2012八年级下期末复习综合测试题六
2012年长沙市北雅中学八年级下学期期末复习选择题汇总(附答案)

2012年长沙市北雅中学八年级下学期期末复习选择题汇总1. 电影《建国大业》中有一个情节,建国前夕,毛泽东、周恩来联名写信给留居上海的宋庆龄:“中山先生遗志迄今始告实现。
至祁先生命驾北来,参加此一人民历史伟大的事业,并对于如何建设新中国给予指导。
”此信邀请宋庆龄参加的会议应该是AA.第一届中国人民政治协商会议 B.中共七大C.第一届全国人民代表大会 D.中共八大2.下列四部爱国主义影片所反映的历史事件按时间顺序排列正确的是D①《台儿庄战役》②《南昌起义》③《重庆谈判》④《开国大典》A.①②③④B.②③④①C.①②④③D.②①③④3.2011年是西藏和平解放60周年,某班要出一期“历代政府对西藏的管辖”黑板报,下列材料可供选择的是C①唐太宗将金城公主嫁给尺带珠丹②清顺治帝册封达赖五世为“达赖喇嘛”③清雍正帝设置驻藏大臣④新中国设立西藏自治区A.①②③④B.①②④C.②③④D.①③④4.长沙市北雅中学小明同学在笔记中写到:“粉粹了帝国主义分裂中国的阴谋,标志着祖国大陆基本统一,实现了各民族的大团结。
”据此判断,她学习的内容是AA.西藏解放 B.抗美援朝 C.香港回归 D.澳门回归5.下列内容与西藏历史发展不相符的是CA.1951年以和平方式获得了解放 B.60年代经过民主改革走上了社会主义的道路C.70年代修建的川藏、青藏、新藏公路能到了“世界屋脊” D.今天已发展成为我国的重要牧区6.在中国民主革命的过程中,毛泽东做出的突出贡献有A①找到了中国民主革命的正确道路②领导我民建立了中华人民共和国③领导人民完成了反帝反封建的任务④领导人民建立起社会主义制度A.①②③ B.①③④ C.①② D.①②③④7.右图反映的历史事件是AA.抗美援朝 B.越南战争 C.科索沃战争 D.中东战争8. 历史赋予各个时代不同的主题。
如五四运动时期的主题是民主、科学;国共第一次合作时期的主题是打倒列强除军阀。
1951年中国的时代主题是CA.打倒日本帝国主义 B.加入苏联为首的社会主义阵营 C.抗美援朝保家卫国 D.和平、发展9. 新华网平壤2010年10月24日电(记者白瑞雪姚西蒙),朝鲜政府24日晚在平壤人民文化宫举行盛大宴会,隆重纪念中国人民志愿军赴朝参战60周年。
八年级期末试卷综合测试(Word版 含答案)

八年级期末试卷综合测试(Word版含答案)一、初二物理机械运动实验易错压轴题(难)1.小明同学测小车的平均速度,请帮助他完成下列问题:(1)测平均速度需要的测量工具是______和______;该实验依据的原理是___________;(2)小车所放的斜面应保持较____(填“大”或“小”)的坡度,这样小车在斜面上运动时间会____(填“长”或“短”)些,便于测量时间;(3)如图所示,斜面长1.6 m,测得小车从斜面顶端运动到底端所用的时间是5 s。
如果在斜面的中点装上金属片,测得小车从斜面顶端运动到金属片的时间为2.8 s。
请计算出小车通过上半段的平均速度v2为___________m/s;(保留两位小数)(4)小车从斜面顶端运动到底端过程中,小车做的是_________(填“匀速”或“变速”)直线运动。
【来源】甘肃省定西市临洮县2019-2020学年八年级(上)期中考试物理试题【答案】刻度尺停表svt小长 0.29 变速【解析】【分析】【详解】(1)[1][2][3]测小车平均速度的实验原理就是速度的计算公式=svt测量路程和时间需要的仪器是刻度尺和钟表;(2)[4][5]在小车能下滑的情况下,使用的斜面的坡度较小,小车下滑的速度变化较慢,在斜面上运动的时间较长,这样便于测量时间;(3)[6]如图所示,斜面长1.6 m,测得小车从斜面顶端运动到底端所用的时间是5 s。
如果在斜面的中点装上金属片,测得小车从斜面顶端运动到金属片的时间为2.8 s。
请计算出小车通过上半段的平均速度v2为20.8m===0.29m/s2.8ssvt(4)[7]小车从斜面顶端运动到底端过程中,在前一半路程和后一半路程需要的时间不同,所以,小车做的是变速直线运动。
2.如图所示,在测量小车运动的平均速度实验中,让小车从斜面的A点由静止开始下滑并开始计时,分别测出小车到达B点和C点的时间,即可算出小车在各段的平均速度(1)图中AB 段的距离s AB =________cm ,测得时间t AB =1.6s ,则AB 段的平均速度v AB =________m/s 。
八年级期末试卷综合测试卷(word含答案)

