稳定性等特性。
3. 稳压电路实验(1)实验目的:学习稳压电路的设计原理,提高对稳压电路性能指标的理解。
(2)实验过程:搭建稳压电路,调整电路参数,测量输出电压、输出电流、纹波电压等性能指标。
(3)实验结果:通过实验,掌握了稳压电路的设计方法,分析了电路的稳压精度、负载调节范围、温度稳定性等特性。
三、实验心得体会1. 理论与实践相结合:电路课实验使我深刻体会到理论知识与实践操作的重要性。
只有将理论知识应用于实际操作中,才能更好地理解电路原理,提高动手能力。
2. 分析问题、解决问题的能力:在实验过程中,遇到各种问题,通过查阅资料、分析电路原理,最终找到解决问题的方法。
这使我更加自信地面对实际问题。
3. 团队合作:实验过程中,与同学互相帮助、共同讨论,提高了团队协作能力。
在今后的学习和工作中,这种团队合作精神将使我受益匪浅。
电路知识实验报告总结(3篇)

第1篇一、实验目的本次实验旨在通过实际操作,加深对电路基本原理的理解,掌握电路的基本分析方法,提高动手能力和实验技能。
通过本次实验,我们学习了电路的基本元件、电路连接方式、电路分析方法以及电路实验的基本步骤。
二、实验内容1. 电路元件识别与检测(1)识别电路元件:我们首先对电路中的电阻、电容、电感、二极管、三极管等元件进行了识别,熟悉了各种元件的外观特征和符号表示。
(2)检测电路元件:通过万用表等工具,我们对电路元件的电阻、电容、电感等参数进行了检测,验证了元件的参数是否符合要求。
2. 电路连接方式(1)串联电路:我们将电路元件按照串联方式进行连接,观察电路中电流、电压的变化规律,验证了串联电路的特点。
(2)并联电路:我们将电路元件按照并联方式进行连接,观察电路中电流、电压的变化规律,验证了并联电路的特点。
(3)串并联混合电路:我们将电路元件按照串并联混合方式进行连接,观察电路中电流、电压的变化规律,验证了串并联混合电路的特点。
3. 电路分析方法(1)等效电路法:我们将复杂电路简化为等效电路,通过分析等效电路,找出电路的主要参数,从而分析电路的性能。
(2)节点电压法:我们利用节点电压法,分析了电路中各个节点的电压,从而了解电路的工作状态。
(3)回路电流法:我们利用回路电流法,分析了电路中各个回路的电流,从而了解电路的工作状态。
4. 电路实验基本步骤(1)电路连接:根据电路图,将电路元件按照要求连接起来。
(2)电路测试:利用万用表等工具,对电路进行测试,观察电路的性能。
(3)数据记录:记录实验过程中的各项数据,如电流、电压、电阻等。
(4)数据分析:对实验数据进行处理和分析,得出结论。
三、实验结果与分析1. 电路元件识别与检测通过实验,我们成功识别了电路中的各种元件,并检测了它们的参数,验证了元件的参数符合要求。
2. 电路连接方式通过实验,我们掌握了串联、并联和串并联混合电路的连接方法,观察了电路中电流、电压的变化规律,验证了各种电路的特点。
电路实验报告

电路实验报告一、实验目的本次电路实验的主要目的是深入理解电路的基本原理和特性,通过实际操作和测量,掌握电路中电流、电压、电阻等基本物理量的关系,以及学会使用常见的电路测量仪器和工具。
二、实验设备与材料1、直流电源:提供稳定的电压输出。
2、电阻箱:用于改变电路中的电阻值。
3、电流表:测量电路中的电流。
4、电压表:测量电路中的电压。
5、导线若干:用于连接电路元件。
三、实验原理1、欧姆定律:在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。
即 I = U / R ,其中 I表示电流,U 表示电压,R 表示电阻。
2、串联电路:电路中各个元件依次首尾相连,电流只有一条路径,通过各元件的电流相等,总电压等于各元件两端电压之和。
3、并联电路:电路中各个元件的两端分别连接在一起,电流有多条路径,各支路两端的电压相等,总电流等于各支路电流之和。
四、实验内容与步骤实验一:测量电阻的阻值1、按照电路图连接好电路,将电阻箱接入电路中。
2、调节电阻箱的阻值,分别记录不同阻值下电流表和电压表的读数。
3、根据欧姆定律计算出电阻的测量值,并与电阻箱的标称值进行比较。
实验二:探究串联电路中电流和电压的关系1、连接串联电路,依次将两个电阻串联接入电路中。
