数学建模 配送问题

合集下载

快递公司的配送数学建模

快递公司的配送数学建模

快递公司的配送问题摘要配送是物流系统中非常重要的一个环节,在物流的各项成本中,配送成本占了相当高的比例,减少配送里程以降低物流配送成本成为物流管理过程中首要考虑的问题之一。

本文在已知货运车容量、各客户所需货物重量、快递公司与客户以及客户与客户之间的距离的条件下,建立了以单车场路径问题模型(即VRP模型)为基础、以车辆总行程最短为目标函数、以货物运输量小于汽车载重量以及在客户要求的时间范围内运送货物等为约束条件的单目标线性规划模型。

对于问题一,本文建立了两个模型:模型I:硬时间窗车辆路径规划模型首先根据题目所给条件,对运货所需的车辆数进行预估,然后结合货物运输量小于汽车载重量、一个客户点的货物仅由一辆车配送等约束条件,同时考虑线路的连通性和汽车到达客户点的时间范围,采用0-1规划法建立使总运行里程最小的车辆路径规划模型。

模型II:软时间窗车辆路径规划模型在模型I硬时间窗车辆路径规划模型的基础上,将模型I中的关于时间范围的约束条件,通过设定惩罚函数的系数,变成目标函数的一部分。

本文在考虑路程最短的目标的同时,也要求尽可能在时间范围内到达。

因此,建立了以成本(包括惩罚成本以及行驶过程中带来的成本)最小为目标的函数,以运输量小于汽车载重量以及线路的连通性等为约束条件,建立软时间车辆路径规划模型。

最后运用遗传算法求解模型。

对于问题二,根据题目所提供的数据,利用硬时间窗车辆路径规划模型。

首先,根据货运车的载重量和客户点的需求总量,估计出运货所需车辆数为3,然后,借助Lingo 求解该模型。

得到最优路径的总里程数为910千米,快递公司每天的配送方案应为:每天出动3辆车。

3辆车的行驶路径分别为:0->3->1->2->0,0->6->4->0,0->8->5->7->0关键词: VRPTW 遗传算法 0-1规划法 Lingo目录一、问题重述 (1)二、模型假设和符号说明 (1)三、问题分析 (2)四、模型的建立与求解 (3)4.1问题一的解答 (3)4.1.1模型的准备 (3)4.1.2模型的建立 (3)4.1.3模型的求解 (6)4.2问题二的解答 (7)4.2.1对货运车辆数的估计 (7)4.2.2路线的规划 (7)五、模型的评价与改进 (10)5.1模型的优缺点分析 (10)5.2 模型的改进 (11)六、参考文献 (11)七、附录 (12)一、问题重述某快递公司在某个地区拥有一支货运车队,每台货运车辆的载重量(吨)相同、平均速度(千米/小时)相同,该快递公司用这样的车为若干个客户配送物品,快递公司与客户以及客户与客户之间的公路里程(千米)为已知。

数学建模货物配送问题课程设计

数学建模货物配送问题课程设计

.安徽工业大学—数学建模论文货 物 运 送 问 题组 员: 班 级: 指导教师:侯为根.;2013-7-30.1、问题重述 一公司有二厂,分处 A、B 两市,另外还有 4 间具有存贮机构的库房,分别在 P、Q、R 和 S 市。

公司出售产品给 6 家客户 C1,C2,…,C6,由各库房或直接由工 厂向客户供货。

配送货物的费用由公司负担,单价见下表:表一受货者供货者A 市厂 B 市厂 P 库房 Q 库房P 库房0.5----Q 库房0.50.3R 库房1.00.5S 库房0.20.2客户 C1 客户 C2 客户 C3 客户 C4 客户 C5 客户 C61.0 ---1.5 2.0 ---1.02.0 -------------------1.5 0.5 1.5 ---1.01.0 0.5 0.5 1.0 0.5 ----注:单位元/吨;划“----”表示无供货关系.R 库房---1.5 2.0 ---0.5 1.5S 库房------0.2 1.5 0.5 1.5某些客户表示喜欢由某厂或某库房供货.计有: C1-------- A 市厂 C2-------- P 库房 C5--------Q 库房 C6--------R 库房或 S 库房.;.A 市厂月供货量不能超过 150 千吨,B 市厂月供货量不能超过 200 千吨。