八年级期末试卷综合测试卷(word 含答案)一、选择题1.已知二次根式21x +,则x 的最小值是( )A .0B .-1C .12D .12- 2.若ABC 的三边a 、b 、c 满足条件222()()0a b a b c -⋅+-=,则ABC 为( ) A .等腰三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形3.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是( )A .∠B =∠F B .∠B =∠BCFC .AC =CFD .AD =CF 4.某大学生的平时成绩80分,期中成绩90分,期末成绩85分,若计算学期总评成绩的方法如下:平时成绩∶期中成绩∶期末成绩2:4:4=,则该学生的学期总评成绩是( ) A .85分B .86分C .87分D .88分5.如图,在平面直角坐标系中有一矩形OABC .O 为坐标原点,()10,0A 、()0,4C ,D 为OA 的中点,P 为BC 边上一点,若POD 为等腰三角形,则所有满足条件的点P 有几个( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,∠C =90°,AC =6,BC =9,点D 为BC 边上的中点,将ACD 沿AD 对折,使点C 落在同一平面内的点C '处,连接BC ',则BC '的长为( )A .92B .275C .32D .37.如图,以Rt △ABC (AC ⊥BC )的三边为边,分别向外作正方形,它们的面积分别为S 1﹑S 2﹑S 3,若S 1+S 2+S 3=12,则S 1的值是( )A .4B .5C .6D .78.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地体息已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y (米)与甲出发的时向t (分)之间的函数关系如图所示,下列说法中正确的是( )A .甲步行的速度为8米/分B .乙走完全程用了34分钟C .乙用16分钟追上甲D .乙到达终点时,甲离终点还有360米二、填空题9.二次根式13x -有意义的条件是_______. 10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,2AC =,斜边AB 的长为__________. 12.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 _______. 13.已知A (﹣2,2),B (2,3),若要在x 轴上找一点P ,使AP+BP 最短,此时点P 的坐标为_____14.如图,在ABC 中,点D 、E 、F 分别在边AB 、BC 、CA 上,且DE ∥CA ,DF ∥BA ,下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90°,那么四边形AEDF 是菱形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AB =AC ,那么四边形AEDF是菱形.其中,正确的有_____.(只填写序号)15.如图,平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第二象限内作正方形ABCD ,在y 轴上有一个动点M ,当MDC △的周长最小的时候,点M 的坐标是______.16.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).三、解答题17.计算:(12340100.15(2)()()()201515112283π-⎛⎫-+--+---+ ⎪⎝⎭ 18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB 的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C '=尺,则此时秋千的踏板离地的距离A D '就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA 的长.19.如图,每个小正方形的边长是1,①在图①中画出一个斜边是5的直角三角形;②在图②中画出一个面积是8的正方形.20.如图,在矩形ABCD 中,4AB =,8AD =,将矩形折叠,折痕为EF ,使点C 与点A 重合,点D 与点G 重合,连接CF .(1)判断四边形AECF 的形状,并说明理由;(2)求折痕EF 的长.21.小明在解决问题:已知a 23+2a 2-8a +1的值,他是这样分析与解答的:因为a =123+=()()232323-+-=2-3, 所以a -2=-3.所以(a -2)2=3,即a 2-4a +4=3.所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= - . (2)计算:1112+13+24+3+++…+1100+99; (3)若a =121-,求4a 2-8a +1的值. 22.