数学建模 配送问题

合集下载

数学建模货物配送问题课程设计

数学建模货物配送问题课程设计

.安徽工业大学—数学建模论文货 物 运 送 问 题组 员: 班 级: 指导教师:侯为根.;2013-7-30.1、问题重述 一公司有二厂,分处 A、B 两市,另外还有 4 间具有存贮机构的库房,分别在 P、Q、R 和 S 市。

公司出售产品给 6 家客户 C1,C2,…,C6,由各库房或直接由工 厂向客户供货。

配送货物的费用由公司负担,单价见下表:表一受货者供货者A 市厂 B 市厂 P 库房 Q 库房P 库房0.5----Q 库房0.50.3R 库房1.00.5S 库房0.20.2客户 C1 客户 C2 客户 C3 客户 C4 客户 C5 客户 C61.0 ---1.5 2.0 ---1.02.0 -------------------1.5 0.5 1.5 ---1.01.0 0.5 0.5 1.0 0.5 ----注:单位元/吨;划“----”表示无供货关系.R 库房---1.5 2.0 ---0.5 1.5S 库房------0.2 1.5 0.5 1.5某些客户表示喜欢由某厂或某库房供货.计有: C1-------- A 市厂 C2-------- P 库房 C5--------Q 库房 C6--------R 库房或 S 库房.;.A 市厂月供货量不能超过 150 千吨,B 市厂月供货量不能超过 200 千吨。

各 库房的月最大流通量千吨数为库房P流通量70表二QRS5010040各客户每月所必须满足的供货量为(单位:千吨)表三客户C1C2C3C4C5C6要求货量501040356020现假设可以在 T 市和 V 市建新库房,和扩大 Q 市的库房,而库房的个数又不能多 于 4 个,必要时可关闭 P 市和 S 市的库房。

建新库房和扩建 Q 市库房的费用(计入利息)摊至每月为下表所列值(万 元),它们的潜在的月流通量(千吨)也列于表中库房T V Q(扩建)表四月费用 1.2 0.4 0.3流通量30 25 20.;.关闭 P 市库房月省费用 1 万元;关闭 S 市库房月省 0.5 万元。

数学建模案例多商品配送问题

数学建模案例多商品配送问题
2、 供货商大多数拥有自己的运输车辆,以利于降低运营成本;
题设条件: � 在一个周期开始时,每个零售商对所有商品在不同时段的需求已知 � 一个周期内,对于不同的商品各货栈给各零售商的价格已知,且价格不随
时段变化
增加假设:
� 所讨论区域半径在 300km 以内,运输时间远小于时段长度
� 当货栈容量不足时,供应商提前或推迟供货最多只能跨越一个时段(否则
关键词:
物流配送 分步优化 启发式算法 质量-服务损失函数 Lingo 软件
1
一、问题重述
多商品配送方案的设计是现实生活中很多供货商所面临的问题。现某供货商在 一地区内的不同地点有若干仓储货栈。其目标是按照不同零售商的需求将商品及时 发送给零售商,使总成本尽可能小。这里考虑总成本由两个主要部分构成:
⎨ ⎪⎩ kk 2
pijk
(t2

t0 )2
t1 (t2
< t0 > t0
)
其中 kk1 是第 k 种商品的提前赔偿系数, kk2 是第 k 种商品的推迟赔偿系数,由
于持有成本一般小于缺货成本,故 kk1 < kk2
[运输成本函数]
4
根据常用的运价递减原则[6] ,可绘出运输成本
图线大致如下侧所示,故我们将运输成本函数定为下
Vk
第 k 种商品的单位体积
S
货车的容量
Bijkl 第 i 个货栈与第 j 个零售商在第 l 时段是否存在第 k 种商品的运输
持有成本 —— 持有某种货物一段时间所必须支付的成本,包括管理费、仓储费、 管理费、利息费用等
缺货成本 —— 当需要某种货物而又不能从库存得到供应时所导致的零售商在 商誉、 名声、及潜在的未来销售上的损失

数学建模+快递公司送货策略+论文

数学建模+快递公司送货策略+论文

快递公司送货策略一摘要:本文是关于快递公司送货策略的优化设计问题,即在给定送货地点和给定设计规范的条件下,确定所需业务员人数,每个业务员的运行线路,总的运行公里数,以及费用最省的策略。

