荧光原位杂交的认识
原位杂交和免疫荧光

原位杂交和免疫荧光
原位杂交和免疫荧光是两种常见的分子生物学实验方法。
这两种
方法都可以用于研究生物分子的定位和分布情况,进而揭示生物学过
程和功能。
下面我们分别来介绍一下这两种方法。
原位杂交是一种常用的分子生物学技术,主要用于检测和定位细
胞或组织中特定的DNA或RNA序列。
原位杂交的基本步骤包括:制备
探针,标记探针,处理样品,杂交和探针探测。
通常情况下,原位杂
交用于检测单个基因或特定基因家族的成员,可用于研究基因组结构、基因表达和基因型等方面。
该技术在医学诊断和药物开发方面也有广
泛应用。
免疫荧光是一种检测生物分子定位和分布情况的常用方法。
它利
用抗体与标记化学物质(如荧光素)相结合,通过荧光显微镜观察生
物分子的定位和分布情况。
免疫荧光主要应用于研究细胞内的蛋白质
定位和分布,也可用于研究病毒感染等方面。
该技术不仅能够静态观
察生物分子的分布情况,还可以通过时间分辨光学显微镜观察生物分
子的动态行为。
虽然原位杂交和免疫荧光技术各自有其独特的应用范围和特点,
但它们有一个共同的优点,即能够在不破坏组织结构的情况下观察分
子分布及定位情况。
这种特性使得这两种技术成为研究生物分子功能
和生物学过程的重要工具。
总之,原位杂交和免疫荧光技术是分子生物学领域内的两个重要
实验方法。
它们都能够在细胞或组织中观察特定生物分子的定位和分
布情况,为揭示生物学过程和功能提供帮助。
荧光原位杂交技术原理

荧光原位杂交技术原理
荧光原位杂交技术(fluorescence in situ hybridization,FISH)
是一种用于检测和定位靶标DNA序列的方法。
其原理是利用
荧光标记的DNA探针与靶标DNA特异性结合,通过荧光显
微镜观察细胞核内荧光信号的强度和位置,从而确定目标
DNA序列在细胞核中的位置和数量。
荧光原位杂交技术的步骤包括标记DNA探针、固定细胞样品、使细胞核开放透明化、探针与目标DNA杂交、洗涤去掉无特
异连接的探针、显微镜观察和分析。
在标记DNA探针的过程中,将目标DNA序列特异性引物和
荧光标记的核苷酸引物结合,通过聚合酶链反应使DNA探针
荧光标记。
标记DNA探针可以选择性地与目标DNA序列进
行互补结合。
固定细胞样品后,可以通过化学方法将细胞膜破裂并使细胞核透明化,使DNA探针能够更好地进入细胞核。
随后将标记好
的DNA探针加入样品中,在适当的温度下进行DNA杂交反应。
如果目标DNA序列在细胞核中存在,则DNA探针与目
标DNA序列结合,形成探针-目标DNA复合物。
在杂交反应后,需要进行洗涤步骤以去除无特异连接的DNA
探针。
这样可以提高荧光信号的特异性和强度。
最后,利用荧光显微镜观察样品中的荧光信号。
荧光探针与目标DNA序列结合后会发出特定颜色的荧光信号,可以通过观
察荧光信号的位置和强度来确定目标DNA序列在细胞核中的位置和数量。
荧光原位杂交技术可以应用于医学诊断、基因定位等领域,成为研究细胞遗传学和基因组学的重要工具。
荧光原位杂交 操作

荧光原位杂交操作荧光原位杂交(FISH)是一种基因组学的技术,它使用荧光探针将特定的DNA序列定位在染色体上。
这种技术被广泛用于分析染色体的结构和功能,以及人类基因组变异和疾病的研究。
本文将介绍荧光原位杂交操作的步骤。
步骤1:样品制备FISH技术可以应用于不同种类的样本,如人类细胞、动植物组织等。
对于人类细胞的样本,常用的方法是将细胞分离,制作成染色体悬液。
首先要通过荧光染色法把两种不同的染色体和特定的基因序列染成不同的颜色。
这需要用到已知基因序列的探针,可以从已有的文献中获取。
如果没有,可以通过设计和合成新的探针。
步骤2:制作探针FISH探针是由一段DNA片段制成的。
这个片段可用PCR方法从DNA中扩增出来,或者可以通过化学合成的方法制造。
制造探针时需要注意,探针的长度和序列应该与目标序列相匹配,可以通过BLAST或其他基因数据库检索确认。
通常使用荧光染料标记探针,以便在镜头下观察到探针的定位。