甲、乙两家采摘园的草莓品质相同,销售价格都是每千克50元,两家均推出了“周末”优惠方案,甲采摘园的优惠方案是:游客进园需购买100元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需要购买门票,采摘的草莓超过6千克后,超过部分五折优惠.优惠期间,设某游客的草莓采摘量为x (x >6)千克,在甲采摘园所需总费用为y 1元,在乙采摘园所需总费用为y 2元.(1)求y 1、y 2关于x 的函数解析式;(2)如果你是游客你会如何选择采摘园?23.如图,在▱ABCD 中,连接BD ,AB BD ⊥,且AB BD =,E 为线段BC 上一点,连接AE 交BD 于F .(1)如图1,若22AB =,BE =1,求AE 的长度;(2)如图2,过D 作DH ⊥AE 于H ,过H 作HG ⊥AD 交AD 于G ,交BD 于M ,过M 作MN ∥AD 交AE 于N ,连接BN ,证明:2NH BN =;(3)如图3,点E 在线段BC 上运动时,过D 作DH ⊥AE 于H ,延长DH 至Q ,使得12QH AH =,M 为AD 的中点,连接QM ,若42AD =,当QM 取最大值时,请直接写出△ADH 的面积.24.如图1,直线y=kx+b 经过第一象限内的定点P(3,4).(1)若b=7,则k=_______;(2)如图2,直线y=kx+b 与y 轴交于点C ,已知点A(6,t),过点A 作AB//y 轴交第一象限内的直线y=kx+b 于点B ,连接OB ,若BP 平分∠OBA .①证明OBC 是等腰三角形;②求k 的值;(3)如图3,点M 是x 轴正半轴上的一个动点,连接PM ,把线段PM 绕点M 顺时针旋转90°至线段NM (∠PMN=90°且PM=MN ),连接OP ,ON ,PN ,当OPN 周长最小时,求点N 的坐标;25.综合与实践问题情境:数学课上,同学们以等腰直角三角形为背景探究图形变化中的数学问题.如图1,将两张等腰直角三角形纸片重叠摆放在桌面,其中90BAC EDF ∠=∠=︒,AB AC =,DE DF =,点A ,D 在EF 的同侧,点B ,C 在线段EF 上,连接DA 并延长DA 交EF 于点O ,已知DO EF ⊥.将DEF 从图1中的位置开始,绕点O 顺时针旋转(ABC 保持不动),旋转角为α.数学思考:(1)“求索小组”的同学发现图1中BE CF =,请证明这个结论;操作探究:(2)如图2,当0180α︒<<︒时,“笃行小组”的同学连接线段AD ,BE . 请从下面A ,B 两题中任选一题作答.我选择________题.A .①猜想AD ,BE 满足的数量关系,并说明理由;②若2OE AB ==,请直接写出45α=︒时,C ,E 两点间的距离;B .①猜想AD ,BE 满足的位置关系,并说明理由;②若2OE AB ==,请直接写出点F 落在AC 延长线时,C ,F 两点间的距离.【参考答案】一、选择题1.D解析:D【分析】直接利用二次根式得定义得出x 的取值范围,进而得出答案.解:∵∴210x +≥, 解得:21x ≥-, 故x 的最小值为12-, 故选:D .【点睛】本题主要考查二次根式的定义,正确得出x 的取值范围是解题的关键.2.C解析:C【详解】解析:∵222()()0a b a b c -+-=,∴a b =或222+=a b c .当只有a b =成立时,是等腰三角形.当只有222+=a b c 成立时,是直角三角形.当a b =,222+=a b c 同时成立时,是等腰直角三角形.答案:C题型解法:此类题型首先根据题意化简式子,找出隐含条件,然后根据三边的关系判断三角形的形状.当三角形的三边满足勾股定理时,即可判断为直角三角形.3.B解析:B【解析】【分析】根据已知条件可以得到//AC DE ,对选项判断即可求出解.【详解】解:∵D ,E 分别是AB ,BC 的中点∴//AC DE ,12DE AC = A :根据∠B =∠F 得不出四边形ADFC 为平行四边形,选项不符合题意;B :∠B =∠BCF ,∴CF//AD ,∴四边形ADFC 为平行四边形,选项符合题意; C :根据AC =CF 得不出四边形ADFC 为平行四边形,选项不符合题意;D :根据AD =CF 得不出四边形ADFC 为平行四边形,选项不符合题意;故答案为B .【点睛】此题考查了中位线的性质以及平行四边形的判定,熟练掌握有关性质即判定方法是解题的关键.4.B解析:B【分析】根据题意和题目中的数据,利用加权平均数的计算方法可以计算出该学生的学期总评成绩.【详解】由题意可得,⨯⨯⨯802+904+8542+4+4160+360+340=10=86分,即该学生的学期总评成绩是86分,故选:B.