必修三数学统计综合训练题及答案
(压轴题)高中数学必修三第一章《统计》检测(包含答案解析)

一、选择题1.2015年年岁史诗大剧《芈月传》风靡大江南北,影响力不亚于以前的《甄嬛传》.某记者调查了大量《芈月传》的观众,发现年龄段与爱看的比例存在较好的线性相关关系,年龄在[]10,14,[]15,19,[]20,24,[]25,29,[]30,34的爱看比例分别为10%,18%,20%,30%,%t .现用这5个年龄段的中间值x 代表年龄段,如12代表[]10,14,17代表[]15,19,根据前四个数据求得x 关于爱看比例y 的线性回归方程为( 4.68)%y kx =-,由此可推测t 的值为( )A .33B .35C .37D .392.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为193.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差4.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表: 价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.75.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .816.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和677.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-.A .①②③B .①③④C .①②④D .②③④8.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定9.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为310.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用x (万元) 2 3 4 5 销售额y (万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元11.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.已知一组数1,2,m ,6,7的平均数为4,则这组数的方差为______.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数据的方差为______.16.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
人教A版高中数学选择性必修第三册习题课(三) 成对数据的统计分析含答案

习题课(三) 成对数据的统计分析一、选择题1.在建立两个变量y 与x 的回归模型时,分别选择了4个不同的模型,它们的R 2如下,其中拟合得最好的模型为( )A .模型1的R 2为0.75B .模型2的R 2为0.90C .模型3的R 2为0.25D .模型4的R 2为0.55解析:选B R 2的值越大,意味着残差平方和越小,也就是说拟合效果越好. 2.对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则下列说法中不正确的是( )A.由样本数据得到的经验回归方程y ^=b ^x +a ^必过样本点的中心(x -,y -) B.残差平方和越小的模型,拟合的效果越好C.用决定系数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好D.若变量y 和x 之间的样本相关系数r =-0.936 2,则变量y 与x 之间具有线性相关关系 解析:选C R 2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好. 3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的样本相关系数r 如下,其中拟合效果最好的模型是( )A .模型Ⅰ:样本相关系数r 为0.96B .模型Ⅱ:样本相关系数r 为-0.81C .模型Ⅲ:样本相关系数r 为-0.53D .模型Ⅳ:样本相关系数r 为0.35 解析:选A |r |越大,拟合效果越好.4.关于残差和残差图,下列说法正确的是( ) A .残差就是随机误差 B .残差图的横坐标是残差C .残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越高D .残差点均匀分布的带状区域的宽度越窄,说明模型拟合精度越低解析:选C 根据残差分析的概念可知,C 选项正确.残差是真实值减去估计值. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A .y =a +bxB .y =a +bx 2C .y =a +b e xD .y =a +b ln x解析:选D 用光滑的曲线把图中各点连接起来,由图象的大致走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为y =a +b ln x .6.根据如下所示的列联表得到如下四个判断:①根据小概率值α=0.001的独立性检验,认为患肝病与嗜酒有关;②根据小概率值α=0.01的独立性检验,认为患肝病与嗜酒有关;③没有证据显示患肝病与嗜酒有关.患病状况 饮酒习惯合计嗜酒(Y =0)不嗜酒(Y =1)患肝病(X =0) 7 775 42 7 817 未患肝病(X =1)2 099 49 2 148 合计9 874919 965其中正确命题的个数为( ) A .1 B .2 C .3D .0 解析:选B 根据列联表中的数据,经计算得到 χ2=9 965×(7 775×49-42×2 099)27 817×2 148×9 874×91≈56.632,由56.632>10.828>6.635.且P (χ2≥10.828)≈0.001,P (χ2≥6.635)≈0.01. 所以①②均正确. 二、填空题7.调查某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元)显示,年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的经验回归方程y ^=0.254x +0.321.由经验回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.解析:由经验回归方程y ^=0.254x +0.321,知x 每增加1,y 增加0.254. 答案:0.2548.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程为y ^=0.67x +54.9.零件数x /个 10 2030 40 50 加工时间y /min62758189现发现表中有一个数据模糊看不清,请你推断出该数据的值为________. 解析:由表知x =30,设模糊不清的数据为m , 则y =15(62+m +75+81+89)=307+m 5,因为y =0.67x +54.9,即307+m5=0.67×30+54.9,解得m =68.答案:689.假设关于某设备的使用年限x (单位:年)和所支出的维修费用y (单位:万元)有如下的统计资料:x /年 2 3 4 5 6 y /万元2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系,且经验回归方程为y ^=a ^+b ^x ,其中已知b ^=1.23,请估计使用年限为20年时,维修费用约为________万元.解析:由表中数据可知, x -=2+3+4+5+65=4,y -=2.2+3.8+5.5+6.5+7.05=5.∵经验回归直线一定经过点(x -,y -), ∴5=a ^+1.23×4,∴a ^=0.08,∴经验回归方程为y ^=1.23x +0.08.故估计使用年限为20年时,维修费用约为y =1.23×20+0.08=24.68(万元). 答案:24.68 三、解答题10.2023年某市开展了“寻找身边的好老师”活动,市六中积极行动,认真落实,通过网络关注评选“身边的好老师”,并对选出的五位“好老师”的班主任的工作年限和被关注数量进行了统计,得到如下数据:(1)若“好老师”的被关注数量y 与其班主任的工作年限x 满足经验回归方程,试求经验回归方程y ^=b ^x +a ^,并就此分析:“好老师”的班主任工作年限为15年时被关注的数量;(2)若用y ix i(i =1,2,3,4,5)表示统计数据时被关注数量的“即时均值”(四舍五入到整数),从“即时均值”中任选2组,求这2组数据之和小于8的概率.解:(1)因为x -=8,y -=36,所以b ^=40+120+320+600+600-5×8×3616+36+64+100+144-5×82=6,a ^=36-6×8=-12, 所以y ^=6x -12.当x =15时,y ^=6×15-12=78(百人).(2)这5次统计数据,被关注数量的“即时均值”分别为3,3,5,6,4.从5组“即时均值”任选2组,共有C 25=10种情况,其中2组数据之和小于8为(3,3),(3,4),(3,4)共3种情况,所以这2组数据之和小于8的概率为310.11.“双11”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双11”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额t (百元)的频率分布直方图如图所示:(1)求网民消费金额t 的平均值t -和中位数t 0.(2)把下表中空格里的数填上,并判断能否根据小概率值α=0.001的独立性检验,认为网购消费与性别有关?单位:人消费金额 性别合计 男(Y =0)女(Y =1)t ≥t 0(X =0) t <t 0(X =1) 30 合计45解:(1)以每组的中间值代表本组的消费金额,则网民消费金额t 的平均值 t -=2.5×0.2+7.5×0.3+12.5×0.2+17.5×0.15+22.5×0.1+27.5×0.05=11.5. 直方图中第一组,第二组的频率之和为0.04×5+0.06×5=0.5. 所以t 的中位数t 0=10. (2)补充列联表如下:消费金额 性别合计男(Y =0) 女(Y =1) t ≥t 0(X =0) 25 25 50 t <t 0(X =1) 20 30 50 合计4555100零假设为H 0:网购消费与性别独立,即网购消费与性别无关. 根据列联表中的数据,经计算得到χ2=100×(25×30-25×20)250×50×45×55=10099≈1.01<10.828=x 0.001.根据小概率值α=0.001的独立性检验,没有充分证据推断H 0不成立,因此可以认为H 0成立,即认为网购消费与性别无关.12.流行性感冒(简称流感)是流感病毒引起的急性呼吸道感染,是一种传染性强、传播速度快的疾病.其主要通过空气中的飞沫、人与人之间的接触与被污染物品的接触传播.流感每年在世界各地均有传播,在我国北方通常呈冬春流行,南方有冬春季和夏季两个流行高峰.儿童相对免疫力低,在幼儿园、学校等人员密集的地方更容易被传染.某幼儿园将去年春季该园患流感小朋友按照年龄与人数统计,得到如下数据:(1)求y 关于x 的回归直线方程;(2)计算变量x ,y 的样本相关系数r (计算结果精确到0.01),并回答是否可以认为该幼儿园去年春季患流感人数与年龄负相关很强.(若|r |∈[0.75,1],则x ,y 相关性很强;若|r |∈[0.3,0.75),则x ,y 相关性一般;若|r |∈[0,0.3),则x ,y 相关性较弱)参考数据:30≈5.477.参考公式:b ^=∑i =1n (x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,样本相关系数r =∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2·∑i =1n(y i -y )2.解:(1)由题意得,x =2+3+4+5+65=4,y =22+22+17+14+105=17,b ^=∑i =15(x i -x )(y i -y )∑i =15(x i -x )2=(-2)×5+(-1)×5+0×0+1×(-3)+2×(-7)(-2)2+(-1)2+02+12+22=-3.2,a ^=y -b ^x =17+3.2×4=29.8, 故y 关于x 的线性回归方程为y ^=-3.2x +29.8.(2)∵r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2·∑i =15(y i -y )2=-3210×108=-16330≈-0.97,∴r <0,说明x ,y 负相关.又|r |∈[0.75,1],说明x ,y 相关性很强.因此,可以认为该幼儿园去年春季流感人数与年龄负相关很强.。
新教材高中数学章末综合检测三成对数据的统计分析新人教A版选择性必修第三册

章末综合检测(三) 成对数据的统计分析A 卷——基本知能盘查卷一、单项选择题1.可用来分析身高与体重有关系的是( ) A .残差分析 B .线性回归模型 C .等高堆积条形图D .独立检验解析:选B 因为身高与体重是两个具有相关关系的变量,所以要用线性回归模型来解决.2.两个变量y 与x 的经验回归模型中,分别选择了四个不同模型来拟合y 与x 之间的关系,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1 C .模型3D .模型4解析:选A 两个变量y 与x 的经验回归模型中,它们的相关指数R 2越接近于1,这个模型的拟合效果越好,所给出的四个选项中0.98是相关指数最大的值,所以拟合效果最好的模型是模型1.3.已知一组观测值(x 1,y 1),(x 2,y 2),…,(x n ,y n )满足y i =a +bx i +e i (i =1,2,…,n ),若e i 恒为0,则R 2=( )A .0B .0.5C .0.9D .1选D4.如果有95%的把握说事件A 和B 有关系,那么具体计算出的数据为( ) A .χ2>3.841 B .χ2<3.841 C .χ2>6.635D .χ2<6.635解析:选A 由独立性判断的方法可知,如果有95%的把握,即小概率值α=0.05,则χ2>3.841.5.观察两个变量(存在线性相关关系)得如下数据:A.y ^=12x +1B.y ^=xC.y ^=2x +13D.y ^=x +1解析:选 B 根据表中数据得x -=18×(-10-6.99-5.01-2.98+3.98+5+7.99+8.01)=0,y -=18×(-9-7-5-3+4.01+4.99+7+8)=0,所以两变量x ,y 的经验回归方程过样本点的中心(0,0),可以排除A 、C 、D 选项,故选B.6.2020年初,新型冠状病毒(COVID 19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:周数(x ) 1 2 3 4 5 治愈人数(y )2173693142由表格可得y 关于x 的二次回归方程为y ^=6x 2+a ,则此回归模型第4周的残差(实际值与预报值之差)为( )A .5B .4C .1D .0解析:选A 设t =x 2,则t -=15(1+4+9+16+25)=11,y -=15(2+17+36+93+142)=58,a =58-6×11=-8,所以y ^=6x 2-8.令x =4,得e 4=y 4-y ^4=93-6×42+8=5.7.通过随机询问100名性别不同的高二学生是否爱吃零食,得到如下的列联表:喜爱程度 性别合计 男(Y =0) 女(Y =1) 爱好(X =0) 10 40 50 不爱好(X =1)20 30 50 合计3070100参考数据及公式:P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635其中χ2=n ad -bc 2a +bc +d a +cb +d,n =a +b +c +d .则下列结论正确的是( )A .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别有关B .根据小概率值α=0.05的独立性检验,认为爱吃零食与性别无关C .根据小概率值α=0.01的独立性检验,认为爱吃零食与性别有关D .根据小概率值α=0.1的独立性检验,认为爱吃零食与性别无关 解析:选A 零假设为H 0:是否爱吃零食与性别相互独立,即是否爱吃零食与性别无关.根据列联表中的数据,经计算得到 χ2=100×10×30-40×20250×50×30×70≈4.762>3.841=x 0.05,所以依据小概率值α=0.05的独立性检验,推断H 0不成立,即认为是否爱吃零食与性别有关.同理可得,根据小概率值α=0.01的独立性检验,认为爱吃零食与性别无关;根据小概率值α=0.1的独立性检验,认为爱吃零食与性别有关.8.某考察团对全国10大城市进行职工人均工资水平x (千元)与居民人均消费水平y (千元)统计调查,y 与x 具有相关关系,回归方程为y ^=0.66x +1.562.