本文主要从最短路经和费用最省两个角度解决该问题,建立了两个数据模型。

模型一:利用“图”的知识,将送货点抽象为“图”中是顶点,由于街道和坐标轴平行,即任意两顶点之间都有路。

在此模型中,将两点之间的路线权值赋为这两点横纵坐标之和。

如A(x1,y1),B(x2,y2)两点,则权值为D=|x2-x1|+|y2-y1|。

并利用计算机程序对以上结果进行了校核。

模型二:根据题意,建立动态规划的数学模型。

然后用动态规划的知识求得最优化结果。

根据所建立的两个数学模型,对满足设计要求的送货策略和费用最省策略进行了模拟,在有标尺的坐标系中得到了能够反映运送最佳路线的模拟图。

最后,对设计规范的合理性进行了充分和必要的论证。

二关键词:快递公司送货最优化图模型多目标动态规划TSP模型三问题重述:在快递公司送货策略中,确定业务员人数和各自的行走路线是本题的关键。

这个问题可以描述为:一中心仓库(或配送调度中心) 拥有最大负重为25kg的业务员m人, 负责对30个客户进行货物分送工作, 客户i 的快件量为已知 , 求满足需求的路程最短的人员行驶路径,且使用尽量少的人数,并满足以下条件:1) 每条送快件的路径上各个客户的需求量之和不超过个人最大负重。

2) 每个客户的需求必须满足, 且只能由一个人送货.3)每个业务员每天平均工作时间不超过6小时,在每个送货点停留的时间为10分钟,途中速度为25km/h。

4)为了计算方便,我们将快件一律用重量来衡量,平均每天收到总重量为184.5千克。

表一为题中所给的数据:表一处于实际情况的考虑, 本研究中对人的最大行程不加限制.本论文试图从最优化的角度,建立起满足设计要求的送货的数学模型,借助于计算机的高速运算与逻辑判断能力,求出满足题意要求的结果。

数学建模—货物配送问题

数学建模—货物配送问题

数学建模—货物配送问题本文将会探讨货物配送问题,其中会使用到数学建模的方法来解决。

问题描述假设有 $n$ 个城市需要被配送货物,每个城市之间的距离是已知的 $d_{i,j}$,其中 $d_{i,j}$ 表示第 $i$ 个城市和第 $j$ 个城市之间的距离。

需要找到一种合理的方案使得每个城市都能够被配送到且总的成本最小。

模型建立这是一个典型的旅行商问题,可以使用线性规划的方法来解决。

我们设 $x_{i,j}$ 表示是否从城市 $i$ 转移到城市 $j$,则可以得到以下的规划模型:$$\begin{aligned}\min \quad & \sum_{i=1}^n \sum_{j=1}^n d_{i,j} x_{i,j} \\s.t. \quad & \sum_{j=1}^n x_{i,j} = 1, \quad i=1,\cdots,n \\& \sum_{i=1}^n x_{i,j} = 1, \quad j=1,\cdots,n \\& u_i - u_j + nx_{i,j} \leq n-1, \quad i,j=2,\cdots,n, i \neq j \\& x_{i,j} \in \{0,1\}, \quad i,j=1,\cdots,n\end{aligned}$$其中,第一个约束是保证每个城市都恰好被访问一次,第二个约束也是保证每个城市都恰好被访问一次,第三个约束是 TSP 约束条件。

结论通过进行线性规划求解,可以求得货物配送问题的最优解。

当然,对于特别大的问题,我们还可以使用遗传算法等启发式算法来解决。

通过本文的学习,相信大家可以掌握货物配送问题的建模方法,并且对于线性规划方法有更深入的了解。

货物配送问题数学建模

货物配送问题数学建模

货物配送问题数学建模一、问题描述在物流配送中,如何合理地安排货物的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化,是一个重要的问题。