【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的方法解答.5.D解析:D【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【详解】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,22PC-53∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,22DE=-;543分两种情况:当E在D的左侧时,如图2所示:OE=5-3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故选:D【点睛】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.6.B解析:B【解析】【分析】由折叠的性质可得AD⊥CC',CN=C'N,由勾股定理可求AD,DN的长,即可求BC'的长.【详解】解:如图,连接CC',∵将△ACD沿AD对折,使点C落在同一平面内的点C'处,∴AD⊥CC',CN=C'N,∵点D为BC边上的中点,∴CD=12BC=922215=2AC CD+∵S△ACD=12×AC×CD=12×AD×CN∴CN=18 5∴DN=2227 = 10CD CN-,∵CN=C'N,CD=DB,∴C'B=2DN=275,故选:B.【点睛】本题考查翻折变换,勾股定理,三角形中位线定理,利用勾股定理可求DN的长是本题的关键.7.C解析:C【解析】【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S3+S2=S1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.8.D解析:D【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图可得,甲步行的速度为:240÷4=60米/分,故选项A不合题意,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故选项B不合题意,乙追上甲用的时间为:16﹣4=12(分钟),故选项C不合题意,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故选项D 符合题意, 故选D .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题9.x ≥0且x ≠9【解析】【分析】根据二次根式有意义的条件:被开方数要大于等于0,以及分式有意义的条件:分母不为0,计算求解即可.【详解】解:∵∴0x ≥30≠∴0x ≥且9x ≠故答案为:0x ≥且9x ≠.【点睛】本题主要考查了二次根式和分式有意义的条件,解题的关键在于能够熟练掌握相关知识点进行求解.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形, ∴12482BD =⨯⨯, ∴BD =6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.B【解析】【分析】由90C ∠=︒,30A ∠=︒得到2,AB BC = 利用勾股定理可得答案.【详解】解:设BC ,x =90C ∠=︒,30A ∠=︒,2,AB x ∴=2AC =,222(2)2,x x ∴=+122323,33x x ∴==-(舍去), 42 3.3AB x ∴==4 3.3【点睛】 本题考查的是含30角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.12.5【分析】先根据勾股定理计算出斜边,再根据在直角三角形中,斜边上的中线等于斜边的一半即可求解.【详解】解:因为直角三角形的两条直角边分别5和12,由勾股定理可得:斜边2251216913+=,因为斜边上的中线等于斜边的一半,所以斜边中线=13÷2=6.5,故答案为:6.5.【点睛】本题主要考查勾股定理和直角三角形斜边上的中线等于斜边的一半,解决本题的关键是要熟练掌握勾股定理和直角三角形斜边上的中线等于斜边的一半.13.A解析:(-0.4,0)【分析】点A (-2,2)关于x 轴对称的点A'(-2,-2),求得直线A'B 的解析式,令y=0可求点P 的横坐标.【详解】解:点A (-2,2)关于x 轴对称的点A'(-2,-2),设直线A'B 的解析式为y=kx+b ,把A'(-2,-2),B (2,3)代入,可得2232k b k b --⎨⎩++⎧== ,解得5412k b ⎧=⎪⎪⎨⎪=⎪⎩ , ∴直线A'B 的解析式为y=54x+12, 令y=0,则0=54x+12, 解得x=-0.4,∴点P 的坐标为(-0.4,0),故答案为(-0.4,0).