若某城市居民人均消费水平为7.675千元,估计该城市人均消费额占人均工资收入的百分比约为( )A .83%B .72%C .67%D .66%解析:选A 将y ^=7.675代入回归方程,可计算得x ≈9.262,所以该城市人均消费额占人均工资收入的百分比约为7.675÷9.262≈0.83,即约为83%.二、多项选择题9.下列说法正确的是( )A .自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B .在线性经验回归模型中,相关系数r 的值越大,变量间的相关性越强C .在残差图中,残差点分布的水平带状区域的宽度越狭窄,其模型拟合的精度越高D .在经验回归模型中,R 2为0.98的模型比R 2为0.80的模型拟合的效果好解析:选ACD 由于线性相关系数|r |≤1,且当|r |越大,线性相关性越强,故r <0时,选项B 不正确,A 、C 、D 均正确.10.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,则下列结论正确的是( )A .y 与x 负相关且y ^=2.347x -6.423 B .y 与x 负相关且y ^=-3.476x +5.648 C .y 与x 正相关且y ^=5.437x +8.493 D .y 与x 正相关且y ^=-4.326x -4.578解析:选BC 正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故正确的为B 、C.11.以下关于线性经验回归的判断中,正确的选项为( )A .若散点图中所有点都在一条直线附近,则这条直线为经验回归直线B .散点图中的绝大多数都线性相关,个别特殊点不影响线性回归,如图中的A ,B ,C 点C .已知线性经验回归方程为y ^=0.50x -0.81,则x =25时,y 的估计值为11.69 D .线性经验回归方程的意义是它反映了样本整体的变化趋势解析:选BCD 能使所有数据点都在它附近的直线不止一条,而据回归直线的定义知,只有按最小二乘法求得回归系数a ^,b ^得到的直线y ^=b ^x +a ^才是回归直线,所以A 错误;B 正确;将x =25代入y ^=0.50x -0.81,得y ^=11.69,所以C 正确;D 正确.12.有两个分类变量X 与Y ,其2×2列联表如下表所示:X Y 合计 Y =0 Y =1X =0 a20-a 20 X =115-a 30+a 45 合计155065其中a,15-a 均为大于5的整数,根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,则a 等于( )A .7B .8C .9D .6解析:选BC 根据小概率值α=0.05的独立性检验,认为X 与Y 之间有关,需要χ2的值大于或等于3.841,由χ2=65×[a 30+a -20-a15-a ]220×45×15×50=1313a -6025 400≥3.841,解得a ≥7.69或a ≤1.54.而a >5且15-a >5,a ∈Z , 所以a =8或a =9. 三、填空题13.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸烟量每天多于和不多于20支进行分组,如下表:吸烟量年龄合计不超过40岁 (Y =0)超过40岁 (Y =1) 不多于20支/天(X =0) 50 1565多于20支/天 (X =1) 10 25 35 合计6040100则χ2=________(保留到小数点后两位有效数字). 解析:由列联表知χ2=100×10×15-50×25260×40×65×35≈22.16.答案:22.1614.某高校“统计初步”课程的教师随机调查了选该课程的一些学生情况,具体数据如下表:性别专业非统计专业 (Y =0)统计专业 (Y =1) 男(X =0) 13 10 女(X =1)720为了判断主修统计专业是否与性别有关系,根据表中数据,得到χ2=50×13×20-10×7223×27×20×30≈4.844>3.841,所以能根据小概率值α=________,我们断定主修统计专业与性别有关系.解析:因为P (χ2≥3.841)=0.05,所以小概率值α=0.05. 答案:0.0515.下表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性经验回归方程y ^=0.7x +0.35,那么表中m 的值为________.x3 4 5 6y2.5 m 4 4.5解析:根据所给的表格可以求出x -=3+4+5+64=4.5,y -=2.5+m +4+4.54=11+m 4,因为这组数据的样本点的中心在线性经验回归直线上, 所以11+m4=0.7×4.5+0.35,所以m =3.答案:3 四、解答题16.(12分)为做好2022年北京冬季奥运会的宣传工作,组委会计划从某大学选取若干名大学生志愿者,某记者在该大学随机调查了1 000名大学生,以了解他们是否愿意做志愿者工作,得到的数据如表所示:性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0)610 女(X =1)90 合计800(1)根据题意完成表格.(2)依据小概率值α=0.05的独立性检验,分析愿意做志愿者工作与性别是否有关? 参考公式及数据:χ2=n ad -bc 2a +bc +d a +cb +d,其中n =a +b +c +d .P (χ2≥x α)0.10 0.05 0.01 x α2.7063.8416.635解:(1)性别 是否愿意做志愿者 合计 愿意(Y =0)不愿意(Y =1)男(X =0) 500 110 610 女(X =1) 300 90 390 合计8002001 000(2)零假设为H 0:愿意做志愿者工作与性别是相互独立,即愿意做志愿者工作与性别是无关的.根据列联表中的数据,经计算得到 χ2=1 000×500×90-110×3002610×390×800×200=3 000793≈3.783<3.841=x 0.05, 所以依据小概率值α=0.05的独立性检验,没有充分证据推断H 0不成立,即愿意做志愿者工作与性别是无关的.17.(12分)自从高中生通过高校自主招生可获得加分进入高校的政策出台后,自主招生越来越受到高中生家长的重视.某机构为了调查A 城市和B 城市的高中家长对于自主招生的关注程度,在这两个城市中抽取了100名高中生家长进行了调查,得到下表:城市高中家长是否关注合计关注(Y =0)不关注(Y =1)A 城高中家长(X =0)2050B 城高中家长(X =1) 20 合计100(1)完成上面的列联表;(2)根据上面列联表的数据,能否根据小概率值α=0.05的独立性检验,判断家长对自主招生关注与否与所处城市有关系;(3)为了进一步研究家长对自主招生的看法,该机构从关注的学生家长里面,按照分层随机抽样方法抽取了5人,并再从这5人里面抽取2人进行采访,求所抽取的2人恰好A ,B 两城市各一人的概率.参考公式:χ2=n ad -bc 2a +bc +d a +cb +d(其中n =a +b +c +d ).附表:P (χ2≥x α)0.10 0.05 0.010 x α2.7063.8416.635解:(1)列联表如下: 城市高中家长是否关注合计关注(Y =0) 不关注(Y =1)A 城高中家长(X =0)203050B 城高中家长(X =1) 30 20 50 合计 5050100(2)零假设为H 0:家长对自主招生关注与否与所处城市相互独立,即家长对自主招生关注与否与所处城市无关.根据列联表中的数据,经计算得到 χ2=100×20×20-30×30250×50×50×50=4>3.841.所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即认为家长对自主招生的关注与否与所处城市是有关的.(3)关注的人共有50人,按照分层随机抽样的方法,A 城市2人,B 城市3人,从5人中抽取2人有C 25=10种不同的方法,A ,B 两城市各取一人有C 12C 13=2×3=6种不同的方法,故所抽取的2人恰好A ,B 两城市各一人的概率为C 13C 12C 25=610=0.6.B 卷——高考能力达标卷一、单项选择题1.下列属于相关关系的是( ) A .利息与利率 B .居民收入与储蓄存款 C .电视机产量与苹果产量 D .某种商品的销售额与销售价格解析:选B A 与D 是函数关系,C 中两变量没有关系,B 中居民收入与储蓄存款是相关的,但不具有函数关系.2.已知一个经验回归方程为y ^=1.5x +45,其中x 的取值依次为1,7,5,13,19,则y -=( )A .58.5B .46.5C .60D .75解析:选A x -=1+7+5+13+195=9,因为经验回归直线必过样本点的中心(x -,y -), 所以y -=1.5×9+45=13.5+45=58.5.3.已知每一吨铸铁成本y (元)与铸件废品率x %建立的经验回归方程y ^=56+8x ,则下列说法正确的是( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率增加1%,则每吨成本为56元解析:选C 根据经验回归方程知y 是关于x 的单调增函数,并且由系数知x 每增加一个单位,y 平均增加8个单位.4.某商品销售量y (件)与销售价格x (元/件)负相关,则其经验回归方程可能是( ) A .y =-10x +200 B .y =10x +200 C .y =-10x -200D .y =10x -200解析:选A 由于销售量y 与销售价格x 成负相关,故排除B 、D.又当x =10时,A 中y =100,而C 中y =-300,C 不符合题意.5.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的经验回归方程为y ^=0.85x -85.71,则下列说法错误的是( )A .y 与x 具有正的线性相关关系B .经验回归直线过样本点的中心C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg解析:选D 选项中,若该大学某女生身高为170 cm ,则可断定其体重约为0.85×170-85.71=58.79(kg).故D 选项错误.6.如图所示的是调查某地区男、女中学生喜欢理科的等高堆积条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比例约为80%C .男生比女生喜欢理科的可能性大些D .男生中不喜欢理科的比例约为60%解析:选C 由题图可知女生中喜欢理科的比例约为20%,男生中喜欢理科的比例约为60%,因此男生比女生喜欢理科的可能性大些.7.如图,5个(x ,y )数据,去掉D (3,10)后,下列说法错误的是( )A .相关系数r 变大B .残差平方和变大C .相关指数R 2变大D .解释变量x 与预报变量y 的相关性变强解析:选B 由散点图知,去掉D 后,x 与y 的相关性变强,且为正相关,所以r 变大,R 2变大,残差平方和变小.8.为考察数学成绩与物理成绩的关系,某老师在高二随机抽取了300名学生,得到下面的列联表:物理成绩数学成绩合计85~100分 (Y =0)85分以下 (Y =1) 85~100分(X =0) 37 85 122 85分以下(X =1)35 143 178 合计72228300 根据表中数据,分析数学成绩与物理成绩有关联的出错率不超过( ) A .0.5% B .1% C .0.1%D .5%解析:选D 由表中数据代入公式得 χ2=300×37×143-85×352122×178×72×228≈4.514>3.841=x 0.05,所以判断的出错率不超过5%. 二、多项选择题9.给出下列实际问题,其中用独立性检验可以解决的问题有( ) A .一种药物对某种病的治愈率 B .两种药物治疗同一种病是否有区别 C .吸烟得肺病的概率 D .吸烟与性别是否有关系答案:BD10.对于经验回归方程y ^=b ^x +a ^,下列说法正确的是( ) A .直线必经过点(x -,y -)B .x 增加1个单位时,y 平均增加b ^个单位 C .样本数据中x =0时,可能有y =a ^D .样本数据中x =0时,一定有y =a ^解析:选ABC 经验回归方程是根据样本数据得到的一个近似曲线,故由它得到的值也是一个近似值.11.下列说法中正确的有( ) A .若r >0,则x 增大时,y 也相应增大 B .若r <0,则x 增大时,y 也相应增大C .若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个散点均在一条直线上D .|r |越接近1,相关关系越强解析:选ACD 若r >0,表示两个相关变量正相关,x 增大时,y 也相应增大,故A 正确.r <0,表示两个变量负相关,x 增大时,y 相应减小,故B 错误.|r |越接近1,表示两个变量相关性越高,|r |=1表示两个变量有确定的关系(即函数关系),故C 正确,D 正确.12.根据如下样本数据:得到的经验回归方程为y =b x +a ,则( ) A.a ^>0 B.a ^<0 C.b ^>0D.b ^<0解析:选AD 根据题意,画出散点图(图略).根据散点图,知两个变量为负相关,且经验回归直线与y 轴的交点在y 轴正半轴,所以a ^>0,b ^<0.三、填空题13.期中考试后,某校高三(9)班对全班65名学生的成绩进行分析,得到数学成绩y 对总成绩x 的回归直线方程为y ^=6+0.4x .由此可以估计:若两名同学的总成绩相差50分,则他们的数学成绩大约相差________分.解析:令两人的总成绩分别为x 1,x 2.则对应的数学成绩估计为y ^1=6+0.4x 1,y ^2=6+0.4x 2,所以|y ^1-y ^2|=|0.4(x 1-x 2)|=0.4×50=20. 答案:2014.为了判断高三年级学生选修文科是否与性别有关,现随机抽取70名学生,得到如图所示2×2列联表:已知P (≈4.667,则在犯错误的概率不大于________的前提下认为选修文科与性别有关.解析:由题意知, χ2≈4.667,因为6.635>4.667>3.841,所以在犯错误的概率不大于0.05的前提下认为选修文科与性别有关.答案:0.0515.已知x ,y 之间的一组数据如下表,对于表中数据,甲、乙两同学给出的拟合直线分别为l 1:y =13x +1与l 2:y =12x +12,利用最小二乘法判断拟合程度更好的直线是______________.解析:用y =13x +1作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 1=⎝⎛⎭⎪⎫1-432+(2-2)2+(3-3)2+⎝⎛⎭⎪⎫4-1032+⎝⎛⎭⎪⎫5-1132=73.用y =12x +12作为拟合直线时,所得y 的实际值与y 的估计值的差的平方和为:S 2=(1-1)2+(2-2)2+⎝⎛⎭⎪⎫3-722+(4-4)2+⎝⎛⎭⎪⎫5-922=12. 因为S 2<S 1,故用直线l 2:y =12x +12拟合程度更好.答案:y =12x +12四、解答题16.(12分)微信是现代生活进行信息交流的重要工具,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余的员工每天使用微信的时间在一小时以上.若将员工分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,则使用微信的人中75%是青年人.如果规定每天使用微信时间在一小时以上为经常使用微信,那么经常使用微信的员工中,中年人有40人.(1)若要调查该公司使用微信的员工经常使用微信与年龄的关系,请完成下面的2×2列联表;使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0)不经常使用微信(X =1) 合 计(2)根据列联表中的数据,依据小概率值α=0.001的独立性检验分析该公司经常使用微信的员工与年龄的关系.解:(1)由已知可得,该公司员工中使用微信的有200×90%=180(人). 经常使用微信的有180-60=120(人), 使用微信的人中青年人有180×75%=135(人), 故2×2列联表如下:使用微信 年龄合计青年人(Y =0)中年人(Y =1)经常使用微信 (X =0) 8040120不经常使用微信(X =1) 55 5 60 合 计 13545180(2)零假设为H 0:该公司经常使用微信的员工与年龄相互独立,即该公司经常使用微信的员工与年龄无关.将列联表中的数据代入公式可得, χ2=180×80×5-40×552135×45×120×60≈13.333>10.828=x 0.001,所以根据小概率值α=0.001的独立性检验,我们推断H 0不成立,即认为该公司经常使用微信的员工与年龄有关.17.(12分)淘宝网卖家在某商品的所有买家中,随机选择男女买家各50位进行调查,他们的评分等级如下:评分等级 [0,1] (1,2] (2,3] (3,4] (4,5] 女/人 2 7 9 20 12 男/人 3918128(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率;(2)规定:评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下面列联表,并根据小概率值α=0.05的独立性检验,分析性别与对商品满意度是否有关.性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1)女(X =0) 男(X =1) 合计解:(1)因为从评分等级(4,5]的20人中随机选取2人,共有C 220=190种选法,其中恰有1人为男性的共有C 112C 18=96种选法,所以所求概率P =96190=4895.(2)列联表如下:性别评分等级合计满意该商品 (Y =0)不满意该商品(Y =1) 女(X =0) 32 18 50 男(X =1) 20 30 50 合计5248100 零假设为H 0:性别与对商品满意度相互独立,即性别与对商品满意度无关.由公式得χ2=100×32×30-20×18250×50×52×48≈5.769>3.841=x 0.05,所以根据小概率值α=0.05的独立性检验,我们推断H 0不成立,即可以认为性别与对商品满意度有关.。