2、分别测量通过每个电阻的电流以及它们两端的电压。
3、分析数据,验证串联电路中电流处处相等,总电压等于各电阻两端电压之和。
实验三:探究并联电路中电流和电压的关系1、连接并联电路,将两个电阻并联接入电路。
2、测量干路电流以及各支路的电流和电压。
3、分析数据,验证并联电路中各支路电压相等,总电流等于各支路电流之和。
五、实验数据记录与处理实验一:|电阻箱阻值(Ω)|电流表读数(A)|电压表读数(V)|计算电阻值(Ω)||||||| 100 | 01 | 10 | 100 || 200 | 005 | 10 | 200 || 500 | 002 | 10 | 500 |实验二:|电阻 R1(Ω)|电阻 R2(Ω)|电流 I(A)|电压 U1(V)|电压 U2(V)|总电压 U(V)||||||||| 100 | 200 | 002 | 2 | 4 | 6 || 200 | 300 | 001 | 2 | 3 | 5 |实验三:|电阻 R3(Ω)|电阻 R4(Ω)|干路电流 I(A)|支路电流 I1(A)|支路电流 I2(A)|电压 U(V)||||||||| 100 | 200 | 003 | 002 | 001 | 2 || 200 | 400 | 005 | 002 | 003 | 2 |通过对实验数据的分析,我们可以得出以下结论:在实验一中,测量得到的电阻值与电阻箱的标称值基本相符,误差在可接受范围内,验证了欧姆定律的正确性。
实验报告的电路分析(3篇)

第1篇一、实验目的1. 了解电路的基本组成和基本概念;2. 掌握电路的基本分析方法,包括基尔霍夫定律、欧姆定律等;3. 熟悉电路的仿真软件,如Multisim等;4. 通过实验,验证电路的理论知识,提高电路分析能力。
二、实验原理电路分析是电子技术领域的基础,主要包括电路的基本组成、基本概念、基本分析方法以及电路仿真等。
本实验主要涉及以下内容:1. 电路的基本组成:电路由电源、负载、导线和元件组成;2. 电路的基本概念:电压、电流、电阻、电容、电感等;3. 电路的基本分析方法:基尔霍夫定律、欧姆定律等;4. 电路仿真:利用仿真软件对电路进行仿真分析。
三、实验仪器与设备1. 电路实验箱;2. 万用表;3. 仿真软件(如Multisim);4. 电路元件:电阻、电容、电感、二极管、三极管等。
四、实验内容1. 电路元件的识别与测量:识别电路元件,测量其参数(如电阻、电容、电感等);2. 电路的基本分析方法验证:利用基尔霍夫定律、欧姆定律等分析简单电路,验证理论;3. 电路仿真:利用仿真软件对电路进行仿真分析,验证理论。
五、实验步骤1. 识别电路元件,测量其参数;2. 利用基尔霍夫定律、欧姆定律等分析简单电路,验证理论;3. 在仿真软件中搭建电路,进行仿真分析;4. 对比理论分析与仿真结果,分析误差原因。
六、实验结果与分析1. 电路元件的识别与测量结果:根据实验数据,可得到各元件的参数;2. 电路的基本分析方法验证结果:通过理论分析与实验结果的对比,验证了基尔霍夫定律、欧姆定律等理论;3. 电路仿真结果:在仿真软件中搭建电路,进行仿真分析,验证了理论。
七、实验总结1. 通过本次实验,掌握了电路的基本组成、基本概念、基本分析方法以及电路仿真等知识;2. 提高了电路分析能力,为后续学习电子技术奠定了基础;3. 在实验过程中,发现了理论分析与实验结果之间的误差,为以后的学习提供了参考。
八、实验报告撰写注意事项1. 实验报告应包括实验目的、原理、仪器与设备、内容、步骤、结果与分析、总结等部分;2. 实验数据应准确、完整,分析过程应清晰、严谨;3. 实验报告应遵循学术规范,不得抄袭。
手工制作电路实验报告(3篇)

第1篇一、实验目的1. 熟悉电路基本元件的识别和使用方法。
2. 掌握基本的电路连接技巧。
3. 了解电路的工作原理,提高动手能力。
二、实验器材1. 电源:直流电源,电压3V~12V可调。
2. 电阻:1kΩ、10kΩ、100kΩ各一个。
3. 电容:0.1μF、0.01μF各一个。
4. 电感:10mH一个。
5. 二极管:1N4007一个。
6. 三极管:8050一个。
7. 开关:按钮开关一个。