【点睛】本题综合考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征,两点之间线段最短等知识点.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.14.D解析:①③【分析】根据平行四边形的判定和菱形的判定解答即可.【详解】解:∵DE ∥CA ,DF ∥BA ,∴四边形AEDF 是平行四边形,故①正确;∵∠BAC =90°,四边形AEDF 是平行四边形,∴四边形AEDF 是矩形,故②错误;∵AD 平分∠BAC ,四边形AEDF 是平行四边形,∴四边形AEDF 是菱形,故③正确;∵AB =AC ,四边形AEDF 是平行四边形,不能得出AE =AF ,故四边形AEDF 不一定是菱形,故④错误;故答案为:①③.【点睛】此题考查菱形的判定,关键是就平行四边形的判定和菱形的判定解答.15.(0,)【分析】把x=0和y=0分别代入y=x+1,求出A ,B 两点的坐标,过D 作DE 垂直于x 轴,证△DEA ≌△AOB ,证出OA=DE ,AE=OB ,即可求出D 的坐标;先作出D 关于y 轴的对称点D′,解析:(0,114) 【分析】把x =0和y =0分别代入y =12x +1,求出A ,B 两点的坐标,过D 作DE 垂直于x 轴,证△DEA ≌△AOB ,证出OA =DE ,AE =OB ,即可求出D 的坐标;先作出D 关于y 轴的对称点D ′,连接CD ′,CD ′与y 轴交于点M ,则MD ′=MD ,求出D ′的坐标,进而求出CD ′的解析式,即可求解.【详解】解:y =12x +1,当x =0时,y =1,当y =0时,x =-2,∴点A 的坐标为(-2,0)、B 的坐标为(0,1),OA =2,OB =1,由勾股定理得:AB过D 作DE 垂直于x 轴,∵四边形ABCD 是正方形,∴∠DEA =∠DAB =∠AOB =90°,AD =AB =CD∴∠DAE +∠BAO =90°,∠BAO +∠ABO =90°,∴∠DAE =∠ABO ,在△DEA 与△AOB 中, DAE ABO DEA AOB DA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEA ≌△AOB (AAS ),∴OA =DE =2,AE =OB =1,∴OE =3,所以点D 的坐标为(-3,2),同理:点C 的坐标为(-1,3),作D 关于y 轴的对称点D ′,连接CD ′,CD ′与y 轴交于点M ,∴MD ′=MD ,MD ′+MC =MD +MC ,此时MD ′+MC 取最小值,∵点D (-3,2)关于y 轴的对称点D ′坐标为(3,2),设直线CD ′解析式为y =kx +b ,把C (-1,3),D ′(3,2)代入得:332k b k b -+=⎧⎨+=⎩, 解得:14114k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线CD ′解析式为y =14-x +114, 令x =0,得到y =114, 则M 坐标为(0,114). 故答案为:(0,114). 【点睛】 本题主要考查了一次函数图象上点的坐标特征,一次函数的性质,能求与x 轴y 轴的交点坐标和理解有关最小值问题是解本题的关键,难点是理解MD +MC 的值最小如何求. 16.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC , 解析:①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2,则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC ,由勾股定理得, 设DG=x ,则CG=a-x ,FG=x , EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.三、解答题17.(1);(2)−7+3【分析】(1)先把各二次根式化为最特意二次根式,再合并即可得到答案;(2)分别根据平方差公式、负整数指数幂的运算法则,绝对值的代数意义,零指数幂的运算法则以及二次根式的性解析:(1);(2)− 【分析】(1)先把各二次根式化为最特意二次根式,再合并即可得到答案;(2)分别根据平方差公式、负整数指数幂的运算法则,绝对值的代数意义,零指数幂的运算法则以及二次根式的性质代简各项后再合并即可得到答案.【详解】解:(1=(2))()20111123π-⎛⎫--+- ⎪⎝⎭=51911---+=7-+【点睛】本题主要考查了二次根式的加减以及实数的混合运算,熟练掌握运算法则是解答本题的关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.