高中数学人教A版必修三章节综合测评 第二章《统计》3 含解析

章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4℃时结冰. A .1 B .2 C .3D .4【解析】 ①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一张不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.【答案】 C2.下列说法正确的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】 概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.【答案】 D3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16 B .13 C.12D .23【解析】 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B.【答案】 B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B .14 C.12D .23【解析】 由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01-(-2)=13.故选A. 【答案】 A5.1升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A.0.1 B.0.2C.0.3 D.0.4【解析】本题考查的是体积型几何概型.【答案】 A6.(2016·天水高一检测)从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥【解析】互斥事件是不可能同时发生的事件,所以B与C互斥.【答案】 B7.某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为()A.100 m B.80 m C.50 m D.40 m【解析】设河宽为x m,则1-x500=45,所以x=100.【答案】 A8.从一批羽毛球中任取一个,如果其质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)范围内的概率是( )A .0.62B .0.38C .0.70D .0.68【解析】 记“取到质量小于4.8 g ”为事件A ,“取到质量不小于4.85 g ”为事件B ,“取到质量在[4.8,4.85)范围内”为事件C .易知事件A ,B ,C 互斥,且A ∪B ∪C 为必然事件.所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.32+P (C )=1,即P (C )=1-0.3-0.32=0.38.【答案】 B9.如图1,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) 【导学号:28750071】图1A.14 B .13 C.12D .23【解析】 点E 为边CD 的中点,故所求的概率P =△ABE 的面积矩形ABCD 的面积=12.【答案】 C10.将区间[0,1]内的均匀随机数x 1转化为区间[-2,2]内的均匀随机数x ,需要实施的变换为( )A .x =x 1*2B .x =x 1*4C .x =x 1*2-2D .x =x 1*4-2【解析】 由题意可知x =x 1*(2+2)-2=4x 1-2. 【答案】 D11.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P 1,P 2,P 3,则( )A .P 1=P 2<P 3B .P 1<P 2<P 3C .P 1<P 2=P 3D .P 3=P 2<P 1【解析】 先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P 1<P 2<P 3.【答案】 B12.在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以710为概率的事件是( )A .恰有1件一等品B .至少有一件一等品C .至多有一件一等品D .都不是一等品【解析】 将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P 2=310,其对立事件是“至多有一件一等品”,概率为P 3=1-P 2=1-310=710.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A ={摸出黑球},B ={摸出白球},C ={摸出绿球},D ={摸出红球},则P (A )=________;P (B )=________;P (C ∪D )=________.【解析】 由古典概型的算法可得P (A )=820=25,P (B )=320,P (C ∪D )=P (C )+P (D )=420+520=920.【答案】 25 320 92014.在区间(0,1)内任取一个数a ,能使方程x 2+2ax +12=0有两个相异实根的概率为________.【解析】 方程有两个相异实根的条件是Δ=(2a )2-4×1×12=4a 2-2>0,解得|a |>22,又a ∈(0,1),所以22<a <1,区间⎝ ⎛⎭⎪⎫22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.【答案】 2-2215.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.图2【解析】 由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P =19.【答案】 1916.(2016·合肥高一检测)甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a、b∈{0,1,2,…,9}.若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为________.【解析】此题可化为任意从0~9中取两数(可重复)共有10×10=100种取法.若|a-b|≤1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取2~8中的任一数字时,分别有3种选择,共3×8=24种,所以P=24+410×10=725.【答案】7 25三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2015·陕西高考)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨...的概率;(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率. 【解】 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.18.(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:(1)求该班成绩在[80,100]内的概率; (2)求该班成绩在[60,100]内的概率.【解】 记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[80,100]内的概率是P (C ∪D )=P (C )+P (D )=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.17+0.36+0.25+0.15=0.93.19.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由. 【导学号:28750072】【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个.(2)满足x+y≥10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是636=1 6,满足x+y≤4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是636=1 6,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.20.(本小题满分12分)(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.21.(本小题满分12分)(2014·四川高考)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.【解】 (1)由题意知,(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.22.(本小题满分12分)把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图3所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.图3(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b两位同学的成绩均为优秀,求a、b两位同学中至少有1人被选到的概率.【解】(1)∵第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.∴参加这次铅球投掷的总人数为70.14=50.根据规定,第4、5、6组的成绩均为合格,人数为(0.28+0.30+0.14)×50=36.(2)∵成绩在第1、2、3组的人数为(0.04+0.10+0.14)×50=14,成绩在第5、6组的人数为(0.30+0.14)×50=22,参加这次铅球投掷的总人数为50,∴这次铅球投掷的同学的成绩的中位数在[7.95,8.85)内,即第4组.(3)设这次铅球投掷成绩优秀的5人分别为a、b、c、d、e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,∴a、b两位同学中至少有1人被选到的概率为P=7 10.。
高中数学选择性必修三 精讲精炼 8 1 成对据的统计相关性(精讲)(含答案)

8.1 成对数据的统计相关性(精讲)考点一相关关系的辨析【例1】(2021·全国·高二单元测试)下列说法错误的是( )A.正方体的体积与棱长之间的关系是函数关系B.人的身高与视力之间的关系是相关关系C.汽车的重量与汽车每消耗1升汽油所行驶的平均路程负相关D.体重与学习成绩之间不具有相关关系【答案】B【解析】正方体的体积与棱长之间的关系是函数关系,故A正确;人的身高与视力之间不具有相关关系,故B错误;汽车的重量与汽车每消耗1升汽油所行驶的平均路程负相关,故C正确;体重与学习成绩之间不具有相关关系,故D正确.故选:B.【一隅三反】1.(2021·全国·高一课时练习)有五组变量:①汽车的重量和汽车每消耗一升汽油所行驶的距离;②平均日学习时间和平均学习成绩;③某人每天的吸烟量和身体健康状况;④圆的半径与面积;⑤汽车的重量和每千米的耗油量.其中两个变量成正相关的是( )A.②④⑤B.②④C.②⑤D.④⑤【答案】C【解析】①中,汽车的重量和汽车每消耗1升汽油所行驶的平均路程是负相关的关系;②中,平均日学习时间和平均学习成绩的关系是一个正相关;③中,某人每日吸烟量和其身体健康情况是负相关的关系;④中,圆的半径与面积是函数关系;⑤中,汽车的重量和百公里耗油量关系是一个正相关;,所以②⑤中的两个变量属于线性正相关.故选:C.2.(2021·全国·高一课时练习)最新《交通安全法》实施后,某市管理部门以周为单位,记录的每周查处的酒驾人数与该周内出现的交通事故数量如下:通过如表数据可知,酒驾人数x与交通事故数y之间是( )A.正相关B.负相关C.不相关D.函数关系【答案】A【解析】由表格中的数据,在直角坐标系中描出数据的散点图,如图所示,直观判断散点从左向右成带状分布,在一条直线附近,所以具有线性相关关系,且是正相关.故选:A.3.(2021·全国·高一课时练习)某公司2006~2011年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如表所示:根据统计资料,则利润中位数( )A.是16,x与y有正线性相关关系B.是17,x与y有正线性相关关系C.是17,x与y有负线性相关关系D.是18,x与y有负线性相关关系【答案】B【解析】由题意,利润中位数是1618172+=,而且随着利润的增加,支出也在增加,故x与y有正线性相关关系.故选:B.4.(2021·全国·高一课时练习)从统计学的角度看,下列关于变量间的关系说法正确的是( )A.人体的脂肪含量与年龄之间没有相关关系B.汽车的重量和汽车每消耗1L汽油所行驶的平均路程负相关C.吸烟量与健康水平正相关D.气温与热饮销售好不好正相关【答案】B【解析】从统计学的角度看:在一定年龄段内,人体的脂肪含量与年龄之间有相关关系,∴A错误;汽车的重量和汽车每消耗1L汽油所行驶的平均路程是负相关关系,∴B正确;吸烟量与健康水平是负相关关系,∴C错误;气温与热饮销售好不好是负相关关系,∴D错误.故选:B考点二相关系数的理解【例2-1】(2021·安徽·定远县育才学校高二期中(文))对两个变量y与x进行回归分析,分别选择不同的模型,它们的相关系数r如下,其中拟合效果最好的模型是( )A.0.2 B.0.8 C.-0.98 D.-0.7【答案】C【解析】∵相关系数的绝对值越大,越具有强大相关性,C相关系数的绝对值最大约接近1,∴C拟合程度越好.故选:C【例2-2】(2021·全国·高二课时练习)对四组数据进行统计,获得以下散点图,关于其相关系数的比较,正确的是( )A .24310r r r r <<<<B .42130r r r r <<<<C .42310r r r r <<<<D .24130r r r r <<<<【答案】A【解析】由给出的四组数据的散点图可以看出,题图1和题图3是正相关,相关系数大于0,题图2和题图4是负相关,相关系数小于0,题图1和题图2的点相对更加集中,所以相关性更强,所以1r 接近于1,2r 接近于1-,由此可得24310r r r r <<<<.故选:A . 【一隅三反】1.(2021·宁夏·海原县第一中学)在建立两个变量y 与x 的回归模型中,分别选择了4个不同的模型,模型1的相关指数2R 为0.88,模型2的相关指2R 数为0.66,模型3的相关指数2R 为0.945,模型4的相关指数2R 为0.01,其中拟合效果最好的模型是( )A .模型1B .模型2C .模型3D .模型4【答案】C【解析】因为4个不同的模型,模型3的相关指数2R 最大且最接近1, 所以拟合效果最好的模型是模型3,故选:C2.(2021·安徽·淮南第一中学)如果发现散点图中所有的样本点都落在一条斜率为非0实数的直线上,则下列说法错误的是( )A .解释变量和预报变量是一次函数关系B .相关系数1r =C .相关指数21R =D .残差平方和为0【答案】B【解析】散点图中所有的样本点都落在一条斜率为非0实数的直线上,所以解释变量和预报变量是一次函数关系,且残差平方和为0,因此选项AD 正确;由题意可知,||1r =,若直线的斜率为正,则1r =,若直线的斜率为负,则1r =-. 故选:B.3.(2021·广西·玉林市育才中学高二月考)已知r 1表示变量X 与Y 之间的线性相关系数,r 2表示变量U 与V 之间的线性相关系数,且r 1=0.837,r 2=﹣0.957,则( )A .变量X 与Y 之间呈正相关关系,且X 与Y 之间的相关性强于U 与V 之间的相关性B .变量X 与Y 之间呈负相关关系,且X 与Y 之间的相关性强于U 与V 之间的相关性C .变量U 与V 之间呈负相关关系,且X 与Y 之间的相关性弱于U 与V 之间的相关性D .