8. 导线:多股软线若干。
9. 印制电路板:一块。
10. 电烙铁、焊锡、助焊剂等焊接工具。
三、实验原理本实验主要涉及以下电路元件及其基本工作原理:1. 电阻:限制电流流动,产生电压降。
2. 电容:储存电荷,通过充放电实现电路的滤波、延时等功能。
3. 电感:储存磁场能量,通过自感实现电路的滤波、延时等功能。
4. 二极管:具有单向导电性,用于整流、稳压、开关等电路。
5. 三极管:具有放大、开关等作用,是模拟和数字电路中常用的元件。
四、实验步骤1. 根据电路图,在印制电路板上布置电路元件的位置。
2. 使用电烙铁和焊锡,将电路元件按照电路图连接起来。
3. 检查电路连接是否正确,确保没有短路、断路等现象。
4. 将电路接入电源,观察电路工作情况。
5. 分析实验现象,总结实验结果。
五、实验数据与分析1. 电阻:测量不同阻值的电阻在电路中的电压降,验证欧姆定律。
2. 电容:测量不同电容在电路中的充放电过程,观察电容的滤波、延时等功能。
3. 电感:测量不同电感在电路中的自感现象,观察电感的滤波、延时等功能。
4. 二极管:测量二极管的正向导通和反向截止电压,验证二极管的单向导电性。
5. 三极管:测量三极管的放大和开关特性,观察三极管在不同工作状态下的输出电压。
六、实验结果1. 电阻:通过实验验证了欧姆定律的正确性。
2. 电容:观察到了电容的充放电过程,验证了电容的滤波、延时等功能。
3. 电感:观察到了电感的自感现象,验证了电感的滤波、延时等功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录实验一电位、电压的测定及电路电位图的绘制实验二基尔霍夫定律的验证实验三线性电路叠加性和齐次性的研究实验四受控源研究实验六交流串联电路的研究实验八三相电路电压、电流的测量实验九三相电路功率的测量实验一电位、电压的测定及电路电位图的绘制一.实验目的1.学会测量电路中各点电位和电压方法。
理解电位的相对性和电压的绝对性;2.学会电路电位图的测量、绘制方法;3.掌握使用直流稳压电源、直流电压表的使用方法。
二.原理说明在一个确定的闭合电路中,各点电位的大小视所选的电位参考点的不同而异,但任意两点之间的电压(即两点之间的电位差)则是不变的,这一性质称为电位的相对性和电压的绝对性。
据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。
若以电路中的电位值作纵坐标,电路中各点位置(电阻或电源)作横坐标,将测量到的各点电位在该平面中标出,并把标出点按顺序用直线条相连接,就可得到电路的电位图,每一段直线段即表示该两点电位的变化情况。
而且,任意两点的电位变化,即为该两点之间的电压。
在电路中,电位参考点可任意选定,对于不同的参考点,所绘出的电位图形是不同,但其各点电位变化的规律却是一样的。
三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源(EEL-I、II、III、IV均含在主控制屏上,可能有两种配置(1)+6V(+5V),+12 V,0~30V可调或(2)双路0~30V可调。
)3.EEL-30组件(含实验电路)或EEL-53组件四.实验内容实验电路如图1-1所示,图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V。
1.测量电路中各点电位以图1-1中的A点作为电位参考点,分别测量B、C、D、E、F各点的电位。
用电压表的黑笔端插入A点,红笔端分别插入B、C、D、E、F各点进行测量,数据记入表1-1中。
以D点作为电位参考点,重复上述步骤,测得数据记入表1-1中。
图1-12.电路中相邻两点之间的电压值在图1-1中,测量电压U AB:将电压表的红笔端插入A点,黑笔端插入B点,读电压表读数,记入表1-1中。
按同样方法测量U BC、U CD、U DE、U EF、及U FA,测量数据记入表1-1中。
五.实验注意事项1.EEL-30组件中的实验电路供多个实验通用,本次实验没有利用到电流插头和插座。
2.实验电路中使用的电源U S2用0~+30V可调电源输出端,应将输出电压调到+12V后,再接入电路中。