各 库房的月最大流通量千吨数为库房P流通量70表二QRS5010040各客户每月所必须满足的供货量为(单位:千吨)表三客户C1C2C3C4C5C6要求货量501040356020现假设可以在 T 市和 V 市建新库房,和扩大 Q 市的库房,而库房的个数又不能多 于 4 个,必要时可关闭 P 市和 S 市的库房。

建新库房和扩建 Q 市库房的费用(计入利息)摊至每月为下表所列值(万 元),它们的潜在的月流通量(千吨)也列于表中库房T V Q(扩建)表四月费用 1.2 0.4 0.3流通量30 25 20.;.关闭 P 市库房月省费用 1 万元;关闭 S 市库房月省 0.5 万元。

数学建模在物流配送中的应用

数学建模在物流配送中的应用

数学建模在物流配送中的应用物流配送是现代社会中不可或缺的一个环节,它关系到商品的运输速度和效率。

而数学建模则是通过数学方法、模型和计算机算法来解决实际问题的一种有效手段。

在物流配送中,数学建模的应用可以帮助优化运输路线、提高运输效率、降低运输成本。

本文将探讨数学建模在物流配送中的应用。

1. 运输路线优化在物流配送中,选择合适的运输路线对提高运输效率至关重要。

数学建模可以通过地理信息系统(GIS)来获取道路数据、交通流量等信息,并建立运输网络模型。

通过分析道路状况、车辆载重量、运输时间等因素,可以利用优化算法来找到最短路径或最优路径,从而减少货物运输时间和运输成本。

2. 车辆调度优化在物流配送中,合理的车辆调度可以减少车辆的闲置时间,提高配送效率。

数学建模可以通过建立车辆调度模型来确定最佳的调度策略。

模型可以考虑到每辆车的载重量、运输里程、配送时间窗口等因素,并利用优化算法确定最合理的车辆分配和调度顺序,从而实现最佳的车辆利用率和运输效率。

3. 库存管理在物流配送中,合理的库存管理可以降低库存成本和避免缺货情况的发生。

数学建模可以通过建立库存管理模型来确定最佳的库存水平和补货策略。

模型可以考虑到需求量、供应量、补货周期等因素,并利用优化算法来优化库存控制策略,实现最佳的库存管理。

4. 送货路径优化在物流配送中,合理的送货路径可以减少里程和配送时间,提高配送效率。

数学建模可以通过建立送货路径优化模型来确定最佳的送货路径。

模型可以考虑到配送点之间的距离、配送时间窗口、物流流量等因素,并利用优化算法来寻找最短路径或最优路径,从而减少里程和配送时间,提高配送效率。

5. 需求预测与分配在物流配送中,准确的需求预测可以避免过量或不足的供应情况发生。

数学建模可以通过建立需求预测模型来预测商品的需求量,并根据需求量进行合理的商品分配。

模型可以考虑到历史销售数据、市场需求和季节性因素等因素,并利用预测算法来预测需求量,实现准确的需求预测和商品分配。

数学建模案例多商品配送问题

数学建模案例多商品配送问题
2、 供货商大多数拥有自己的运输车辆,以利于降低运营成本;
题设条件: � 在一个周期开始时,每个零售商对所有商品在不同时段的需求已知 � 一个周期内,对于不同的商品各货栈给各零售商的价格已知,且价格不随
时段变化
增加假设:
� 所讨论区域半径在 300km 以内,运输时间远小于时段长度
� 当货栈容量不足时,供应商提前或推迟供货最多只能跨越一个时段(否则
关键词:
物流配送 分步优化 启发式算法 质量-服务损失函数 Lingo 软件
1
一、问题重述
多商品配送方案的设计是现实生活中很多供货商所面临的问题。现某供货商在 一地区内的不同地点有若干仓储货栈。其目标是按照不同零售商的需求将商品及时 发送给零售商,使总成本尽可能小。这里考虑总成本由两个主要部分构成:
⎨ ⎪⎩ kk 2
pijk
(t2