常用的标记分子有荧光素(FITC),荧光素同路胺(rhodamine)和锔(Cy3和Cy5)。
这些分子的选择取决于探针和荧光显微镜系统的兼容性。
在制作FISH探针时,需要注意探针的特异性和灵敏度。
为了达到这一目的,需要经过一系列的标记、纯化和探针肢解操作。
探针一般都是双链DNA,通过加入单链转化酶(S1)或DNA酶I,使双链DNA变成单链DNA,并标记在其5'-末端上。
标记完成后,进行染色体裂解、脱氧核糖核苷酸(dNTP)和DNA聚合酶的反应来进行回收和标记探针,以免对染色体质量产生影响。
对于高复杂度的基因组,可以使用克隆探针阵列,在单个染色体上定位多个序列。
步骤4:染色体固定和前处理将样本固定在载玻片上,这可以是用乙醛和甲醛等固定剂进行固定。
将载玻片上的样本通过逐步浸入水,逐步替换固定样本中的有机溶剂来除去样本中的RNA,然后用类碱/类酸(如乙酸/氯化锂,0.1M Na丙二酸缓冲pH 9.0)进行前处理,以增加荧光探针的穿透率,使其更好地结合DNA的目标序列。
荧光原位杂交技术在基因检测中的应用研究

荧光原位杂交技术在基因检测中的应用研究荧光原位杂交技术(Fluorescence In Situ Hybridization,FISH)是一种可以直接观察和检测染色体、基因或基因组序列的分子生物学技术。
该技术利用特异性核酸探针与待检测序列互补配对,并用荧光染料标记探针使其能够在细胞核中发光。
荧光原位杂交技术在基因检测中具有重要的应用价值,可以用于检测染色体结构异常、染色体重排、基因拷贝数变异等遗传变异。
首先,荧光原位杂交技术可以用于检测染色体结构异常。
染色体结构异常是导致许多遗传疾病的原因之一,如唐氏综合征、父本重组不平衡等。
通过使用能够与染色体特定区域互补配对的探针,荧光原位杂交技术可以直接观察染色体的形态和结构,从而发现染色体结构异常。
例如,当染色体发生部分缺失、部分重复或倒位等结构异常时,荧光原位杂交技术可以显示出异常的染色体区域与正常染色体区域之间的变异。
其次,荧光原位杂交技术还可以用于检测染色体重排。
染色体重排是指染色体之间的结构改变,包括互换染色体的片段、删除或重复染色体的片段等。
荧光原位杂交技术可以使用特定的探针,将探针标记在不同染色体的特定区域,从而检测染色体重排事件。
例如,探针可以用来标记染色体上的特定基因或序列,当染色体发生重排事件时,探针可以显示出不同于正常情况的杂交信号,从而揭示重排事件的存在。
此外,荧光原位杂交技术还可以用于检测基因拷贝数变异。
基因拷贝数变异是指基因的拷贝数量在个体间存在差异,是一种常见的遗传变异形式。
荧光原位杂交技术可以使用基因特异性的核酸探针,将其标记在细胞核中的目标基因上,并通过观察荧光信号的强度来检测基因拷贝数的变异。
例如,如果一些基因存在拷贝数增加或减少的变异,荧光原位杂交技术可以显示出相应的增强或减弱的信号。
总而言之,荧光原位杂交技术在基因检测中具有广泛的应用,可以用于检测染色体结构异常、染色体重排、基因拷贝数变异等遗传变异。
这种技术的应用可以提供重要的遗传学信息,并对遗传病的诊断和预测起到重要的作用。
荧光原位杂交探针设计

荧光原位杂交探针设计荧光原位杂交探针(Fluorescence in situ hybridization probes)是一种用于检测和定位细胞或组织中特定DNA或RNA序列的方法。
它是一种高度敏感且特异的技术,广泛应用于生物医学研究和临床诊断领域。
本文将介绍荧光原位杂交探针的设计原理和方法,并探讨其在科学研究和医学诊断中的应用。
1. 荧光原位杂交探针的原理荧光原位杂交探针的设计基于亲和性配对原理。
DNA或RNA的序列与其互补的探针序列发生特异性结合,形成稳定的双链结构。
探针序列的标记物(通常是荧光染料)可以通过显微镜观察到,从而确定目标序列的存在和位置。
2. 荧光原位杂交探针的设计方法荧光原位杂交探针的设计通常包括以下步骤:(1)目标序列选择:根据研究目的选择需要检测的DNA或RNA序列。