本文将以某物流公司为例,探讨如何利用数学建模的方法解决货物配送问题。

二、问题分析该物流公司需要将货物从A地配送到B地,其中A地有n个发货点,B地有m个收货点。

每个发货点的货物重量不同,每个收货点的需求量也不同。

为了保证配送效率,该物流公司需要在每个发货点选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。

具体而言,该问题需要考虑以下因素:1.货物重量:每个发货点的货物重量不同,需要考虑不同重量的货物在配送过程中的影响。

2. 配送路线:如何选择最优的配送路线,使得货物能够最快地到达目的地,同时保证配送成本最小化。

3. 配送成本:配送成本包括人工成本、车辆成本、油费等,需要考虑如何在保证配送效率的同时最小化配送成本。

三、数学建模为了解决上述问题,我们可以采用数学建模的方法。

具体而言,我们可以将该问题建模为一个最小费用最大流问题。

最小费用最大流问题是图论中的一个经典问题,其主要思想是在网络流的基础上,引入费用这一概念,使得在满足流量限制的同时,最小化总费用。

在本问题中,我们可以将发货点看作源点,收货点看作汇点,货物的重量看作每个边的流量限制,配送成本看作每个边的费用。

具体而言,我们可以将该问题建模为以下几个步骤:1. 建立网络模型:将发货点和收货点看作网络中的节点,将货物的配送路线看作网络中的边,建立网络模型。

2. 确定流量限制:将每个发货点的货物重量看作每个边的流量限制。

3. 确定费用:将配送成本看作每个边的费用。

4. 求解最小费用最大流:利用最小费用最大流算法,求解最小费用最大流,得到最优的配送路线。

四、实际案例为了验证上述方法的有效性,我们在某物流公司的实际配送中进行了测试。

具体而言,我们将该问题建模为一个最小费用最大流问题,并利用最小费用最大流算法求解最优的配送路线。

快递公司送货策略(数学建模)

快递公司送货策略(数学建模)

B题快递公司送货策略摘要本文主要解决快递公司送货策略问题,研究在各种运货地点,重量的确定,业务员的运输条件和工作时间等各种约束条件下,设计最优的路线,得出最优送货策略。

主要研究如下三个问题。

问题一:首先考虑在时间和重量两个约束条件之下,优先考虑重量,通过对送货点的分布进行分析,将分布点按照矩形,弧形和树的理念将问题分成三种模块,从而建立三种送货方案。

方案一,运用矩形,将整个区域分成5个区域,以选择的点的送货质量之和小于25kg 且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

方案二,运用弧形,以原点为圆心画同心圆,按照就近原则确定送货区域,依次分配业务员的送货地点。

方案三,运用Dijkstra 算法计算出每一个顶点到其它点的距离。

分析点的分布,由此得到最小树,在最小树的基础上,向四周延伸,得到相应区域。

且以送货质量小于25kg且距离尽可能小的点的集合作为一个区域。

依次来分配业务员的送货地点。

其次,再综合这三种方案所涉及到得时间,路程依次进行对比,画出柱形图,清晰可得出最优的方案为方案三。

问题二,是解决送货总费用最小的问题。

因此要求业务员的运行路线要尽量短,且尽早卸货。

首先将该区域安排送货点均匀度分为三个小区域,以每个点的信件质量从小到大排列,以送货点最大点为中心,选择该点附近质量较大且距离较短原则的下一个送货点,依次类推,直到根据约束条件为每次携带的快件量不超过25kg,找到该条路线最后一个送货点。

按此方法可得路线为0→10→12→11→0,0→7→14→27→0,0→1→26→28→0,0→13→19→25→0,0→2→5→16→17→0,0→22→15→29→30→0,0→6→20→18→24→0,0→4→3→8→9→21→23→0,并且利用C语言编程(见附录),算得每条路线的费用,所得总费用为14636.1元。

问题三,在问题一的基础上,将业务员的工作时间延长到8小时,由此在问题一的基础上,将8小时的工作时间所需花费的费用在三个方案中进行对比,由此得到依旧是方案三的为最优。

快递公司的配送数学建模

快递公司的配送数学建模

快递公司的配送问题摘要配送是物流系统中非常重要的一个环节,在物流的各项成本中,配送成本占了相当高的比例,减少配送里程以降低物流配送成本成为物流管理过程中首要考虑的问题之一。

本文在已知货运车容量、各客户所需货物重量、快递公司与客户以及客户与客户之间的距离的条件下,建立了以单车场路径问题模型(即VRP模型)为基础、以车辆总行程最短为目标函数、以货物运输量小于汽车载重量以及在客户要求的时间范围内运送货物等为约束条件的单目标线性规划模型。

对于问题一,本文建立了两个模型:模型I:硬时间窗车辆路径规划模型首先根据题目所给条件,对运货所需的车辆数进行预估,然后结合货物运输量小于汽车载重量、一个客户点的货物仅由一辆车配送等约束条件,同时考虑线路的连通性和汽车到达客户点的时间范围,采用0-1规划法建立使总运行里程最小的车辆路径规划模型。