变量U 与V 之间呈正相关关系,且X 与Y 之间的相关性弱于U 与V 之间的相关性 【答案】C【解析】因为线性相关系数r 1=0.837,r 2=﹣0.957,所以变量X 与Y 之间呈正相关关系,变量U 与V 之间呈负相关关系,X 与Y 之间的相关性弱于U 与V 之间的相关性.故选:C4.(2021·全国·高二课时练习)相关变量x ,y 的散点图如图所示,现对这两个变量进行线性相关分析,方案一:根据图中所有数据,得到回归直线方程11y b x a =+,相关系数为1r ;方案二:剔除点()1021,,根据剩下的数据得到回归直线方程22y b x a =+,相关系数为2r .则( )A .1201r r <<<B .2101r r <<<C .1210r r -<<<D .0110r r -<<<【答案】D【解析】由题中散点图可知两变量负相关,所以10r <,20r <,因为剔除点()1021,后,剩下的数据线性相关性更强,2r 更接近1,所以2110r r -<<<.故选D.5.(2021·山东·威海市第一中学高二月考)对变量X ,Y 有观测数据(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1)对变量U ,V 有观测数据(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),1r 表示变量X ,Y 之间的线性相关系数,2r 表示受最U ,V 之间的线性相关系数,则( ) A .210r r << B .210r r <<C .120r r <<D .21r r =【答案】C【解析】由条件可知:第一组中的数据负相关,相关系数小于零; 第二组中的数据正相关,相关系数大于零.所以有120r r <<.故选:C6.(2021·全国·高一课时练习)如图,5个(),x y 数据,去掉()3,10D 后,下列说法错误的是( )A .x 与y 的相关性变强B .残差平方和变大C .相关指数2R 变大D .解释变量x 与预报变量y 的相关性变强【答案】B【解析】由散点图知,去掉()3,10D 后,y 与x 的线性相关性加强,A 正确;残差平方和变小,B 错误; 相关系数r 变大,相关指数2R 变大,C 正确;解释变量x 与预报变量y 的相关性变强,D 正确.故选:B .考点三 相关系数的应用【例3】(2021·全国·高二课时练习)某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第x 年与年销量y (单位:万件)之间的关系如表:在图中画出表中数据的散点图,推断两个变量是否线性相关,计算样本相关系数,并估计它们的相关程度.32.62.24,41418i i i x y ==∑.参考公式:相关系数()()n iix x y y r --=∑【答案】作图见解析;y 与x 的相关系数近似为0.9997,可以推断该公司的年销量y 与第x 年呈正线性相关,且线性相关程度很强. 【解析】作出散点图如图:由散点图可知,各点大致分布在一条直线附近,由此推断x 与y 线性相关. 由题中所给表格及参考数据得: 52x =,692y =,41418i ii x y==∑32.6≈,42130i i x ==∑,()()4411569441847322iii ii i x x y y x y x y ==--=-=-⨯⨯=∑∑,2.24===≈,()()4730.99972.2432.6iix x y y r --==≈⨯∑.∵y 与x 的相关系数近似为0.9997,可以推断该公司的年销量y 与第x 年呈正线性相关,且线性相关程度很强. 【一隅三反】1.(2021·全国·高二课时练习)根据统计,某蔬菜基地西红柿亩产量的增加量y (百千克)与某种液体肥料每亩使用量x (千克)之间的对应数据的散点图,如图所示.依据数据的散点图可以看出,可用线性回归模型拟合y 与x 的关系,请计算相关系数r 并加以说明(若0.75r >,则线性相关程度很高,可用线性回归模型拟合);附:相关系数公式()()nniii ix x y y x y nx yr ---==∑∑.0.55≈0.95≈. 【答案】0.95,答案见解析. 【解析】由已知数据可得2456855x ++++==,3444545y ++++==, 所以()()()()()5131100010316i ii x xy y =--=-⨯-+-⨯+⨯+⨯+⨯=∑,==所以相关系数()()50.95iix x y y r--==∑.因为0.75r >,所以可用线性回归模型拟合y 与x 的关系.2.(2021·全国·高二课时练习)某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x (件)与相应的生产总成本y (万元)的五组对照数据:试求y 与x 的相关系数r ,并利用相关系数r 说明y 与x 是否具有较强的线性相关关系(若0.75r >,则线性相关程度很高,可用线性回归模型拟合).参考公式:()()niixx y y r--=∑【答案】0.98,y 与x 具有较强的线性相关关系,可用线性回归方程拟合y 与x 的关系. 【解析】1234535x ++++==,378101285y ++++==,()()5121iii x x yy =--=∑.∴相关系数0.98r =≈.∵0.75r>,∴y 与x 具有较强的线性相关关系,可用线性回归方程拟合y 与x 的关系.3.(2021·贵州威宁·高二期末(理))2021年4月20日我校高三学生参加了高考体检,为了解我校高三学生中男生的体重y (单位:kg )与身高x (单位:cm )是否存在较好的线性关系,体检机构搜集了7位我校男生的数据,得到如下表格:根据表中数据计算得到y 关于x 的线性回归方程为ˆˆ1.15yx a =+. (1)求ˆa;(2)已知()()22121ˆ1n i i i n ii y y R y y ==-=--∑∑,且当20.9R ≥时,回归方程的拟合效果非常好;当20.80.9R <<时,回归方程的拟合效果良好.试问该线性回归方程的拟合效果是非常好还是良好?说明你的理由.(2R 的结果保留到小数点后两位)参考数据:()721ˆ52.36i i i y y=-=∑. 【答案】(1)136.55-;(2)该线性回归方程的拟合效果是良好的.【解析】(1)由题意可得,1661731851831781801741777x ++++++==,57675975716776772y +++++==+, 又y 关于x 的线性回归方程为ˆˆ1.15yx a =+,所以ˆ= 1.1567 1.15177136.55a y x -=-⨯=- (2)由题意,()()()()2222222271100884511407i i y y =-=-++-+++-+=∑ 所以()()22121ˆ52.36110.870.9407n i i i n ii y yR y y ==-=-=-≈<-∑∑, 所以该线性回归方程的拟合效果是良好的.。
高一数学必修三,概率与统计的综合问题知识点及题型

第四节概率与统计的综合问题考点一概率与统计图表的综合问题[典例]学校将高二年级某班级50位同学期中考试的数学成绩(均为整数)分为7组进行统计,得到如图所示的频率分布直方图.观察图中信息,回答下列问题.(1)试估计该班级同学数学成绩的平均分;(2)现准备从该班级数学成绩不低于130分的同学中随机选出两人参加某活动,求选出的两人在同一组的概率.[解](1)由频率分布直方图可知,所求数学成绩的平均分为85×0.06+95×0.1+105×0.24+115×0.28+125×0.2+135×0.08+145×0.04=113.6,故该班级同学数学成绩的平均分约为113.6.(2)由频率分布直方图可知,数学成绩不低于130分的人数为50×0.08+50×0.04=4+2=6,其中,分数在[130,140)的有4人,分别记作a,b,c,d,分数在[140,150]的有2人,分别记作m,n.从该班级数学成绩不低于130分的同学中选出2人共有15个基本事件,列举如下:ab,ac,ad,am,an,bc,bd,bm,bn,cd,cm,cn,dm,dn,mn.其中,选出的两人在同一组的有7个基本事件,分别是:ab,ac,ad,bc,bd,cd,mn.故选出的两人在同一组的概率P=715.[对点训练]如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. 解:(1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.考点二 概率与随机抽样的综合问题[典例] 已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩统计,先将800人按001,002,003,…,800进行编号.(1)如果从随机数表的第8行第7列的数开始向右读,请你依次写出最先抽取到的3个人的编号. (2)所抽取的100人的数学与地理的水平测试成绩如下表:成绩分为优秀、良好、及格三个等级,横向、纵向分别表示地理成绩与数学成绩,例如表中数学成绩为良好的人数为20+18+4=42.若在该样本中,数学成绩优秀率为30%,求a ,b 的值.(3)若a ≥10,b ≥8,求“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的概率.附:(下面摘取了随机数表的第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 [解] (1)依题意,最先抽取到的3个人的编号依次为785,567,199. (2)由题意可得7+9+a100=0.3,解得a =14.因为7+9+a +20+18+4+5+6+b =100,所以b =17. (3)由题意知a +b =31,且a ≥10,b ≥8,则满足条件的(a ,b )有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14组.其中满足“在地理成绩为及格的学生中,数学成绩为优秀的人数比及格的人数少”的(a ,b )有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6组.故所求概率P =614=37.[对点训练]某大型手机连锁店为了解销售价格在区间[5,30](单位:百元)内的手机的利润情况,从2018年度销售的一批手机中随机抽取75部,按其价格分成5组,频数分布表如下:[20,25)内的有几部?(2)从(1)中抽出的6部手机中任意抽取2部,求价格在区间[10,15)内的手机至少有1部的概率.解:(1)因为在区间[5,10),[10,15)和[20,25)内的手机的数量之比为5∶10∶15=1∶2∶3,所以抽取的6部手机中价格在区间[20,25)内的有6×36=3(部).(2)这6部手机中价格在区间[5,10)内的有1部记为a ,在区间[10,15)内的有2部,分别记为b 1,b 2,在区间[20,25)内的有3部,分别记为c 1,c 2,c 3,从中任取2部,可能的情况有(a ,b 1),(a ,b 2),(a ,c 1),(a ,c 2),(a ,c 3),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2)(c 1,c 3),(c 2,c 3),共15种;设“价格在区间[10,15)内的手机至少有1部”为事件A ,则事件A 包含的情况有(a ,b 1),(a ,b 2),(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),共9种.故P (A )=915=35.考点三 概率与数字特征的综合问题[典例] (2019·重庆六校联考)2019年高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生的成绩中随机抽取了50名学生的成绩,按照[50,60),[60,70),…,[90,100]分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)用样本估计总体,若高三年级共有2 000名学生,试估计高三年级这次测试成绩不低于70分的人数;(3)若利用分层抽样的方法从样本中成绩不低于70分的学生中抽取6人,再从这6人中随机抽取3人参加这次考试的分析会,试求成绩在[80,100]的学生至少有1人被抽到的概率.[解] (1)由频率分布直方图可得第4组的频率为1-(0.01+0.03+0.03+0.01)×10=0.2,则x =0.02. 故可估计所抽取的50名学生成绩的平均数为(55×0.01+65×0.03+75×0.03+85×0.02+95×0.01)×10=74(分).由于前两组的频率之和为0.1+0.3=0.4,前三组的频率之和为0.1+0.3+0.3=0.7,故中位数在第3组中.设中位数为t 分,则有(t -70)×0.03=0.1,得t =2203,即所求的中位数为2203分.(2)由(1)可知,50名学生中成绩不低于70分的频率为0.3+0.2+0.1=0.6,用样本估计总体,可以估计高三年级2 000名学生中成绩不低于70分的人数为2 000×0.6=1 200.(3)由(1)可知,后三组中的人数分别为15,10,5,由分层抽样的知识得这三组中所抽取的人数分别为3,2,1. 记成绩在[70,80)的3名学生分别为a ,b ,c ,成绩在[80,90)的2名学生分别为d ,e ,成绩在[90,100]的1名学生为f ,则从中随机抽取3人的所有可能结果为(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20种.其中成绩在[80,100]的学生没人被抽到的可能结果为(a ,b ,c ),只有1种, 故成绩在[80,100]的学生至少有1人被抽到的概率P =1-120=1920.[解题技法]本题主要考查概率与数字特征,涉及频率分布直方图,平均数、中位数、分层抽样、古典概型的概率计算等知识.解决此类问题的关键是正确理解图表中各个量的意义,牢记相关定义和公式,在利用频率分布直方图,求平均值时,不要与求中位数,众数混淆.[对点训练](2019·唐山五校联考)某篮球队在本赛季已结束的8场比赛中,队员甲得分统计的茎叶图如下:(1)求甲在比赛中得分的均值和方差;(2)从甲比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到2场都不超过均值的概率.解:(1)甲在比赛中得分的均值x =18×(7+8+10+15+17+19+21+23)=15,方差s 2=18×[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.(2)甲得分在20分以下的6场比赛分别为:7,8,10,15,17,19. 从中随机抽取2场,这2场比赛的得分如下:(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19),(17,19),共15种,其中抽到2场都不超过均值的情形是:(7,8),(7,10),(7,15),(8,10),(8,15),(10,15),共6种,所以所求概率P =615=25.考点四 概率与统计案例的综合问题[典例] 里约奥运会中国女排勇夺金牌,某校高一课外小组为了解金牌争夺战现场直播时同学们的观看情况,从本年级500名男生、400名女生中按分层抽样的方式抽取45名学生进行了问卷调查,观看情况分成以下三类:全程观看、部分观看、没有观看,调查结果统计如下:(1)①求出表中x ,y ②从没有观看的同学中随机选取2人进一步了解情况,求恰好男生、女生各1人的 概率; (2)根据表格统计的数据,完成下面的列联表,并判断是否有90%的把握认为全程观看与性别有关.附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .[解] (1)①由分层抽样知抽取的男生人数为500900×45=25,抽取的女生人数为45-25=20,因而x =25-20=5,y =20-16=4.②从表中数据可以得出,没有观看的同学共6人,2名男生分别记为A 1,A 2,4名女生分别记为B 1,B 2,B 3,B 4,则从中随机选取2人,有A 1A 2,A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4,B 1B 2,B 1B 3,B 1B 4,B 2B 3,B 2B 4,B 3B 4,共15种情况,记“男生、女生各1人”为事件M ,其包含的情况有A 1B 1,A 1B 2,A 1B 3,A 1B 4,A 2B 1,A 2B 2,A 2B 3,A 2B 4,共8种,所求概率P (M )=815.(2)由题意得列联表如下:K 2=45×(180-70)228×20×17×25≈2.288<2.706,因而没有90%的把握认为全程观看与性别有关.[对点训练]某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1月份至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下数据:该兴趣小组确定的研究方案是:先从这6组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月份与6月份的两组数据,请根据2月份至5月份的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x2,a ^=y -b ^x .