(2)探针序列设计:根据目标序列设计互补的探针序列,通常长度在20-50个碱基对之间。
(3)标记物选择:选择合适的荧光染料或其他标记物,以便在显微镜下观察到探针序列的信号。
(4)探针合成:利用化学方法合成标记物修饰的探针序列。
(5)杂交反应:将探针与待检测的样品(细胞或组织)进行杂交反应,使探针与目标序列结合。
(6)信号检测:利用荧光显微镜或其他适当的检测方法观察和记录探针信号。
3. 荧光原位杂交探针的应用荧光原位杂交探针在生物医学研究和临床诊断中有广泛的应用,包括:(1)基因定位:可以确定染色体上特定基因的位置和数量,研究基因组结构和功能。
(2)肿瘤诊断:可以检测肿瘤细胞中的染色体异常和基因突变,提供肿瘤分类和预后评估的依据。
(3)细胞遗传学研究:可以观察到细胞中染色体的数目和结构变化,研究细胞遗传学过程。
(4)病原体检测:可以检测病原体的存在和数量,用于感染性疾病的诊断和监测。
荧光原位杂交探针是一种强大的工具,可以帮助科学家和医生了解细胞和基因组的结构与功能,为疾病的诊断和治疗提供重要的信息。
随着技术的不断发展和创新,相信荧光原位杂交探针将在更多领域展现其巨大潜力,并为人类健康做出更大的贡献。
FISH简介

FISH简介荧光原位杂交(Fluorescence In Situ Hybridization, 简称FISH)由于其直观, 快速, 敏感性⾼和⽅便灵活越来越得到⼴泛应⽤, 尤其是在⾎液学领域中. 因为⽩⾎病标本⽐较容易取得和制备, 不同类型的⽩⾎病⼜往往有其特异的染⾊体异常, FISH在⽩⾎病诊断, 治疗监测, 预后估计和微⼩残留病检测等诸⽅⾯都正成为不可缺少的重要⼿段.FISH的基本原理很简单, 就是标记了荧光的单链DNA(探针)和与其互补的DNA(玻⽚上的标本)退⽕杂交, 通过观察荧光信号在染⾊体上的位置来反映相应基因的情况. FISH探针按标记⽅法可分为直接标记和间接标记: ⽤⽣物素(biotin)或地⾼⾟(digoxingenin)标记称为间接标记, 杂交后需要通过免疫荧光抗体检测⽅能看到荧光信号, 因⽽步骤较多, 操作⿇烦, 其优点是在信号较弱或较⼩时可经抗原抗体反应扩⼤; 直接⽤荧光素标记DNA的⽅法称为直接标记. 由于直接标记的探针杂交后可马上观察到荧光信号, 省去了烦琐的免疫荧光反应, 不再需要购买荧光抗体, 也由于近年来荧光互的亮度和抗淬灭性的不断改进和提⾼, 直接标记的荧光探针越来越成为⾸选, 采⽤多种不同颜⾊的荧光, ⽅便在同⼀标本上同时检测多钟异常. 其荧光强度和信号⼤⼩都易于在普通荧光显微镜下观察, 操作过程中也不需要严格避光, 使FISH过程变得简便⽽易于操作. FISH并不能取代传统的⽩⾎病MCI诊断, 但它却能使MIC分型更为准确和深⼊. , MIC即细胞形态学(M), 免疫学和细胞遗传学(C), 三者结合对⽩⾎病进⾏分型诊断, 对不同类型的⽩⾎病采⽤不同治疗⽅案⼿段. 随着⼈们对⽩⾎病的不断认识, 仅进⾏MIC分型不够全⾯, 还要加上对⽩⾎病的分⼦(M)诊断, 成为MICM分型. FISH就是连接细胞遗传学和分⼦⽣物学的桥梁.FISH流程仪器设备1、医⽤微波炉;2、⽔浴锅;3、OLYMPUS BX51荧光显微镜;4、OLYMPUS DP11数字显微照相机。
荧光原位杂交检测ppt课件

此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
❖辅助血液疾病的诊断,判断预后,疗效检测及 微小残留检测
❖ 应用:
❖骨髓移植术后(性别不同的移植献者)、 性别鉴定 、CMPD和ALL初诊、CML末次化 疗结束两周 以上、AML-M3/M2等疾病
❖ 技术特点
❖ 可分析间期细胞,不需培养;操作简单、检测快速 重复性好、空间定位精确;灵敏性和特异性高
❖ 禁忌:冰冻或凝块
注意:建议做FISH的同时做常规细胞遗传学分析。若 只要求做FISH,请转交一份近期的细胞遗传学报告 。如果无细胞形态学或遗传学的检查,建议作进一 步检查!!