模型II:软时间窗车辆路径规划模型在模型I硬时间窗车辆路径规划模型的基础上,将模型I中的关于时间范围的约束条件,通过设定惩罚函数的系数,变成目标函数的一部分。

本文在考虑路程最短的目标的同时,也要求尽可能在时间范围内到达。

因此,建立了以成本(包括惩罚成本以及行驶过程中带来的成本)最小为目标的函数,以运输量小于汽车载重量以及线路的连通性等为约束条件,建立软时间车辆路径规划模型。

最后运用遗传算法求解模型。

对于问题二,根据题目所提供的数据,利用硬时间窗车辆路径规划模型。

首先,根据货运车的载重量和客户点的需求总量,估计出运货所需车辆数为3,然后,借助Lingo 求解该模型。

得到最优路径的总里程数为910千米,快递公司每天的配送方案应为:每天出动3辆车。

3辆车的行驶路径分别为:0->3->1->2->0,0->6->4->0,0->8->5->7->0关键词: VRPTW 遗传算法 0-1规划法 Lingo目录一、问题重述 (1)二、模型假设和符号说明 (1)三、问题分析 (2)四、模型的建立与求解 (3)4.1问题一的解答 (3)4.1.1模型的准备 (3)4.1.2模型的建立 (3)4.1.3模型的求解 (6)4.2问题二的解答 (7)4.2.1对货运车辆数的估计 (7)4.2.2路线的规划 (7)五、模型的评价与改进 (10)5.1模型的优缺点分析 (10)5.2 模型的改进 (11)六、参考文献 (11)七、附录 (12)一、问题重述某快递公司在某个地区拥有一支货运车队,每台货运车辆的载重量(吨)相同、平均速度(千米/小时)相同,该快递公司用这样的车为若干个客户配送物品,快递公司与客户以及客户与客户之间的公路里程(千米)为已知。

数学建模大赛-货物运输问题

数学建模大赛-货物运输问题

货物配送问题【摘要】本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。

我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。

针对问题一,我们在两个大的方面进行分析与优化。

第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。

第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。

最后得出耗时最少、费用最少的方案。

耗时为40.5007小时,费用为4685.6元。

针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。

我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。

耗时为26.063小时,费用为4374.4元。

针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。

我们经过简单的论证,排除了4吨货车的使用。

题目没有规定车子不能变向,所以认为车辆可以掉头。

然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。

最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨,则用6吨货车运输,若在7~8吨用8吨货车运输。

最后得出耗时最少、费用最省的方案。

耗时为19.6844小时,费用为4403.2。

一、问题重述某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。

路线是唯一的双向道路(如图1)。

货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国零售业巨头沃尔玛之所以能够迅速成为世界零售业之最,其中一个重要的原因是重视配送系统的建设与完善。

从1962年第一家商场开业以来到目前为止,沃尔玛在美国有1800多家商场,在英国、墨西哥、德国及中国等国家及世界各地有1000多家商场,其中有720多个超级商业中心,沃尔玛在世界各地有110万职工。

沃尔玛1970年在美国建起第一个配送中心,现在这个中心为4个洲32家商场配送。

沃尔玛在2000年仅配送系统投资达1600亿美元,在美国利用自己的配送中心为连锁商场配送商品。

在其他国家沃尔玛利用第三方物流。

沃尔玛的企业理念是:“最低的成本,提供高质量的服务”。

试就下面的两个问题建立数学模型,并给出合理的解答:
1.考虑直送式配送运输,即一个供应点对一个客户的专门送货。

在下面的物流网络图中(图1),寻找从A 点到K 点的最优配送线路。

图一
2.针对一般的分销系统,即系统由分销中心(DC ),多个零售商组成,该系统的运营成本主要由运输成本与库存成本构成。

分销中心用自己的车辆为各零售商供货,而分销中心由制造商直接供货,假设零售商处的顾客需求是随机的且服从一定的概率分布,不同零售商之间以及同一零售商不同时期之间的需求是独立的。

一般DC 与零售商均采用周期补货策略,补货时刻为周期末,DC 的一个补货周期一般包含多个零售商的补货周期。

现考虑只有一个分销中心和30个零售商组成的分销系统,配送货物为单一产品。

试就顾客需求服从参数为6的Possion 分布,销售中心位置为(0,0),30个零售商的位置可在[-200,200] [-200,200]的平面上随机产生得到的分销系统的运输、配送策略建立数学模型,并以题目中提供的部分数据为基础,进行数据模拟。