t0 )2
t1 (t2
< t0 > t0
)
其中 kk1 是第 k 种商品的提前赔偿系数, kk2 是第 k 种商品的推迟赔偿系数,由
于持有成本一般小于缺货成本,故 kk1 < kk2
[运输成本函数]
4
根据常用的运价递减原则[6] ,可绘出运输成本
图线大致如下侧所示,故我们将运输成本函数定为下
Vk
第 k 种商品的单位体积
S
货车的容量
Bijkl 第 i 个货栈与第 j 个零售商在第 l 时段是否存在第 k 种商品的运输
持有成本 —— 持有某种货物一段时间所必须支付的成本,包括管理费、仓储费、 管理费、利息费用等
缺货成本 —— 当需要某种货物而又不能从库存得到供应时所导致的零售商在 商誉、 名声、及潜在的未来销售上的损失

快递公司送货策略(数学建模)

快递公司送货策略(数学建模)

B题快递公司送货策略摘要本文主要解决快递公司送货策略问题,研究在各种运货地点,重量的确定,业务员的运输条件和工作时间等各种约束条件下,设计最优的路线,得出最优送货策略。

主要研究如下三个问题。

问题一:首先考虑在时间和重量两个约束条件之下,优先考虑重量,通过对送货点的分布进行分析,将分布点按照矩形,弧形和树的理念将问题分成三种模块,从而建立三种送货方案。

方案一,运用矩形,将整个区域分成5个区域,以选择的点的送货质量之和小于25kg 且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

方案二,运用弧形,以原点为圆心画同心圆,按照就近原则确定送货区域,依次分配业务员的送货地点。

方案三,运用Dijkstra 算法计算出每一个顶点到其它点的距离。

分析点的分布,由此得到最小树,在最小树的基础上,向四周延伸,得到相应区域。

且以送货质量小于25kg且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

其次,再综合这三种方案所涉及到得时间,路程依次进行对比,画出柱形图,清晰可得出最优的方案为方案三。

问题二,是解决送货总费用最小的问题。

因此要求业务员的运行路线要尽量短,且尽早卸货。

首先将该区域安排送货点均匀度分为三个小区域,以每个点的信件质量从小到大排列,以送货点最大点为中心,选择该点附近质量较大且距离较短原则的下一个送货点,依次类推,直到根据约束条件为每次携带的快件量不超过25kg,找到该条路线最后一个送货点。

按此方法可得路线为0→10→12→11→0,0→7→14→27→0,0→1→26→28→0,0→13→19→25→0,0→2→5→16→17→0,0→22→15→29→30→0,0→6→20→18→24→0,0→4→3→8→9→21→23→0,并且利用C语言编程(见附录),算得每条路线的费用,所得总费用为14636.1元。

问题三,在问题一的基础上,将业务员的工作时间延长到8小时,由此在问题一的基础上,将8小时的工作时间所需花费的费用在三个方案中进行对比,由此得到依旧是方案三的为最优。