并防止电源输出端短路。
3.数字直流电压表测量电位时,用黑笔端插入参考电位点,红笔端插入被测各点,若显示正值,则表明该点电位为正(即高于参考电位点);若显示负值,表明该点电位为负(即该点电位低于参考点电位)。
4.用数字直流电压表测量电压时,红笔端插入被测电压参考方向的正(+)端,黑笔端插入被测电压参考方向的负(-)端,若显示正值,则表明电压参考方向与实际方向一致;若显示负值,表明电压参考方向与实际方向相反。
六.预习与思考题1.电位参考点不同,各点电位是否相同任两点的电压是否相同,为什么答:在一个确定的闭合回路中电位参考点不同,各点的电位也不相同,但任意两点之间的电压是不变的,这一性质称为电位的相对性和电压的绝对性。
2.在测量电位、电压时,为何数据前会出现±号,它们各表示什么意义答:电位参考点选定后,各点电位不同,“+”表示该点电位比参考点大,“-”表示该点电位比参考点小;测电压时,“+”“-”表示两点的电位相对大小,由电压电流是否关联决定。
3.什么是电位图形不同的电位参考点电位图形是否相同如何利用电位图形求出各点的电位和任意两点之间的电压。
答:以电路中电位值作为纵坐标,电路各点位置作为横坐标,将测得的各点电位在该坐标平面画出,并把这些点用线连接,所得的图形称电位图;不同的电位参考点电位图形是不同的;在电位图中,各点的电位为该点对应的纵坐标,而两点间的电压则为该两点间的纵坐标的差。
七.实验报告要求1.根据实验数据,分别绘制出电位参考点为A点和D点的两个电位图形。
电位图被测点电位值2.根据电路参数计算出各点电位和相邻两点之间的电压值,与实验数据相比较,对误差作必要的分析。
答:可能造成误差的原因有:电压表的精确度等仪器造成的误差。
3.回答思考题。
实验二 基尔霍夫定律的验证一.实验目的1.验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解; 2.学会用电流插头、插座测量各支路电流的方法; 3.学习检查,分析电路简单的故障分析能力。
二.原理说明1.基尔霍夫定律基尔霍夫电流定律和电压定律是电路的基本定律,它们分别用来描述结点电流和回路电压,即对电路中的任一结点而言,在设定电流的参考方向下,应有∑I=0,一般流出结点的电流取正号,流入结点的电流取负号;对任何一个闭合回路而言,在设定电压的参考方向下,绕行一周,应有∑U=0,一般电压方向与绕行方向一致的电压取正号,电压方向与绕行方向相反的电压取负号。
在实验前,必须设定电路中所有电流、电压的参考方向,其中电阻上的电压方向应与电流方向一致,见图2-1所示。
2.检查,分析电路的简单故障电路常见的简单故障一般出现在连线或元件部分。
连线部分的故障通常有连线接错,接触不良而造成的断路等;元件部分的故障通常有接错元件、元件值错,电源输出数值(电压或电流)错等。
故障检查的方法是用万用表(电压档或电阻档)或电压表在通电或断电状态下检查电路故障。
(1)通电检查法:在接通电源的情况下,用万用表的电压档或电压表,根据电路工作原理,如果电路某两点应该有电压,电压表测不出电压,或某两点不该有电压,而电压表测出了电压,或所测电压值与电路原理不符,则故障必然出现在此两点之间。
(2)电检查法:在断开电源的情况下,用万用表的电阻档,根据电路工作原理,如果电路中某两点应该导通而无电阻(或电阻极小),万用表测出开路(或电阻极大),或某两点应该开路(或电阻很大),而测得的结果为短路(或电阻极小),则故障必然出现在此两点之间。
本实验用电压表按通电检查法检查、分析电路的简单故障。
三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源3.EEL-30组件(含实验电路)或EEL-53组件四.实验内容实验电路如图2-1所示,图中的电源U S1用恒压源中的+6V(+5V)输出端,U S2用0~+30V可调电源输出端,并将输出电压调到+12V(以直流数字电压表读数为准)。
实验前先设定三条支路的电流参考方向,如图中的I1、I2、I3所示,并熟悉线路结构,掌握各开关的操作使用方法。
图2-11.熟悉电流插头的结构将电流插头的红线端插入数字毫安表的红(正)接线端,电流插头的黑线端插入数字毫安表的黑(负)接线端。