参考数据:11×25+13×29+12×26+8×16=1 092, 112+132+122+82=498.解:(1)设选到相邻两个月的数据为事件A .因为从6组数据中选取2组数据共有15种情况,且每种情况都是等可能的,其中,选到相邻两个月的数据的情况有5种,所以P (A )=515=13.(2)由表中2月份至5月份的数据可得x =11,y =24,∑i =14x i y i =1 092,∑i =14x 2i =498,所以b ^=∑i =14x i y i -4 x y∑i =14x 2i -4 x2=187, 则a ^=y -b ^x =-307,所以y 关于x 的线性回归方程为y ^=187x -307.(3)当x =10时,y ^=1507,⎪⎪⎪⎪1507-22<2; 当x =6时,y ^=787,⎪⎪⎪⎪787-12<2. 所以该小组所得线性回归方程是理想的.[课时跟踪检测]1.(2019·太原八校联考)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,制图如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据图中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X (单位:元),求X >182的概率;(3)根据图中数据估算两公司的每位员工在该月所得的劳务费.解:(1)甲公司员工A 在这10天投递的快递件数的平均数为110(32+33+33+38+35+36+39+33+41+40)=36,众数为33.(2)设a 为乙公司员工B 每天的投递件数,则 当a =35时,X =140,当a >35时,X =35×4+(a -35)×7,令X =35×4+(a -35)×7>182,得a >41,则a 的取值为44,42,所以X >182的概率P =410=25.(3)根据题图中数据,可估算甲公司的每位员工该月所得劳务费为4.5×36×30= 4 860(元),易知乙公司员工B 每天所得劳务费X 的可能取值为136,147,154,189,203,所以乙公司的每位员工该月所得劳务费约为110×(136+147×3+154×2+189×3+203)×30=165.5×30=4 965(元).2.(2018·湖北五校联考)通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下2×2列联表:(1)能否有99%的把握认为是否爱好该项运动与性别有关?请说明理由.(2)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派2人参加某项校际挑战赛,求选出的2人中恰有1名女大学生的概率.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)∵K 2=100×(40×25-20×15)255×45×60×40≈8.249>6.635,∴有99%的把握认为是否爱好该项运动与性别有关.(2)由题意,抽取的6人中,有男生4名,分别记为a ,b ,c ,d ;女生2名,分别记为m ,n . 则抽取的结果共有15种:(a ,b ),(a ,c ),(a ,d ),(a ,m ),(a ,n ),(b ,c ),(b ,d ),(b ,m ),(b ,n ),(c ,d ),(c ,m ),(c ,n ),(d ,m ),(d ,n ),(m ,n ),设“选出的2人中恰有1名女大学生”为事件A ,事件A 所包含的基本事件有8种:(a ,m ),(a ,n ),(b ,m ),(b ,n ),(c ,m ),(c ,n ),(d ,m ),(d ,n ).则P (A )=815.故选出的2人中恰有1名女大学生的概率为815.3.(2019·西安八校联考)某工厂有25周岁以上(含25周岁)的工人300名,25周岁以下的工人200名.为了研究工人的日平均生产件数是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],分别加以统计,得到如图所示的频率分布直方图.(1)根据“25周岁以上(含25周岁)组”的频率分布直方图,求25周岁以上(含25周岁)组工人日平均生产件数的中位数的估计值(四舍五入保留整数);(2)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(3)规定日平均生产件数不少于80的工人为生产能手,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:K 2=(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解:采用分层抽样,“25周岁以上(含25周岁)组”应抽取工人100×300300+200=60(名),“25周岁以下组”应抽取工人100×200300+200=40(名).(1)由“25周岁以上(含25周岁)组”的频率分布直方图可知,其中位数为70+10×0.5-0.05-0.350.35=70207≈73(件). 综上,25周岁以上(含25周岁)组工人日平均生产件数的中位数的估计值为73件.(2)由频率分布直方图可知,样本中日平均生产件数不足60件的工人中,25周岁以上(含25周岁)的工人共有60×0.005×10=3(名),设其分别为m 1,m 2,m 3;25周岁以下的工人共有40×0.005×10=2(名),设其分别为n 1,n 2,则从中抽取2人的所有基本事件为(m 1,m 2),(m 1,m 3),(m 1,n 1),(m 1,n 2),(m 2,m 3),(m 2,n 1),(m 2,n 2),(m 3,n 1),(m 3,n 2),(n 1,n 2),共10个.记“至少抽到一名‘25周岁以下组’的工人”为事件A ,事件A 包含的基本事件共7个. 故P (A )=710.(3)由频率分布直方图可知,25周岁以上(含25周岁)的生产能手共有60×[(0.02+0.005)×10]=15(名),25周岁以下的生产能手共有40×[(0.032 5+0.005)×10]=15(名),则2×2列联表如下:K 2=100×(15×25-15×45)60×40×30×70≈1.786<2.706.综上,没有90%的把握认为“生产能手与工人所在的年龄组有关”.4.某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研究对象,如下表所示(x (吨)为该商品进货量,y (天)为销售天数):(1)根据上表数据在网格中绘制散点图;(2)根据上表提供的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)在该商品进货量x (吨)不超过6吨的前提下任取2个值,求该商品进货量x (吨)恰有一个值不超过3吨的概率.参考公式和数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x)2,a ^=y -b ^ x .∑i =18x 2i =356,∑i =18x i y i =241.解:(1)散点图如图所示:(2)依题意,得x =18(2+3+4+5+6+8+9+11)=6,y =18(1+2+3+3+4+5+6+8)=4,b ^=∑i =18 (x i -x )(y i -y )∑i =18(x i -x)2=∑i =18x i y i -8x y∑i =18x 2i -8x2=241-8×6×4356-8×62=4968, ∴a ^=4-4968×6=-1134,∴y 关于x 的线性回归方程为y ^=4968x -1134.(3)由题意知,该商品进货量不超过6吨的有2,3,4,5,6共有5个,任取2个有(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共10种情况,故该商品进货量恰有一次不超过3吨的有(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),共6种情况,故该商品进货量恰有一次不超过3吨的概率P =610=35.。
青岛青岛超银中学必修三第一章《统计》检测题(答案解析)
一、选择题1.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .22.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A .40B .50C .80D .1003.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.54.将某选手的7个得分去掉1个最高分,去掉1个最低分,5个剩余分数的平均分为21,现场作的7个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则5个剩余分数的方差为( )A .1167B .365C .36D .6755.如果在一次试验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是 ( ) A .y =x +1.9 B .y =1.04x +1.9 C .y =1.9x +1.04 D .y =1.05x -0.96.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,47.网上大型汽车销售某品牌A 型汽车,在2017年“双十一”期间,进行了降价促销,该型汽车的价格与月销量之间有如下关系 价格(万元) 25 23.5 22 20.5 销售量(辆)30333639已知A 型汽车的购买量y 与价格x 符合如下线性回归方程:8ˆ0ˆy bx=+,若A 型汽车价格降到19万元,预测月销量大约是( ) A .39B .42C .45D .508.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >9.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .1610.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆy bx a =+中的ˆb为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元11.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.为了考察两个变量x 和y 之间的线性相关性,甲.乙两个同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2.已知在两个人的试验中发现对变量x 的观测数据的平均值恰好相等,都为s ,对变量y 的观测数据的平均值也恰好相等,都为t.那么下列说法正确的是( ) A .直线l 1和l 2有交点(s ,t)B .直线l 1和l 2相交,但是交点未必是点(s ,t)C .直线l 1和l 2由于斜率相等,所以必定平行D .直线l 1和l 2必定重合二、填空题13.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若,αβ为第一象限角,且αβ>,则tan tan αβ>;③设一组样本数据12,,,n x x x ⋅⋅⋅的平均数是2,则数据1221,21,,21n x x x --⋅⋅⋅-的平均数为3;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).14.通过市场调查,得到某种产品的资金投入x (单位:万元)与获得的利润y (单位:万元)的数据,如表所示: 资金投入x 2 3 4 5 6 利润y0.40.611.21.8根据表格提供的数据,用最小二乘法求线性回归直线方程为0.36ˆˆybx =-,现投入资金15万元,求获得利润的估计值(单位:万元)为_____________.15.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.16.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 17.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.18.某超市统计了一个月内每天光顾的顾客人数,得到如图所示的频率分布直方图,根据该图估计该组数据的中位数为__________.19.为弘扬我国优秀的传统文化,某小学六年级从甲、乙两个班各选出7名学生参加成语知识竞赛,他们取得的成绩的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83,则的值为__________.20.某中学调查了400名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这400名学生中每周的自习时间不少于22.5小时的人数是__________人.三、解答题21.某市政府针对全市10所由市财政投资建设的企业进行了满意度测评,得到数据如下表: 企业abcdefghij满意度x (%) 21 33 24 20 25 21 24 23 25 12 投资额y (万元)79868978767265625944y x (2)约定:投资额y 关于满意度x 的相关系数r 的绝对值在0.7以上(含0.7)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则根据满意度“末位淘汰”规定,关闭满意度最低的那一所企业,求关闭此企业后投资额y 关于满意度x 的线性回归方程(精确到0.1).参考数据:22.8x =,71y =,1022110248i i x x =-≈∑,10102222111010643.7i i i i x x y y ==⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑,10110406i i i x y x y =-=∑,222851984=,2287116188⨯=.附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x ynx y bxnx==-=-∑∑,ˆˆa y bx=-.线性相关系数1222211ni ii n ni i i i x y nxyr x nx y ny ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑.22.某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表: 年份 2007 2008 2009 2010 2011 2012 2013 年份代号x 1 2 3 4 5 6 7 人均纯收入y2.93.33.64.44.85.25.9x (2)预测该地区2015年农村居民家庭人均纯收入. 附:77211134.4,140i ii i i x yx ====∑∑.回归直线的斜率和截距的最小二乘法估计公式分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-23.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z 服从正态分布()2,N μσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.24.经销商小王对其所经营的某一型号二手汽车的使用年数(010)x x <≤与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据:(1)试求y 关于x 的回归直线方程;(2)已知每辆该型号汽车的收购价格为20.05 1.7517.2=-+w x x 万元,根据(1)中所求的回归方程,预测x 为何值时,小王销售一辆该型号汽车所获得的利润z 最大.附:回归方程ˆybx a =+中,1221ˆˆˆˆ,ni ii nii x ynx y b ay bx xnx -=-==--∑∑ 25.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82 84 85 89 79 80 91 89 79 74 乙班:90 76 86 81 84 87 86 82 85 83 (1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.26.随着各国经贸关系的进一步加深,许多国外的热带水果进入国内市场,牛油果作为一种热带水果,越来越多的中国消费者对这种水果有了一种全新的认识,它富含多种维生素、丰富的脂肪和蛋白质,钠、钾、镁、钙等含量也高,除作生果食用外也可作菜肴和罐头.牛油果原产于墨西哥和中美洲,后在加利福尼亚州被普遍种植.因此加利福尼亚州成为世界上最大的牛油果生产地,在全世界热带和亚热带地区均有种植,但以美国南部、危地马拉、墨西哥及古巴栽培最多,并形成了墨西哥系、危地马拉系、西印度系三大种群,我国的广东、海南、福建、广西、台湾、云南及四川等地都有少量栽培.市场上的牛油果大部分都是进口的.