❖ 报告时间:周一至周五,7个工作日
❖ 报告示例:略
❖ 结果判读:每个探针检测镜下分析200个细胞核。 20例没有造血系统疾病且核型正常的骨髓标本作为 正常对照,以此计算分裂信号的平均数和标准差。 如果有异常杂交信号的细胞百分比超过正常标准差 的3倍,结果将被认为异常。
荧光原位杂交(FISH)检测
概述
FISH-目前新兴的分子遗传学技术,原理是采用
荧光标记的DNA探针,利用探针与检测样本中 DNA碱基对的互补性,在探针与标本的DNA杂交 后,通过荧光显微镜检测荧光信号而得出结果,从 而检测细胞、组织样本中的染色体和体和基因的异常
❖ 当染色体核型分析不成功或不明确时,可利用FISH 检测弥补不足,并可发现复杂易位
❖ 探针种类
❖双色单融合探针 双色分离探针
❖ ES探针
双色双融合探针
每类探针的检测和适用范围不同,决定其用处不同
❖ 标本要求
❖ 送检标本:骨髓3ml(CML和CLL患者可直接用外 周血2ml)
❖ 保存条件:肝素钠抗凝,4摄氏度,24h送检
荧光原位杂交更新

常用探针类型 — 重复序列探针
重复序列探针的结合位点是基因组中多拷 贝的短重复碱基对序列(例如着丝粒和端 粒探针)所在的染色体区域。 着丝粒常常是A-T丰富区,而端粒已知含有 TTAGGG序列。由于重复序列相对容易制 备和分辨率较高(0.5Mb),这种FISH被 普遍用于筛查一般的染色体非整倍体、亚 端粒缺失和标记染色体。
杂交流程
a.两要素:
探针和靶序列 b.标记探针
直接标记和间接标记
c.变性 探针和靶序列成为单链 d.混合杂交 e.间接标记探针需连接 荧光基团的步骤
FISH
荧光标记的DNA探针 (200-500bp)
荧光原位杂交特点
与其它原位杂交技术相比,FISH的优点:
①经济安全,快速方便; ②敏感性高,特异性强,背景低; ③宜于多靶杂交,对同一标本同时进行多个探针杂 交,不同的探针可以显示不同的荧光颜色; ④使用G带玻片可作出回顾性分析;
结合技术相关检测项目
染色体病快速产前诊断(FISH、qPCR、 BoBs) 产前单基因病诊断 SNP Array 检测 某些代谢病的产前诊断
项目意义
较羊水染色体分析,FISH技术可以确定13、18、21、X、Y的染色体 数目信息,缓解唐筛阳性患者或高龄孕妇精神负担;缓解医生核型分 析工作压力,能够有针对性的对样本进行处理。
工作基础
探针 商品化探针 原位杂交仪 Luminex xMAP 液相芯片检测平台
工作基础
工作人员 1)项目负责人 刘红卫,男,妇产科实验室技术负责人,毕业 于四川大学生物工程系遗传学专业,临床遗传优 生专业副主任医师,丰富的技术操作和管理能力。 2)项目组成员 赵少志,男,检验师,四川大学华西医院医学 遗传学硕士,中国遗传医学中心、医学遗传学国 家培训中心学员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对荧光原位杂交技术的认识 摘要:荧光原位杂交技术(FISH)作为分子水平的微生物检测技术,已成为目前首要生物学核酸检测技术,本文主要介绍了FISH的发展及在污水处理中的应用,重点介绍了在硝化细菌方面的应用,并给出了FISH技术存在的缺陷及改进的方法。 Abstract: Fluorescence in situ hybridization (FISH) , as a microbial molecular detection technology, has become the first biology nucleic acid detection technology. This paper introduces the development of FISH and the application in wastewater treatment, and mainly introduces the application in nitrifying bacteria.Further more,it also describes the disvantages in FISH and the improved methods. 