1 w=[
H G K F E D
C B A 8 10 9 7 4 14 13 2 5
6 7 8 10 11 12
0 5 11 6 inf inf inf inf inf
5 0 4 inf 2 14 inf inf inf
11 4 0 10 inf 8 7 inf inf
6 inf 10 0 inf inf 12
7 inf
inf 2 inf inf 0 13 inf inf inf
inf 14 8 inf 13 0 inf inf inf
inf inf 7 12 inf inf 0 10 8
inf inf inf 7 inf inf 10 0 9
inf inf inf inf inf inf 8 9 0 ];
n=size(w,1);
w1=w(1,:);
%赋初值
for i=1:n
l(i)=w1(i);
z(i)=1;
end
s=[];
s(1)=1;
u=s(1);
k=1
l
z
while k<n
% 更新 l(v) 和 z(v)
for i=1:n
for j=1:k
if i~=s(j)
if l(i)>l(u)+w(u,i)
l(i)=l(u)+w(u,i);
z(i)=u;
end
end
end
end
l
z
%求v*
ll=l;
for i=1:n
for j=1:k
if i~=s(j)
ll(i)=ll(i);
else
ll(i)=inf;
end
end
end
lv=inf;
for i=1:n
if ll(i)<lv
lv=ll(i);
v=i;
end
end
lv
v
s(k+1)=v
k=k+1
u=s(k)
end
l
z
结果:
lv =
22
v =
9
s =
1 2 4 5 3 8 7 6 9
k =
9
u =
9
l =
0 5 9 6 7 17 16 13 22
z =
1 1
2 1 2
3 3
4 8
2 数学模型建立
物流配送车辆调度实质就是走什么样的路线进行运输的问题,其描述为: 在车辆载重量和各客户需求量已知的前提下,至少派多少辆车才能满足需求且车辆的总行程最短,从而找到最小成本的配送方案,同时要求满足下列条件:
1) 所有配送车辆以配送中心为起点并最终回到配送中心。

2) 每一个客户只被一辆车访问一次,每辆车只能服务一条路线。

3) 每条配送路径上客户需求量之和不能超过车辆的载重量。

4) 每辆车所走的路线不能重复。

综合上述可知,VRP 目标是找到一条最优物流配送路线,使配送费用最小。

V =v0,v1,…,v n},v0表示配送中心,vi表示客户所在地。

设配送中心可用辆车数目最多为K,每辆
车载重量为Qk,物流配送车辆路径优化算法问题的数学模型为:
其中: nk表示第k 辆车所配送的顾客点数,r ki表示顾客点在路径k 中的顺序为i,且有
最优解的限制条件为:
一、发车规律与泊松分布原理
车辆进入仿真区域是个随机性事件,据此,可将其转化为进入仿真区域的车辆之间的间隔时间是个随机量。

根据车辆进入仿真区域本身的特点,从理论上应满足下列条件:
(1)在不相重迭的时间区间内车辆的产生是互相独立的,即无后效性;
(2)对充分小的△t,在时间区间 [t,t+△t]内有一辆车产生的概率与 t 无关,而与区间长度△t成正比,即车辆的产生具有平稳性;
(3)对于充分小的△t,在时间区间 [t,t+△t]内一条车道上有2辆或2辆以上车辆产生的概率极小,即具有普通性。

通过对相关资料提供的车流数据的分析与实地观察数据,在城区、市郊、高速公路等车辆通行较为频繁的地方,车流到达情况接近均匀的波峰分布,指无突起的波峰,但非每个时段经过车辆数都平均(指概率均等)。

交通高峰、平峰、低峰差异在于总车辆数上的变化。

对于特别的交通情况,如突然产生一个巨大的波峰或在交通量小的地方(概率平均分布),当作小概率事件接受。

在此选用常用、简单的概率分布--泊松分布来表示交通流的分布情况。

由于泊松分布的变异系数为D(x) /E(x) =1,则根据变异系数定义,该分布的概率曲线集中度比较均匀,能体现均匀分布。

则有公式:
(1)
n为车辆数;λ为参数。

根据实验采集数据方式得:公式(1)中的参数有相应的物理意义,λ表示在采样时间内的车辆数。

令λ=α,α则表示车辆平均到达率(veh/s)。

则泊松分布公式(1)转化为:
(2)
公式(2)的物理意义是:在时间区段内有n辆车进入仿真区域的可能性为Pn()。

当固定采样时间,则可通过在不同的断面处测量车辆数的方法确定参数λ。

对于采样时间,若过短,则车辆数会相对少且数据的波动会相对增加,不符合泊松分布的定义;若过长,则车辆数会趋于常数,不能体现出车辆数的随机规律。

经过实验得出:当车流量较大时,采样时间适当选小一点;当车流量较小时,采样时间适当选大一点。

相关文档
最新文档