为了调查市场上牛油果的等级代码数值x 与销售单价y 之间的关系,经统计得到如下数据:(1)已知销售单价y 与等级代码数值x 之间存在线性相关关系,利用前5组数据求出y 关于x 的线性回归方程;(2)若由(1)中线性回归方程得到的估计值与最后一组数据的实际值之间的误差不超过1,则认为所求回归方程是有效可靠的,请判断所求回归直线方程是否有效可靠? (3)若一果园估计可以收获等级代码数值为85的牛油果980kg ,求该果园估计收入为多少元.参考公式:对一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线y bx a =+的斜率和截距的最小二乘估计分别为:1221ni ii nii x y nx yb xnx==-=-∑∑,b y bx =-.参考数据:516169.6i ii x y==∑,52117820i i x ==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,()89889290939291791x +++++++÷=,635=917=6372x x ,∴+⨯∴=,故选D. 2.B解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.3.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.4.B解析:B 【分析】由剩余5个分数的平均数为21,据茎叶图列方程求出x =4,由此能求出5个剩余分数的方差. 【详解】∵将某选手的7个得分去掉1个最高分,去掉1个最低分,剩余5个分数的平均数为21, ∴由茎叶图得:1724202020215x+++++=得x =4,∴5个分数的方差为: S 2=()()()()()222221361721242120212021242155⎡⎤-+-+-+-+-=⎣⎦ 故选B 【点睛】本题考查方差的求法,考查平均数、方差、茎叶图基础知识,考查运算求解能力,考查数形结合思想,是基础题.5.B解析:B 【解析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是回归直线方程. 详解:123+4=2.54x ++=, 3 3.8 5.264.5,4y +++==∴这组数据的样本中心点是(2.5,4.5)把样本中心点代入四个选项中,只有y =1.04x +1.9成立,故选B.点睛:这是一道关于考查回归直线方程的题目,关键掌握回归直线必过样本中心点的特点,首先分析题目,由四组数据可得,x y ,进而得到样本中心点的坐标,接下来根据回归直线必过样本中心点,即可解答此题.6.C解析:C 【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A :根据b 的正负即可判断正负相关关系.线性回归方程为0.47.6y x =-+,b=﹣0.7<0,负相关.对于B :根据表中数据:x =9.可得y =4.即()16+3244m ++=,解得:m=5. 对于C :相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D :由线性回归方程一定过(x ,y ),即(9,4). 故选:C .点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.7.B解析:B 【解析】分析:先求均值,确定ˆb,再求自变量为19对应函数值得结果. 详解:因为2523.52220.5330333639122,344442x y ++++++====,所以1348022,3224ˆb-==- 所以19(2)8042y =⨯-+=选B.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,a b ,写出回归方程,回归直线方程恒过点(,)x y .8.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定故22s <故选A【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础 9.B解析:B【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05 频数为:367.57.54.51.5,,,,, 则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯= 故选B【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错 10.B解析:B【详解】 试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆy bx a =+中的ˆb为9.4, ∴42=9.4×3.5+a ,∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程11.A解析:A【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.5 12.A解析:A【分析】由题意知,两个人在试验中发现对变量x 的观测数据的平均值都是s ,对变量y 的观测数据的平均值都是t ,所以两组数据的样本中心点是(s ,t ),回归直线经过样本的中心点,得到直线l 1和l 2都过(s ,t ).【详解】∵两组数据变量x 的观测值的平均值都是s ,对变量y 的观测值的平均值都是t ,∴两组数据的样本中心点都是(s ,t )∵数据的样本中心点一定在线性回归直线上,∴回归直线l 1和l 2都过点(s ,t )∴两条直线有公共点(s ,t )故选A .【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.二、填空题13.①③【分析】求解的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④【详解】解:对于①函数的一个对称中心为故①正确;对于②取为第一象限角且但故②错误;对于③一组样本数据的平均数解析:①③【分析】 求解5()12f π-的值判断①;举例说明②错误;求解平均数判断③;利用函数图象的平移变换判断④.【详解】解:对于①,55()4cos()4cos()012632f ππππ-=-+=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确; 对于②,取94πα,3πβ=,α,β为第一象限角,且αβ>,但tan tan αβ<,故②错误;对于③,一组样本数据1x ,2x ,⋯,n x 的平均数是2,则数据121x -,221x -,⋯,21n x -的平均数为22132⨯-=,故③正确; 对于④,函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()sin(2)cos242y x x x ππ=+=+=的图象,故④错误. ∴正确命题的序号是①③.故答案为:①③.【点睛】本题考查命题的真假判断与应用,考查三角函数的图象与性质,训练了平均数的求法,属于中档题.14.【分析】根据线性回归方程过样本数据中心点可求出b 代入即可求解【详解】由表中数据可得所以过点代入可得所以当时即获得利润大约为万元故答案为:【点睛】本题主要考查了线性回归方程样本数据中心点线性回归方程的 解析:4.74【分析】根据线性回归方程过样本数据中心点,可求出b ,代入15x =即可求解.【详解】 由表中数据可得4,1x y ==,所以0.36ˆˆybx =-过点(4,1), 代入可得0.34b =,所以ˆˆ0.340.36yx =-, 当15x =时,0.34150.34ˆ6 4.7y=⨯-=, 即获得利润大约为4.74万元.故答案为:4.74【点睛】本题主要考查了线性回归方程,样本数据中心点,线性回归方程的应用,属于中档题. 15.3【分析】根据频率分布直方图求得不小于40岁的人的频率及人数再利用分层抽样的方法即可求解得到答案【详解】根据频率分布直方图得样本中不小于40岁的人的频率是0015×10+0005×10=02所以不小解析:3【分析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案.【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取的人数为0.0051010012320⨯⨯⨯=.【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题. 16.2【分析】根据题意列出关于的等量关系式结合求得的值利用方差公式求得结果【详解】一组数据的平均数是8且所以化简得又所以的值分别为或所以该组数据的方差为:故答案是:2【点睛】该题考查的是有关求一组数据的 解析:2【分析】根据题意,列出关于,x y 的等量关系式,结合90xy =,求得,x y 的值,利用方差公式求得结果.【详解】一组数据6,7,8,,x y 的平均数是8,且90xy =,所以6788540x y ++++=⨯=,化简得19x y +=,又90xy =,所以,x y 的值分别为10,9或9,10,所以该组数据的方差为:222222110[(68)(78)(88)(98)(108)]255s =-+-+-+-+-==, 故答案是:2.【点睛】该题考查的是有关求一组数据的方差的问题,涉及到的知识点有方差公式,属于简单题目. 17.【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能力属于基【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4943)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为221s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题. 18.75【解析】分析:由频率分布直方图算出各频率然后计算中位数详解:由图可知的频率为的频率为的频率为的频率为的频率为前两组频率前三组频率中位数在第三组设中位数为则解得故该组数据的中位数为点睛:本题考查了 解析:75.【解析】分析:由频率分布直方图算出各频率,然后计算中位数详解:由图可知,10~20的频率为0.1420~30的频率为0.2430~40的频率为0.3240~50的频率为0.250~60的频率为0.1前两组频率0.140.240.380.5=+=<前三组频率0.140.240.320.70.5=++=>∴中位数在第三组设中位数为x ,则()300.380.320.510x -+⨯= 解得33.75x =故该组数据的中位数为33.75点睛:本题考查了在频率分布直方图中求中位数,此类题目需要先确定中位数所在的组,然后根据公式计算求得结果,较为基础. 19.35【解析】79+78+80+80+x+85+92+967=85解得x=5根据中位数为83可知y=3故yx=35解析:【解析】,解得,根据中位数为,可知,故.20.280【解析】由频率分布直方图得这名大学生中每周的自习时间不少于小时的频率为这名大学生中每周的自习时间不少于小时的人数为故答案为 解析:280【解析】由频率分布直方图得这400名大学生中每周的自习时间不少于22.5小时的频率为()0.16+0.080.04 2.50.7,+⨯=∴这400名大学生中每周的自习时间不少于22.5小时的人数为4000.7280⨯=,故答案为280.三、解答题21.(1)0.63;(2)ˆ0.757.4yx =+. 【分析】(1)代入公式即可得出结果.(2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业.重新计算,代入公式即可求出结果.【详解】(1)由题意,根据相关系数的公式,可得10104060.63643.7ii x y xy r -=≈≈∑ (2)由(1)可知,因为0.630.7<,所以投资额y 关于满意度x 没有达到较强线性相关,所以要关闭j 企业. 重新计算得22.810122162499x ⨯-'===,7110446667499y ⨯-'===, 922222192481022.812924118.4i i xx ='-≈+⨯--⨯=∑, 9194061022.87112449247482i ii x y x y =''-≈+⨯⨯-⨯-⨯⨯=∑. 所以919221982ˆ0.690.7118.49ii i i i x y x y b xx ==''-=≈≈≈'-∑∑, ˆˆ740.692457.4457.4ay bx ''=-≈-⨯=≈. 所以所求线性回归方程为ˆ0.757.4yx =+. 22.(1)0.5 2.3y x =+;(2)6800元.【分析】(1)根据表中数据计算出4x =, 4.3y =,再结合参考数据利用公式即可计算出,b a ,进而得出线性回归方程;(2)将9x =代入即可预测.【详解】解:(1)由表可得:123456747++++++==x , 2.9 3.3 3.6 4.4 4.8 5.2 5.9 4.37y ++++++==, 又77211134.4,140ii i i i x y x ====∑∑, 71722217134.474 4.30.5140747i ii i i x y x y b x x==--⨯⨯∴===-⨯-∑∑ 4.30.54 2.3a y bx ∴=-=-⨯=y ∴关于x 的线性回归方程为0.5 2.3y x =+;(2)由(1)可得:0.5 2.3y x =+,∴当9x =时,0.59 2.3 6.8y =⨯+=,即该地区2015年农村居民家庭人均纯收入约为6800元.【点睛】本题考查线性回归方程的求法,考查由线性回归方程进行预测,属于基础题.23.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题24.(1) 1.4518.7y x =-+;(2)3【分析】(1)由表中数据计算x 、y ,求出ˆb、ˆa ,即可写出回归直线方程; (2)写出利润函数z y w =-,利用二次函数的图象与性质求出3x =时z 取得最大值.【详解】解:(1)由表中数据得,1(246810)65x =⨯++++=, 1(16139.57 4.5)105y =⨯++++=, 由最小二乘法求得:22222221641369.58710 4.5561058ˆ 1.452468105640b ⨯+⨯+⨯+⨯+⨯-⨯⨯-===-++++-⨯, ˆ10( 1.45)618.7a=--⨯=, 所以y 关于x 的回归直线方程为 1.4518.7y x =-+;(2)根据题意,利润函数为:22(1.4518.7)(0.05 1.7517.2)0.050.3 1.5z y w x x x x x =-=-+--+=-++, 所以,当0.332(0.05)x =-=⨯-时,二次函数z 取得最大值为1.95; 即预测3x =时,小王销售一辆该型号汽车所获得的利润z 最大.【点睛】本题考查了回归直线方程的求法,以及二次函数的图象与性质的应用,考查计算能力. 25.(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 . 试题 (1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84. (2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36,2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲,s 乙≈3. 63.(3)由于x x <甲乙,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n 个数的平均数等于这n 个数的和除以n ;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n 个数与平均数的差的平方方和再除以n ;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 .26.(1)0.1849.968y x =+;(2)所求回归直线方程是有效可靠的;(3)该果园预计收入25095.84元.【分析】(1)求出x 的平均值x ,y 的平均值y ,再根据公式求出b 和a ,即可得出回归方程; (2)将88x =代入(1)中的回归方程,求出y ,然后用25.8y和1比较即可判断;(3)将85x =代入回归方程估计出单价,即可计算出收入.【详解】(1)由题意,得3848586878585x ++++==, 16.818.820.822.82420.645y ++++==, 则515222156169.655820.641840.1841782055810005i i i i i x y x y b xx ==-⋅-⨯⨯====-⨯-∑∑, 20.640.184589.968a y bx =-=-⨯=,故所求回归方程为0.1849.968y x =+;(2)当88x =时,0.184889.96826.16y =⨯+=,所以26.1625.80.361-=<,所以所求回归直线方程是有效可靠的; (3)当85x =,0.184859.96825.608y =⨯+=,所以25.60898025095.84⨯=(元),所以该果园预计收入25095.84元.【点睛】本题考查回归方程的求法以及利用回归方程估计值,属于基础题.。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