2.测量支路电流将电流插头分别插入三条支路的三个电流插座中,读出各电流值。
按规定:在节点A,电流表读数为“+”,表示电流流出节点,读数为“-”,表示电流流入节点,然后根据图2-1中的电流参考方向,确定各支路电流的正、负号,并记入表2-1中。
支路电流(mA)I1I2I3计算值测量值相对误差3.测量元件电压用直流数字电压表分别测量两个电源及电阻元件上的电压值,将数据记入表2-2中。
测量时电压表的红(正)接线端应插入被测电压参考方向的高电位(正)端,黑(负)接线端应插入被测电压参考方向的低电位(负)端。
各元件电压(V)U S1U S2U R1U R2U R3U R4U R5计算值(V)测量值(V)2相对误差五.实验注意事项1.所有需要测量的电压值,均以电压表测量的读数为准,不以电源表盘指示值为准。
2.防止电源两端碰线短路。
3.若用指针式电流表进行测量时,要识别电流插头所接电流表的“+、-”极性,倘若不换接极性,则电表指针可能反偏(电流为负值时),此时必须调换电流表极性,重新测量,此时指针正偏,但读得的电流值必须冠以负号。
六.预习与思考题1.根据图2-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表2-2中,以便实验测量时,可正确地选定毫安表和电压表的量程;2.在图2-1的电路中A、D两节点的电流方程是否相同为什么答:电路中A、D两节点的电流方程不同。
电流流过A、B两点的方向相反。
3.在图2-1的电路中可以列出几个电压方程它们与绕行方向有无关系答:可以列出三个电压方程。
它们与绕行方向有关系。
4.在实验中若用指3针万用表直流毫安档测各支路电流,什么情况下可能出现毫安表指针反偏,应如何处理,在记录数据时应注意什么若用直流数字毫安表测量时,则会有什么显示呢答:用万用表测量时,当接线反接时指针会反偏,记录时注意数据时要改变正负号。
若用数字表测量,会有正负显示。
七.实验报告要求1.回答思考题;2.根据实验数据,选定试验电路中的任一节点,验证基尔霍夫电流定律(KCL)的正确性;答:选择接点A,I1+I2+I3=,忽略实验误差,满足基尔霍夫定理电流I1+I2+I3=0。
3.根据实验数据,选定试验电路中的任一闭合回路,验证基尔霍夫电压定律(KVL)的正确性;答:选择回路FADEF,U R1+ U R3+ U R4+ U S1=,忽略实验误差,满足基尔霍夫电压定律U R1+ U R3+ U R4+ U S1=0。
4.列出求解电压U EA和U CA的电压方程,并根据实验数据求出它们的数值;答:U EA=-(U R3+ U R4)=-U S2+ U R2=。
实验三线性电路叠加性和齐次性的研究一.实验目的1.验证叠加定理;2.了解叠加定理的应用场合;3.理解线性电路的叠加性和齐次性。
二.原理说明叠加原理指出:在有几个电源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个电源单独作用时在该元件上所产生的电流或电压的代数和。
具体方法是:一个电源单独作用时,其它的电源必须去掉(电压源短路,电流源开路);再求电流或电压的代数和时,当电源单独作用时电流或电压的参考方向与共同作用时的参考方向一致时,符号取正,否则取负。
在图3-1中:I1= I1’- I1”,I2=- I2’+ I2”,I3= I3’+ I3”,U=U’+U”。
(a) (b) (c)图3-1叠加原理反映了线性电路的叠加性,线性电路的齐次性是指当激励信号(如电源作用)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
叠加性和齐次性都只适用于求解线性电路中的电流、电压。
对于非线性电路,叠加性和齐次性都不适用。
三.实验设备1.直流数字电压表、直流数字毫安表2.恒压源3.EEL-30组件(含实验电路)或EEL-53组件四.实验内容实验电路如图3-2所示,图中:R1=R2=R3=510Ω, R2=1KΩ, R5=330Ω,电源U S1用恒压源中的+12V输出端,U S2用0~30V可调电压输出端,并将输出电压调到+6V(以直流数字电压表读数为准),将开关S3投向R5侧。