①见解析;②见解析【解析】【分析】①利用数形结合的思想画出直角三角形即可.②利用数形结合的思想画出边长为2的正方形即可.【详解】解:①如图①中,△ABC 即为所求.②如图②中,正方形AB解析:①见解析;②见解析【解析】【分析】①利用数形结合的思想画出直角三角形即可.②利用数形结合的思想画出边长为22的正方形即可.【详解】解:①如图①中,△ABC 即为所求.②如图②中,正方形ABCD 即为所求.【点睛】此题考查了勾股定理和网格的应用,解题的关键是熟练掌握勾股定理和网格的性质. 20.(1)菱形,理由见解析;(2)【分析】(1)根据矩形的性质,可知,进而可得,根据折叠的性质可知,则,进而可得,又,根据四边相等的四边形是菱形即可判断;(2)连接,先根据折叠的性质,利用勾股定理解析:(1)菱形,理由见解析;(2)25【分析】(1)根据矩形的性质,可知//AD BC ,进而可得AFE AEF ∠=∠,根据折叠的性质可知CEF AEF ∠=∠,则AFE AEF ∠=∠,进而可得AF AE =,又,AF CF AE EC ==,根据四边相等的四边形是菱形即可判断;(2)连接AC ,先根据折叠的性质,利用勾股定理求得AF ,进而勾股定理求得AC ,根据菱形的面积12AF AB AC EF ⋅=⋅即可求得EF . 【详解】(1)四边形ABCD 是矩形,∴//AD BC ,∴AFE AEF ∠=∠, 根据折叠的性质,可知CEF AEF ∠=∠,,AF CF AE EC ==,∴AFE AEF ∠=∠,∴AF AE =,∴AF CF AE EC ===,∴四边形AECF 是菱形;(2)连接AC ,如图,四边形ABCD 是矩形,90B BCD ∴∠=∠=︒,4AB =,8AD =,2245AC AB BC ∴+=折叠,90G BCD ∴∠=∠=︒4,AG CD AB GF FG ====,设AF x =,则8GF FD AD AF x ==-=-,在Rt AGF △中,222AF AG FG =+,即222(8)4x x =-+,解得5x =,5AF ∴=,12AF AB AC EF ⋅=⋅, 22545AF AB EF AC ⋅∴===【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,菱形的性质与判定,灵活晕用勾股定理是解题的关键.21.(1) ,1;(2) 9;(3) 5【解析】【分析】(1);(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求 解析:2,1;(2) 9;(3) 5【解析】【分析】(1()()221212121==++-;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解;(3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可.【详解】(1)计算:1=;(2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a 时,原式2435=⨯-=.【点睛】 本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.(1),;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简解析:(1)130100y x =+,225150y x =+;(2)当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园【分析】(1)根据题意列出关系式,化简即可得到结论;(2)分别令12y y =,12y y >,12y y <求出对应x 的值或取值范围,从而得出结论.【详解】解:(1)由题意可得:1100500.630100y x x =+⨯=+,2506(6)500.525150y x x =⨯+-⨯⨯=+,即1y 关于x 的函数解析式是1230100,y x y =+关于x 的函数解析式是225150y x =+; (2)当12y y =时,即:3010025150x x +=+,解得10x =,即当采摘量等于10千克时,在甲、乙两采摘园所需费用相同; 当12y y >时,即:3010025150x x +>+,解得10x >,即当采摘量超过10千克时,选择乙采摘园;当12y y <时,即:3010025150x x +<+,解得10x <,即当采摘量超过6千克且少于10千克时,选择甲采摘园;由上可得,当采摘量等于10千克时,在甲、乙两采摘园所需费用相同;当采摘量超过10千克时,选择乙采摘园;当采摘量超过6千克且少于10千克时,选择甲采摘园.