高中数学 第一章 统计综合能力测试(含解析)北师大版必修3-北师大版高一必修3数学试题
【成才之路】2015-2016学年高中数学第一章统计综合能力测试北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2015年的世界无烟日(5月31日)之前,小华学习小组为了了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟[答案] B[解析]调查方式显然是抽样调查,∴A错误.样本是这100个成年人.∴C也错误,显然D不正确.故选B.2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法 B.系统抽样法C.分层抽样法 D.抽签法[答案] B[解析]所抽出的编号都间隔5,故是系统抽样.3.下列问题,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有:山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩. 现抽取农田480亩估计全乡农田某种作物的平均亩产量[答案] B[解析]A项的总体容量较大,用简单随机抽样法比较麻烦;B项的总体容量较小,用简单随机抽样法比较方便;C项由于学校各类人员对这一问题的看法可能差异较大,不宜采用简单随机抽样法;D 项的总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.4.一个容量为50的样本数据,分组后,组距与频数如下:[12.5,15.5),2;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),4.根据分组情况估计小于30.5的数据占( )A .18% B.30% C .60% D.92%[答案] D[解析] (2+8+9+11+10+6)÷50=92%.5.如图所示的是2006年至2015年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2006年至2015年此省城镇居民百户家庭人口数的平均数为( )2 9 1 1 5 83 0 2 6 31247[答案] B[解析] 由茎叶图得到2006年至2015年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,所以平均数为291+291+295+298+302+306+310+312+314+31710=3 03610=303.6.6.某地区共有10万户居民,该地区城市住户与农村住户之比为4∶6,根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如下表所示,那么可以估计该地区农村住户中无冰箱的总户数约为( )万户 C .1.76万户 D.0.24万户[答案] A[解析] 由于城市住户与农村住户之比为4∶6,城市住户有4万户,农村住户有6万户,调查的1 000户居民中共400户城市住户,有600户农村住户,其中农村住户中无冰箱的有160户,所以可估计该地区农村住户中无冰箱的总户数约为10×1601 000=1.6(万户).7.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )1 2 520 2 3 33 1 24 4 8 94 5 5 5 7 7 8 8 950 0 1 1 4 7 96 17 8A.46,45,56B.46,45,53C.47,45,56 D.45,47,53[答案] A[解析]本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为68-12=56.在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断.8.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36C.54 D.72[答案] B[解析]频率分布直方图中所有小矩形的面积之和为1,每个小矩形的面积表示样本数据落在该区间内的频率,故样本数据落在区间[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18,故样本数据落在区间[10,12)内的频数为0.18×200=36.9.已知两个变量x,y之间具有线性相关关系,测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为( )A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.2[答案] C[解析] 利用排除法. ∵x =14(1+2+3+4)= 2.5,y =14(2+4+5+7)=4.5,由于回归直线方程y =bx +a 必过定点(2.5,4.5),故排除A 、D.又由四组数值知y 随x 的增大而增大,知b >0,排除B.10.某路段检查站监控录像显示,在某时段内,有 1 000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90 km/h 的约有( )A .100辆 B.200辆 C .300辆 D.400辆[答案] C[解析] 由题图可知汽车中车速在[60,90)的频率为10×(0.01+0.02+0.04)=0.7, ∴在[90,110]的频率为(1-0.7)=0.3.∴车速不小于90 km/h 的汽车数量约为0.3×1 000=300辆.11.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1 B.2 C .3 D.4[答案] D[解析] 依题意,可得 ⎩⎪⎨⎪⎧10=x +y +10+11+95,2=15[x -102+y -102+10-102+11-102+9-102],⇒⎩⎪⎨⎪⎧x +y =20,x -102+y -102=8,⇒⎩⎪⎨⎪⎧x =12y =8,或⎩⎪⎨⎪⎧x =8y =12,所以|x-y|=4.12.甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则( )A.s甲<s乙<s丙 B.s甲<s丙<s乙C.s乙<s甲<s丙 D.s丙<s甲<s乙[答案] D[解析]由频率分布条形图可得甲,乙,丙三名运动员的平均成绩分别为x-甲=0.25×(7+8+9+10)=8.5;x-乙=0.3×7+8×0.2+9×0.2+10×0.3=8.5;x-丙=0.2×7+8×0.3+9×0.3+10×0.2=8.5,s2甲=0.25×(1.52+0.52+0.52+1.52)=1.25;s2乙=0.3×1.52+0.52×0.2+0.52×0.2+1.52×0.3=1.45;s2丙=0.2×1.52+0.52×0.3+0.52×0.3+1.52×0.2=1.05,∴s丙<s甲<s乙.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.一个容量为40的样本,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.10,则第6组的频率是________.[答案]0.20[解析]第5组的频数为40×0.10=4,第6组的频数为40-(10+5+7+6+4)=8,则频率为840=0.20.14.(2015·某某文,12)已知样本数据x1,x2,…,x n的均值x=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为________.[答案]11[解析]因为样本数据x1,x2,…,x n的均值x=5,所以样本数据2x1+1,2x2+1,…,2x n+1的均值为2x+1=2×5+1=11.15.(2014·某某,6)设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100cm.[答案] 24[解析] 本题考查频率分布直方图.由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)×10×60=24.频率分布直方图中的纵坐标为频率组距,此处经常误认为纵坐标是频率.16.下图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.0 8 9 10 3 5(注:方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,x 2,…,x n 的平均数)[答案] 6.8[解析] 本题考查茎叶图、方差的概念. 由茎叶图知x -=8+9+10+13+155=11,∴s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在同等条件下,对30辆同一型号的汽车进行耗油1升所行走路程的试验,得到如下数据(单位:km):14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8 12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2 13.5 13.6 13.4 13.6 12.1 12.5 13.1 13.5 13.2 13.4以前两位数为茎画出上面数据的茎叶图(只有单侧有数据),并找出中位数.[解析]茎叶图如图所示.1213566789130112223445566 6 788914012 4中位数为13.35.18.(本小题满分12分)某高级中学共有学生3 000名,各年级男、女人数如下表:高一年级高二年级高三年级女生523x y男生487490z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.17.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?[解析](1)由题设可知x3000=0.17,所以x=510.(2)高三年级人数为y+z=3000-(523+487+490+510)=990,现用分层抽样的方法在全校抽取300名学生,应在高三年级抽取的人数为:3003000×990=99名.答:(1)高二年级有510名女生;(2)在高三年级抽取99名学生.19.(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示).分组频率[1.00,1.05)(1)(2)估计数据落在[1.15,1.30)中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.[解析] (1)根据频率分布直方图可知,频率=组距×频率组距故可得下表:(2)0.30+0.15+0.02=中的概率约为0.47. (3)120×1006=2000.所以水库中鱼的总条数约为2000条.20.(本小题满分12分)某农场为了从三种不同的西红柿品种中选出高产稳定的西红柿品种,分别在5块试验田上试种,每块试验田均为0.5公顷,产量情况如下表:问哪一种西红柿既高产又稳定?[解析] 因为x 甲=15(21.5+20.4+22.0+21.2+19.9)=21.0(kg),x 乙=15(21.3+18.9+18.9+21.4+19.8)=20.06(kg), x 丙=15(17.8+23.3+21.4+19.9+20.9)=20.66(kg),所以s 甲=15[21.5-21.02+…+19.9-21.02]≈0.756(kg);s 乙=15[21.3-21.062+…+19.8-21.062]≈1.104(kg);s 丙=15[17.8-20.662+…+20.9-20.662]≈1.807(kg).由于x 甲>x 丙>x 乙,s 甲<s 乙<s 丙,所以甲种西红柿既高产又稳定.21.(本小题满分12分)某某统计局就某地居民的月收入调查了10 000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样的方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?[解析] (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-0.1+0.20.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人), 再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).22.(本小题满分12分)(2015·新课标Ⅰ理,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =,(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:(①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为word 11 / 11 β^=,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适合作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=∑i =18w i -wy i -y ∑i =18 w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6.∴y 关于w 的线性回归方程为y ^=100.6+68w ,∴y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x=-x +13.6x +20.12,∴当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.。
(压轴题)高中数学必修三第一章《统计》检测题(含答案解析)(3)
一、选择题1.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2asD .这组新数据的标准差为2a s2.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .163.有200人参加了一次会议,为了了解这200人参加会议的体会,将这200人随机号为001,002,003,…,200,用系统抽样的方法(等距离)抽出20人,若编号为006,036,041,176, 196的5个人中有1个没有抽到,则这个编号是( ) A .006B .041C .176D .1964.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+,则表中m 的值为( ) x 8 10 11 12 14 y2125m2835A .26B .27C .28D .295.在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为125-号,再用系统抽样方法从中选取5人,已知选手甲的成绩为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为(A.95 B.96 C.97 D.986.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().78066572080263142947182198003204923449353623486969387481A.02B.14C.18D.297.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x为()A.64 B.96 C.144 D.1609.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是()A.90.5 B.91.5 C.90 D.9110.已知x,y的取值如表:x2678y若x ,y 之间是线性相关,且线性回归直线方程为,则实数a 的值是A .B .C .D .11.已知某企业上半年前5个月产品广告投入与利润额统计如下: 月份1 2 3 4 5 广告投入(x 万元) 9.5 9.3 9.1 8.9 9.7 利润(y 万元)9289898793由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元B .96.5万元C .95.25万元D .97.25万元12.在学校组织的考试中,45名学生的数学成绩的茎叶图如图所示,若将学生按成绩由低到高编为1-45号,再用系统抽样方法从中抽取9人,则其中成绩在区间[120,135]上的学生人数是( )A .4B .5C .6D .7二、填空题13.对具有线性相关关系的变量x ,y 有一组观测数据()(),1,2,3,,8i i x y i =,其回归直线方程是12y x a =+,且8116i i x ==∑,8148i i y ==∑,则实数a =__________.14.