送货问题数学建模

送货问题数学建模

解决送货问题可以使用数学建模的方法,以下是一个基本的数学建模过程:
1. 定义问题:明确问题的背景和目标。

例如,送货问题可以定义为如何选择最佳的送货路线,以便在给定时间内尽可能快速地送达所有货物。

2. 建立数学模型:根据问题的特点,选择适当的数学模型来描述问题。

送货问题可以使用图论中的旅行商问题(Traveling Salesman Problem,TSP)进行建模。

在TSP中,每个送货点被看作是图中的节点,送货点之间的距离被看作是节点之间的边。

3. 确定目标函数:定义用于衡量送货路线的优劣的目标函数。

对于送货问题,可以选择目标函数为总送货距离或送货时间。

4. 添加约束条件:考虑问题中的各种约束条件,如送货员的工作时间限制、访问某些送货点的次序要求等。

5. 求解问题:使用优化算法来求解建立的模型。

对于TSP问题,可以使用蚁群算法、遗传算法等启发式算法来寻找最佳的送货路线。

6. 模型评估和优化:对求解结果进行评估,看是否满足问题的要求。

如果不满足,可以进行参数调整或尝试其他算法来优化模型。

7. 结果解释和应用:将最终的送货路线结果解释给相关人员,并将其应用于实际的送货任务中。

需要注意的是,送货问题的具体建模方法和求解策略可能因问题的具体情况而有所差异。

在实际应用中,还需要考虑更多的因素,如送货量、交通状况、车辆容量等。

因此,在进行数学建模时,要根据实际情况进行灵活调整和优化。

数学建模—货物配送问题

数学建模—货物配送问题

数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。

问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。

需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。

模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。

我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。

结论通过进行线性规划求解,可以求得货物配送问题的最优解。

当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。

通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。

2023高教杯数学建模d题

2023高教杯数学建模d题

2023高教杯数学建模d题
2023年高教社杯全国大学生数学建模竞赛D题:
题目:国际快递服务中的包裹配送决策
问题描述:
国际快递服务中,一个重要的决策是如何选择最优的配送路径。

在配送过程中,存在许多因素需要考虑,如运输成本、运输时间、交通状况、天气等。

因此,制定一个有效的配送策略是至关重要的。

任务要求:
1. 根据所给数据,分析影响配送成本的主要因素。

2. 基于所给数据,构建数学模型,预测未来一周内的每日最优配送路线。

3. 基于所建模型,给出一种有效的配送策略,以优化总成本并减少总运输时间。

4. 根据所建模型和策略,预测未来一个月的快递需求量,并给出相应的配送方案。

5. 针对所给策略和方案,分析其可能存在的风险,并提出相应的应对措施。

题目给出的数据:
1. 不同路线上的配送成本(单位:元/公里)。

2. 不同路线的长度(单位:公里)。

3. 不同路线的交通状况(用数值表示,数值越大交通状况越差)。

4. 不同路线的天气状况(用数值表示,数值越大天气状况越差)。

5. 每日的快递需求量。

注:数据量较大,具体数据可从配套的Excel文件中获取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国零售业巨头沃尔玛之所以能够迅速成为世界零售业之最,其中一个重要的原因是重视配送系统的建设与完善。

从1962年第一家商场开业以来到目前为止,沃尔玛在美国有1800多家商场,在英国、墨西哥、德国及中国等国家及世界各地有1000多家商场,其中有720多个超级商业中心,沃尔玛在世界各地有110万职工。

沃尔玛1970年在美国建起第一个配送中心,现在这个中心为4个洲32家商场配送。

沃尔玛在2000年仅配送系统投资达1600亿美元,在美国利用自己的配送中心为连锁商场配送商品。

在其他国家沃尔玛利用第三方物流。

沃尔玛的企业理念是:“最低的成本,提供高质量的服务”。

试就下面的两个问题建立数学模型,并给出合理的解答:
1.考虑直送式配送运输,即一个供应点对一个客户的专门送货。

在下面的物流网络图中(图1),寻找从A 点到K 点的最优配送线路。

图一
2.针对一般的分销系统,即系统由分销中心(DC ),多个零售商组成,该系统的运营成本主要由运输成本与库存成本构成。

分销中心用自己的车辆为各零售商供货,而分销中心由制造商直接供货,假设零售商处的顾客需求是随机的且服从一定的概率分布,不同零售商之间以及同一零售商不同时期之间的需求是独立的。

一般DC 与零售商均采用周期补货策略,补货时刻为周期末,DC 的一个补货周期一般包含多个零售商的补货周期。

现考虑只有一个分销中心和30个零售商组成的分销系统,配送货物为单一产品。

试就顾客需求服从参数为6的Possion 分布,销售中心位置为(0,0),30个零售商的位置可在[-200,200] [-200,200]的平面上随机产生得到的分销系统的运输、配送策略建立数学模型,并以题目中提供的部分数据为基础,进行数据模拟。