【点睛】本题考查了一次函数的实际应用,正确理解题意列出函数关系式是解题的关键. 23.(1)见解析;(2)见解析;(3).【分析】(1)分别过点作,垂足分别为,勾股定理解即可;(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到解析:(1)见解析;(2)见解析;(3)1655. 【分析】(1)分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S R ,勾股定理解Rt ARE △即可; (2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=,经过角度的变换得出BAN HDB ∠=∠,再证明ATN △≌HGD △,得出,AN HD =,结合已知条件,继而证BAN ≌BDH △,得出ABN DBH ∠=∠,NB HB =,进而得到NBH △是等腰直角三角形,从而得证;(3)分别作,AD AQ 的中垂线,交于点O ,根据作图,先判断MQ 最大的时候的位置, 进而由12QH AH =,42AD =,构造直角三角形,勾股定理求得,AH HD ,从而求得△ADH 的面积 .【详解】(1)如图,分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S RAB BD ⊥,AB BD =,22AB =ABD ∴是等腰直角三角形,ASB △是等腰直角三角形224AD AB BD ∴=+∴122AS SD AD ===,2BS AS == 四边形ABCD 是平行四边形//AD BC ∴,BS AD ER AD ⊥⊥,1BE =∴四边形SBER 是矩形∴SR BE =1=,2RE SB ==3AR AS SR ∴=+=在Rt ARE △中 22223213AE AR RE =+=+=(2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=BAD 是等腰直角三角形45BAD BDA ∴∠=∠=︒45HAD BAD BAN α∴∠=∠-∠=︒-DH AE ⊥,9045ADH HADα∴∠=︒-∠=︒+4545HDB ADH ADB αα∴∠=∠-∠=︒+-︒=BAN HDB ∴∠=∠NT AD ⊥9090(45)45ANT HAD αα∴∠=︒-∠=︒-︒-=︒+,90ATN∠=︒ANT ADH HDG ∴∠=∠=∠HG AD ⊥90HGD ∴∠=︒ATN HGD ∴∠=∠又45BDA ∠=︒9045DMG MDG ∴∠=︒-∠=︒GD GM ∴=//MN AD ,HG AD ⊥,NT AD ⊥∴四边形TNMG 是矩形GM TN ∴=TN GD ∴=在ATN △和HGD △中ANT HDG TN GDATN HGD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ATN △≌HGD △(ASA )AN HD ∴=在BAN 和BDH △中AB BD BAN HDB AN HD =⎧⎪∠=∠⎨⎪=⎩∴BAN ≌BDH △(SAS )ABN DBH ∴∠=∠,NB HB =ABN NBD DBH NBD ∠+∠=∠+∠即ABD NBH ∠=∠AB BD ⊥90ABD ∴∠=︒90NBH ∴∠=︒NBH ∴△是等腰直角三角形 ∴222NH BN BH BN =+=即2NH BN =(3)分别作,AD AQ 的中垂线,交于点O,由题意,当点E 在线段BC 上运动时,AQD ∠不变,AD 的长度不变,则,,A D Q 三点共圆,则点Q 在以O 为圆心OQ 为半径的圆上运动,DH AE ⊥,12QH AH =tan 2AH AQD QH∴∠== 在OMQ 中MQ MO OQ ≤+∴当,,M O Q 三点共线时,MQ 取得最大值,此时情形如图:,AB BD BM AD =⊥∴AM MD =,,M O Q 三点共线,∴点Q 在AB 的垂直平分线上QA QD ∴=DH AE ⊥,tan 2AH AQDQH∠== 设QH x =,则AH 2x =5AQ x ∴=QD = 5DH x x ∴=-42AD =222AH DH AD ∴+= 即222(2)(5)(42)x x x +-= 得:255x =-△ADH 的面积12AH DH =⋅ 12(5)2x x x =⨯⋅-2(51)x =165=(51)555=- ∴当QM 取最大值时,△ADH 165 【点睛】本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.24.