关键词:荧光原位杂交技术(FISH),16S rDNA(16S rRNA),污水生物处理 荧光原位杂交技术(fluorescence in situ hybridization)是在同位素原位杂交技术基础上发展起来的非放射性原位杂交方法,起始于20世纪70年代后期。它以16S rDNA(16S rRNA)探针用特殊的核苷酸分子标记然后将探针直接杂交到染色体或DNA纤维切片上,再用与荧光素分子偶联的单克隆抗体与探针分子特异性结合来检测DNA序列在染色体或DNA纤维素切片上的定性,相对定量分析。有不同细菌的16S rDNA都有其独特序列,利用这些独特的序列制成的探针可以鉴别和跟踪自然样品中的目标细菌。最初FISH技术应用于医疗事业,目前FISH技术的应用范围也来越广,特别是FISH流程的简化完善和检测灵敏度的提高,使FISH成为一种首要的生物学核酸检测技术。 1. FISH的发展历史 1969 年, Pardue【1】 等和John【2】两个研究小组开发了原位杂交技术, 用放射性同位素标记的DNA 或28S rRNA 和爪蟾卵细胞制备物进行杂交, 然后进行显微放射自显影检测。这一技术可以在保持细胞形态完整的条件下, 检测出细胞核酸序列, 自此, 原位杂交技术在染色体进化、肿瘤病人和白血病人的染色体分析以及多种细胞遗传学研究方面得到应用。 早期的同位素标记没有专门的标记方法,将随机同位素标记的碱基添加到 生长的细胞中再进行放射自显影。虽然灵敏度高,但是放射性材料因半衰期较短引起探针不稳定,且分辨率有限,检测周期长,价格相对较昂贵,必须按照严格的程序转运、贮存和处理有放射性的材料。【3】 1980年,Bauman【4】首次将荧光原位杂交用于核酸检测,直接接将RNA-3’端用荧光素标记作为特异DNA 序列的探针。氨基-烯丙基标记碱基技术可以与任何半抗原或者荧光素结合,这对于原位杂交是至关重要的,因为氨基-烯丙基标记的碱基技术可以仅通过简单的化学反应就可以获得一系列的低背景信号探针,通过杂交探针的二级检测系统使得杂交信号被放大。早在19 世纪80 年代,缺口平移法检测、生物素标记探针,二级荧光标记抗体检测等方法已经用于DNA【6】 和mRNA 【7】检测。 FISH 不仅用于单基因或核酸检测,FISH 技术的进一步发展扩展到多色FISH 多基因位点同时检测,从基因检测发展到基因组、染色体、活细胞中转录产物mRNAs 原位检测以及组织水平的核酸检测,并且在今后的研究中还有可能应用到整个生物体的检测。【3】
Pinkel【8】等(1986)首次将荧光图像定量分析用于基本细胞遗传检测,采用双色激发块装置照相机检测荧光信号,而且定量分析技术很快用于了mRNA 检测。
1988年, Giovannoni【9】 等首次将FISH 技术引入细菌学研究中, 使用放射性标记rRNA 寡核苷酸探针检测微生物。随着荧光标记的发展, 非同位素染料逐渐代替。1989 年, Delong【10】首次使用荧光标记寡核苷酸探针检测单个微生物细胞。 2. FISH的应用 在废水处理工艺中,对微生物鉴定的方法很多,传统的微生物的检测方法基本上有菌种分离培养法,镜检计数法。菌种分离培养法对一些培养条件苛刻或没被培养过的细菌用途不大,重要的是它不能精确的反应菌群的组成及多样性。镜检计数法,不但费时费力,还可能因为微生物形态、特性类似把它们当作同种微生物记错数,同时,没有活性的微生物有可能也会被计入总数。随着分子生物学技术的发展,分子生物学方法已经成为现代环境微生物学的重要手段。 与放射性探针相比, 荧光探针更安全, 具有较好的分辨力, 不需要额外的检测步骤。此外, 可用不同激发和散射波长的荧光染料标记探针, 在一步反应中同时检测几个靶序列。该技术特异性和敏感度都很高,使得那些环境中数量少,培养难度高的微生物的研究方便快捷了很多。 不仅可以应用到环境样品微生物多样性和污水处理中生物多样性的研究还可以应用到微生物群落组成及空间分布,原位生理学和功能性研究和特殊菌种的研究。 在聚磷菌方面的应用 荧光原位杂交(FISH)技术在聚磷菌的研究中可以在一定程度上反映污泥中聚磷菌的组成和空间结构。2008年,张勇【11】等通过正交试验筛检可以确定FISH技术在检测反应器中聚磷菌最佳的优化条件。在固定前应先经过1 ×PBS清洗两次, 37℃热固定3 h,乙醇脱水3 min; FISH技术检测反应器中聚磷菌的最佳实验条件为:杂交温度46℃,杂交时间2 h,清洗缓冲液中NaCl浓度70 mmol/L。使聚磷