1 w=[
H G K F E D
C B A 8 10 9 7 4 14 13 2 5
6 7 8 10 11 12
0 5 11 6 inf inf inf inf inf
5 0 4 inf 2 14 inf inf inf
11 4 0 10 inf 8 7 inf inf
6 inf 10 0 inf inf 12
7 inf
inf 2 inf inf 0 13 inf inf inf
inf 14 8 inf 13 0 inf inf inf
inf inf 7 12 inf inf 0 10 8
inf inf inf 7 inf inf 10 0 9
inf inf inf inf inf inf 8 9 0 ];
n=size(w,1);
w1=w(1,:);
%赋初值
for i=1:n
l(i)=w1(i);
z(i)=1;
end
s=[];
s(1)=1;
u=s(1);
k=1
l
z
while k<n
% 更新 l(v) 和 z(v)
for i=1:n
for j=1:k
if i~=s(j)
if l(i)>l(u)+w(u,i)
l(i)=l(u)+w(u,i);
z(i)=u;
end
end
end
end
l
z
%求v*
ll=l;
for i=1:n
for j=1:k
if i~=s(j)
ll(i)=ll(i);
else
ll(i)=inf;
end
end
end
lv=inf;
for i=1:n
if ll(i)<lv
lv=ll(i);
v=i;
end
end
lv
v
s(k+1)=v
k=k+1
u=s(k)
end
l
z
结果:
lv =
22
v =
9
s =
1 2 4 5 3 8 7 6 9
k =
9
u =
9
l =
0 5 9 6 7 17 16 13 22
z =
1 1
2 1 2
3 3
4 8
2 数学模型建立
物流配送车辆调度实质就是走什么样的路线进行运输的问题,其描述为: 在车辆载重量和各客户需求量已知的前提下,至少派多少辆车才能满足需求且车辆的总行程最短,从而找到最小成本的配送方案,同时要求满足下列条件:
1) 所有配送车辆以配送中心为起点并最终回到配送中心。

2) 每一个客户只被一辆车访问一次,每辆车只能服务一条路线。

3) 每条配送路径上客户需求量之和不能超过车辆的载重量。

4) 每辆车所走的路线不能重复。

综合上述可知,VRP 目标是找到一条最优物流配送路线,使配送费用最小。

V =v0,v1,…,v n},v0表示配送中心,vi表示客户所在地。

设配送中心可用辆车数目最多为K,每辆
车载重量为Qk,物流配送车辆路径优化算法问题的数学模型为:
其中: nk表示第k 辆车所配送的顾客点数,r ki表示顾客点在路径k 中的顺序为i,且有
最优解的限制条件为:
一、发车规律与泊松分布原理
车辆进入仿真区域是个随机性事件,据此,可将其转化为进入仿真区域的车辆之间的间隔时间是个随机量。

根据车辆进入仿真区域本身的特点,从理论上应满足下列条件:
(1)在不相重迭的时间区间内车辆的产生是互相独立的,即无后效性;
(2)对充分小的△t,在时间区间 [t,t+△t]内有一辆车产生的概率与 t 无关,而与区间长度△t成正比,即车辆的产生具有平稳性;
(3)对于充分小的△t,在时间区间 [t,t+△t]内一条车道上有2辆或2辆以上车辆产生的概率极小,即具有普通性。

通过对相关资料提供的车流数据的分析与实地观察数据,在城区、市郊、高速公路等车辆通行较为频繁的地方,车流到达情况接近均匀的波峰分布,指无突起的波峰,但非每个时段经过车辆数都平均(指概率均等)。

交通高峰、平峰、低峰差异在于总车辆数上的变化。

对于特别的交通情况,如突然产生一个巨大的波峰或在交通量小的地方(概率平均分布),当作小概率事件接受。

在此选用常用、简单的概率分布--泊松分布来表示交通流的分布情况。

由于泊松分布的变异系数为D(x) /E(x) =1,则根据变异系数定义,该分布的概率曲线集中度比较均匀,能体现均匀分布。

则有公式:
(1)
n为车辆数;λ为参数。

根据实验采集数据方式得:公式(1)中的参数有相应的物理意义,λ表示在采样时间内的车辆数。

令λ=α,α则表示车辆平均到达率(veh/s)。

则泊松分布公式(1)转化为:
(2)
公式(2)的物理意义是:在时间区段内有n辆车进入仿真区域的可能性为Pn()。

当固定采样时间,则可通过在不同的断面处测量车辆数的方法确定参数λ。

对于采样时间,若过短,则车辆数会相对少且数据的波动会相对增加,不符合泊松分布的定义;若过长,则车辆数会趋于常数,不能体现出车辆数的随机规律。

经过实验得出:当车流量较大时,采样时间适当选小一点;当车流量较小时,采样时间适当选大一点。

相关文档
最新文档