已知一组样本数据1210,x x x ,且22212102020x x x +++=,平均数9=x ,则该组数据的标准差为__________.15.已知一组数据6,7,8,x ,y 的平均数是8,且90xy =,则该组数据的方差为_______. 16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.18.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.19.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.20.某校高一年级10个班级参加国庆歌咏比赛的得分(单位:分)如茎叶图所示,若这10个班级的得分的平均数是90,则19a b+的最小值为__________.三、解答题21.某市政府针对全市10所由市财政投资建设的企业进行了满意度测评,得到数据如下表: 企业abcdefghij满意度x (%) 21 33 24 20 25 21 24 23 25 12 投资额y (万元)79868978767265625944y x (2)约定:投资额y 关于满意度x 的相关系数r 的绝对值在0.7以上(含0.7)是线性相关性较强,否则,线性相关性较弱.如果没有达到较强线性相关,则根据满意度“末位淘汰”规定,关闭满意度最低的那一所企业,求关闭此企业后投资额y 关于满意度x 的线性回归方程(精确到0.1).参考数据:22.8x =,71y =,1022110248i i x x =-≈∑,643.7,10110406i i i x y x y =-=∑,222851984=,2287116188⨯=.附:对于一组数据()11,x y ,()22,x y ,…,(),n n x y ,其回归直线ˆˆˆybx a =+的斜率和截距的最小二乘估计公式分别为:1221ˆni ii nii x ynx y bxnx==-=-∑∑,ˆˆay bx =-.线性相关系数ni ix y nx yr -=∑.22.某大学生利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x 和销售量y 之间的一组数据如表所示:(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过2件,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多元才能获得最大利润?(注:利润=销售收入-成本). 参考数据:51392i ii x y==∑,521502.5i i x ==∑.参考公式:回归直线方程ˆˆˆybx a =+,其中1221ˆni ii nii x y nx yb xnx ==-=-∑∑,ˆˆay bx =-. 23.画糖人是一种以糖为材料在石板上进行造型的民间艺术.某糖人师傅在公园内画糖人,每天卖出某种糖人的个数与价格相关,其相关数据统计如下表:卖出糖人的个数y (个)5450 46 43 39(1)根据表中数据求y 关于x 的回归直线方程;(2)若该种造型的糖人的成本为2元/个,为使糖人师傅每天获得最大利润,则该种糖人应定价多少元?(精确到1元)参考公式:回归直线方程^^^y b x a =+,其中^121()()()niii nii x x y y b x x ==--=-∑∑,^^^a y b x =-.24.某地区不同身高的未成年男性的体重平均值如下表: 身高/cm6070 80 90 100 110 120 130 140 150 160 170 体重/kg 6.137.909.9012.1515.0217.5020.9226.8631.1138.8547.2555.05(1)根据散点图判断,y a bx =+与xy a b =⋅哪一个能比较近似地反映这个地区未成年男性体重kg y 与身高cm x 的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及下表中数据,建立y 关于x 的回归方程(表中ln i i u y =,0.66 1.93e ≈,0.22 1.02e ≈).xyu()1221ii x x =-∑()()121iii x x y y =--∑ ()()121iii x x u u =--∑11524.0532.9614200 6143.3 284参考公式:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---⋅==--∑∑∑∑,a y b x =-⋅.25.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.参考数据:26.某土特产销售总公司为了解其经营状况,调查了其下属各分公司月销售额和利润,得到数据如下表:在统计中发现月销售额x和月利润额y具有线性相关关系.(Ⅰ)根据如下的参考公式与参考数据,求月利润y与月销售额x之间的线性回归方程;(Ⅱ)若该总公司还有一个分公司“雅果”月销售额为10万元,试求估计它的月利润额是多少?(参考公式:1221ni i i n i i x y nx y b x nx==-⋅=-∑∑,a y b x =-,其中:1112ni ii x y ==∑,21200)nii x==∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s , 则平均值为()12341n ax ax ax ax ax ax n++++⋯+=, ()()()()()22222212341n s x x x xx xx xx x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦,()()()()()222222212341n ax axax axax axax axax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦故选:D. 【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题.2.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.3.B解析:B 【解析】 【分析】求得抽样的间隔为10,得出若在第1组中抽取的数字为6,则抽取的号码满足104n -,即可出判定,得到答案. 【详解】由题意,从200人中用系统抽样的方法抽取20人,所以抽样的间隔为2001020=, 若在第1组中抽取的数字为006,则抽取的号码满足6(1)10104n n +-⨯=-,其中n N +∈,其中当4n =时,抽取的号码为36;当18n =时,抽取的号码为176;当20n =时,抽取的号码为196,所以041这个编号不在抽取的号码中,故选B. 【点睛】本题主要考查了系统抽样的应用,其中解答中熟记系统抽样的抽取方法是解答的关键,着重考查了运算与求解能力,属于基础题.4.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=, 故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.5.C解析:C 【分析】结合系统抽样法的方法,得出其他四名选手的成绩,然后计算平均数,即可. 【详解】结合系统抽样法,可知间隔5个人抽取一次,甲为85,则其他人分别是88,94,99,107,故平均数为88+94+99+107=974,故选C.【点睛】考查了系统抽样法,关键该抽取方法每间隔相同人数中抽取一人,计算平均数,即可,难度中等.6.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.D解析:D 【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题9.A解析:A【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可.【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题. 10.B解析:B【解析】【分析】根据所给的两组数据,做出横标和纵标的平均数,写出这组数据的样本中心点,根据线性回归方程一定过样本中心点,得到线性回归直线一定过的点的坐标.【详解】根据题意可得,,由线性回归方程一定过样本中心点,. 故选:B .【点睛】 本题考查线性回归方程的意义,线性回归方程一定过样本中心点,本题解题的关键是正确求出样本中心点,题目的运算量比较小,是一个基础题. 11.C解析:C【解析】【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可【详解】()19.59.39.18.99.79.35x =⨯++++= ()19289898793905y =⨯++++= 代入到回归方程为7.5ˆyx a =+,解得20.25a =7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学考复习—— 统计
班级 姓名
一、选择题
1.某学校有男、女学生各
500 名,为了解男、女学生在学习兴趣与业余爱好方面是否存
在显著差异,拟从全体学生中抽取 100 名学生进行调查,则宜采用的抽样方法是 ( )
A.抽签法 B .随机数法
C.系统抽样法 D .分层抽样法
2.10 名工人某天生产同一零件,生产的件数是 15,17,14,10,15,17,17,16,14,12
,设其
平均数为 a,中位数为 b,众数为 c,则有 ( )
A.a>b>c B. b>c>a C.c>a>b
D. c>b>a
3.2014 年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图
2-1 ,
去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为 ( )
A. 84,4.84 B
. 84,1.6
C. 85,1.6 D
. 85,4
4.甲、乙、丙、丁四人参加射击项目选拔赛,四人平均成绩和方差如下:
甲 乙 丙 丁
平均环数 x
8.6 8.9 8.9 8.2
方差 s
2
3.5 3.5 2.1 5.6
若从四人中选一人,则最佳人选是 ( )
A.甲 B.乙 C.丙 D.丁
5.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一
600 人、高
二 780 人、高三 n 人中,抽取 35 人进行问卷调查,已知高二被抽取的人数为 13 人,则 n= ( )
A.660 B .720 C .780 D .800
6.为了正确所加工一批零件的长度, 抽测了其中 200 个零件的长度, 在这个问题中, 200
个零件的长度是 ( )
A 、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
7. x 是 x1,x2,⋯, x100 的平均数, a 是 x1,x2,⋯, x40 的平均数, b 是 x41, x42,⋯, x
100
1
的平均数,则下列各式正确的是 (
)
a+ 60 b a+ b a+ b
40 B. 60 40
x =
A. x = 100 x = C. x = a+ b D.
100 2
8.在抽查某产品的尺寸过程中,将其尺寸数据分成若干组,
[ a,b 是其中一组,抽查出 ]
的个体数在该组上的频率是 m,该组上的直方图的高为 h,则 a- b =
( ) | |
h m
A.h·m B.
m
C.
h
D.与 m,h 无关
9.下列抽样中不是系统抽样的是
( )
A 、从标有 1~15 号的 15 号的 15 个小球中任选
3 个作为样本,按从小号到
大号排序,随机确定起点 i,以后为 i+5, i+10( 超过 15 则从 1 再数起 )号入样
B 工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟
抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的
调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为
14 的观众留下来
座谈
10. 图 2-2-8 是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,
若 80 分以
上为优秀,根据图形信息可知:这次考试的优秀率为 ( )
图 2-2-8
A.25% B.30% C.35% D.40%
11. 一个社会调查机构就某地居民的月收入调查了
10 000
人,并根据所得数据得出样本频率分布直方图 . 为了分析居民的
收入与年龄、学历、职业等方面的关系,要从这 10 000 人中用分层抽样方法抽出
100 人做进
一步调查,则在 [2500 , 3000)( 单位:元 ) 月收入段中
应抽出 ________人.
二、填空题
12.下列四种说法中,①数据 4,6,6,7,9,3
的众
数与中位数相等;②一组数据的标准差是这组数据的
方差的平方;③数据 3,5,7,9 的标准差是数据
2
6,10,14,18 的标准差的一半; ④频率分布直方图中各小长方形的面积等于相应各组的频数. 其
中正确的有 __________(填序号 ) .
13.将参加数学竞赛的 1000 名学生编号如下: 0001,0002, 003 ,⋯, 1000,打算从中抽
取一个容量为 50 的样本,按系统抽样的方法把编号分成 50 个部分,如果第一部分编号为
0001,0002 , 0003,⋯, 0020,第一部分随机抽取一个号码为 0015,那么抽取的第 40 个号码
为 ________.
14.超速行驶已成为马路上最大杀手之一, 已知某中段属于限速路段, 规定通过该路段的汽
车时速不超过 80 km/h ,否则视为违规.某天,有 1000 辆汽车经过了该路段,经过雷达测速得到
这些汽车运行时速的频率分布直方图如图 2-7 ,则违规的汽车大约为 ________辆.
图 2-7
15.某中学高一年级有学生 600 人,高二年级有学生 450 人,高三年级有学生
750 人,每
个学生被抽到的可能性均为 0.2,若该校取一个容量为 n 的样本,则 n= 。
三、解答题
16. 某校文学社开展“红五月”征文活动,作品上交时间为
5 月 2 号~ 5 月 22 号,评委从
收到的作品中抽出 200,经统计,其频率分布直方图如图
2-2-16.
(1) 样本中的作品落在 [6,10) 内的频数是多少?
(2) 估计众数、中位数和平均数各是多少?
17.对甲、 乙两名自行车赛手在相同条件下进行了 8 次测试,测得他们的最大速度 ( 单位:
m/s) 的数据如下表:
3
甲
27 38 30 37 35 31 24 50
乙
33 29 38 34 28 36 43 45
分别求出甲、乙两名自行车赛手最大速度
( 单位: m/s) 的数据的平均数、中位数、标准差,
并判断选谁参加比赛更合适
( 可用计算器 ) .
18.为了调查甲、乙两个交通站的车流量,随机选取了 14 天,统计每天上午 8 :00~ 12:
00 间各自的车流量 ( 单位:百辆 ) ,得如图 2-8 所示的统计图,根据统计图:
(1) 甲、乙两个交通站的车流量的极差分别是多少?
(2) 甲交通站的车流量在 [10,40] 间的频率是多少?
(3) 甲、乙两个交通站哪个更繁忙?并说明理由.
4
第二章自主检测 1
一. 1.D 2.D 3 .C 4. C
5.B 6.C 7.A 8.C 9.B 10.B 11.25
. .
^
x+
二. 12. ①③
13 0795 280 15. y= 1.23 0.08
14
三. 16. 解:
(1)
作品落在 [6,10) 内的频率为 1-0.08 - 0.36 - 0.12 - 0.12 = 0.32 ,
∴频数为 200×0.32 = 64.
10+ 14
(2) 众数估计值为:=12,中位数的估计值为:从左到右小矩形面积依次为
2
0.08,0.32,0.36,0.12,0.12 ,由于中位数左、 右两边的小矩形面积相等,
若设为 x,则 ( x-10) ×0.09 = 0.1 ,
∴ x≈11.
平均数的估计值为 0.08 ×4+0.32 ×8+0.36 ×12+0.12 ×16+0.12 ×20≈12.
17.解: (1) 茎叶图如图 D31,中间数为数据的十位数.
图 D31
从这个茎叶图上可以看出,甲、乙的得分情况都是分布均匀的,只是乙更好一些;乙的中
位数是 35,甲的中位数是
33. 因此乙发挥比较稳定,总体得分情况比甲好.
(2) 利用科学计算器, 得 x 甲 =34, x 乙 =35.75 ;s 甲 ≈7.55 ,s 乙≈5.70 ;甲的中位数是 33,
乙的中位数是 35. 综合比较,选乙参加比赛更合适.
18.解: (1) 甲交通站的车流量的极差为 73-8=65;
乙交通站的车流量的极差为 71- 5= 66.
4 2
(2) 甲交通站的车流量在 [10,40] 间的频率为 14= 7.
(3) 甲交通站的车流量集中在茎叶图的下方, 而乙交通站的车流量集中在茎叶图的上方. 从
数据的分布情况来看,甲交通站更繁忙.
5