菌的定量检测更加快、简便、准确。亢涵,王秀蘅【12】等应用FISH 对以乙酸钠为碳源的强化生物除磷(EBPR) SBR 反应器启动期的微生物进行原位分析,考察了除磷生态系统形成过程中聚磷菌种群结构、空间分布关系动态变化及其聚磷特性。 在厌氧反应细菌的应用
Santegoeds 【13】等人利用ARC915 ,SRB385 ,DSV698 和DSS658 等探针发现,产甲烷菌主要分布在颗粒污泥的内部,而硫酸盐还原菌则分布在外层;Sekiguchi【14】 等人也得到类似结论。2006年,许鑫【15】等应用FISH检测厌氧反应器里
的硫酸盐还原细菌,并对其试验条件进行优化。硫酸盐还原菌的较好的杂交条件是杂交温度46℃,杂交时间3h, NaCl浓度为90mmol/L。杂交时间和温度均影响探针的特异性,在一定温度范围内提高杂交温度会提高探针的特异性;杂交时间过短会造成探针结合不完全,过长会增加非特异性着色;杂交洗脱液NaCl浓度过高会降低探针特异性。同年,陈瑛,任南琪【16】等应用FISH技术研究了连续流搅拌槽(CSTR)解析发酵产氢细菌中的2 种产氢发酵类型的菌群组成和发酵类型转化过程中的菌群种类和数量变化及其对产氢速率、生物量和发酵产物的影响. 结果表明,梭菌属和肠杆菌科在决定产氢发酵类型方面有重要作用. 以梭菌为优势种群的乙醇型发酵比以肠杆菌为优势种群的丁酸型发酵具有更佳的产氢能力。
Harmsen【17】等人利用EUB338 ,ARC915 ,MX825 和MG1200 等探针的不同组合以蔗糖为基质和以混合酸为基质的颗粒污泥分层不同。其前者为:三层,由外到内,真细菌,产氢产乙酸细菌和产甲烷丝菌的共生体,较大空洞有少量产甲烷细菌和无机物。后者为两层,外层真细菌,内层产甲烷丝菌为主。 对肠道细菌的应用
1995年,Langendijk等【18】首次采用探针Bif164用FISH对人肠道双歧杆菌进行定量分析。2004年,Takada等【19】用3种不同荧光集团组合,并用7种针对双歧杆菌的探针染上不同的探针,成功的运用了多色荧光原位杂交技术。2004年,王建龙【20】利用FISH检测水体中大肠杆菌,可以在一天内给出定量检测结果。但还没有广泛用于饮用水中的大肠菌群计数,原因是饮用水中的细菌因缺乏营养物处于饥饿状态且受消毒剂的影响。其细胞内的染色体含量较低,是杂交产物的荧光信号很弱。利用PAN(是一种合成的核酸,用肽骨架取代了核酸中的戊糖- 磷酸骨架,是一种新型的DNA 模拟物,具有与DNA 和RNA 结合的高度亲合性和良好的稳定性)代替DNA或利用荧光扩增系统可以提高检测的灵敏度和杂交信号的荧光强度。 在生物脱氮方面的应用
Helmer【21】等以NSO1225探针和Amx208202a2A222探针分别对生物膜内细菌进行了FISH检测, 发现亚硝酸细菌主要分布于生物膜的好氧表层, 而厌氧氨氧化菌( Kuene2nia stuttga rtiensis) 则主要分布于生物膜的缺氧内层。Michael【22】等用同样探针对CANON(Completely Autotrophic Nitrogen OverNitrite) 反
应器中的颗粒污泥进行研究时也发现了类似的结果。Schramm【23】等应用FISH技术并将聚焦显微镜和相差显微镜图像叠加,对硝化流化床反应器中活性污泥内硝化细菌的空间分布进行原位分析,发现氨氧化细菌和亚硝酸盐氧化细菌紧密结合
在一起的形态特征。IngoSchmidt【24】等在研究好氧与厌氧氨氧化菌的生存关系时发现Kuenenia stuttga rtiensis和Brocadia anammoxidans Dokhaven紧密