(1)-1;(2)①证明见详解;②;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b 中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角解析:(1)-1;(2)①证明见详解;②34-;(3)(7715,2815-)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)①根据平行的性质:内错角相等,证明∠OCB=∠OBC,由等角对等边得到OBC是等腰三角形②根据坐标证明P是BC的中点,由等腰三角形三线合一性质得OP⊥BC,求出OP函数关系式中k的值,根据两个一次函数图像互相垂直时k的关系,求解出直线BC的表达式中的k=3 4 -(3)根据动点M的运动情况分析出N的轨迹函数,然后证明△OHG是等腰直角三角形,根据中点坐标公式求得直线O’P的表达式,联立方程求出N点坐标【详解】(1)把P(3,4),b=7代入y=kx+b中,可得4=3k+7解得k=-1故答案为-1(2)①∵AB∥y轴∴∠ABC=∠OCB∵BP平分∠OBA∴∠OBC=∠ABC∴∠OCB=∠OBC∴OBC是等腰三角形②如图4所示,连接OP∵AB//y轴,A(6,t)∴B点横坐标是6∵P横坐标是3∴P是BC的中点∴OP⊥BC设直线OP的表达式为y=kx将P(3,4)代入得4=3k解得k= 43, 则设直线BC 的表达式中的k=34-. 故答案为34-. (3)①如图5-1,当点M 与O 重合时,作PE ⊥y 轴于点E ,作NF ⊥y 轴于点F∵PM ⊥NM∴∠PMN=90°∴∠PME+∠NMF=90°∵∠FMN+∠FNM=90°∴∠PME=∠MNF在△PEM △MFN 中=PME MNF PEM MFN PM MN ∠=∠⎧⎪∠∠⎨⎪=⎩∴△PEO ≌△OFN (AAS )∴MF=PE=3,FN=ME=4则N 点的坐标为(4,-3)②如图5-2所示,,当PM ⊥x 轴时,N 点在x 轴上,则MN=PM=3,ON=OM+MN=7,∴N 的坐标为(7,0)综上所述得点N 在直线y=x-7的直线上运动设直线y=x-7与坐标轴分别交于点G 、H ,作O 关于直线HG 的对称点O`,连接O`P 交直线HG 于点N ,此时ON+PN 有最小值,最小值为线段O`P 的长度.如图5-3所示.当直线y=x-7可得H(0,-7),G(7,0),OG=OH,△OHG是等腰直角三角形,当OQ⊥HG时,Q是HG的中点,由中点坐标公式可得Q(72,-72),∵O`与O对称∴Q是OO`的中点由中点坐标公式可得O’(7,-7),∴可得直线O’P的表达式为1149y x44=-+联立方程1149447x xy x⎧=+⎪⎨⎪=-⎩﹣,解得77152815 xy⎧=⎪⎪⎨⎪=-⎪⎩∴N点坐标为(7715,2815-)∴当△OPN周长最小时,点N的坐标为(7715,2815-)故答案为(7715,2815-)【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、角平分线的性质,平行的性质等,熟练掌握数形结合的解题方法是解决此题目的关键,综合性强,难度较大.25.(1)见详解;(2)A.①AD=BE,理由见详解;②;B.①AD⊥BE,理由见详解;②-1.【分析】(1)根据等腰三角形三线合一的性质,即可得到结论;(2)A.①利用手拉手模型,证明,即可得到解析:(1)见详解;(2)A.①AD =BE ,理由见详解;;B.①AD ⊥BE ,理由见详解;.【分析】(1)根据等腰三角形三线合一的性质,即可得到结论;(2)A.①利用手拉手模型,证明EOB DOA ≌,即可得到结论;②过点E 作EH ⊥CB 交CB 的延长线于点H ,连接CE ,根据等腰直角三角形的性质和勾股定理,即可求解;B.①延长DA 交OE 于点Q ,交BE 于点P ,利用“8”字模型得∠EPQ =∠QOD =90°,进而即可得到结论;②过点O 作OQ ⊥AC ,可得QO =1,利用勾股定理得QF =【详解】解:(1)∵90BAC ∠=︒,AB AC =,∴ABC 是等腰直角三角形,又∵AO EF ⊥,∴OB =OC ,同理:OE =OF ,∴OE -OB =OF -OC ,∴BE CF =;(2)A.①AD =BE ,理由如下:∵AO BC ⊥,OD ⊥EF ,∴∠AOB =∠DOE =90°,∴∠EOB =∠DOA ,∵ABC 和DEF 是等腰直角三角形, ∴BO =AO ,EO =DO , ∴EOB DOA ≌,∴AD =BE ;②∵旋转角45α=︒,∴∠BOE =45°,∴∠COE =135°,∵2OE AB ==,∴OC =OB过点E 作EH ⊥CB 交CB 的延长线于点H ,连接CE ,。
期末全册综合复习卷 部编版道德与法治八年级下册

下学期八年级道德与法治期末复习摸底测试一、单选题1.新中国成立72年来,经济实力和综合国力大幅跃升;人民生活水平极大改善;文明程度显著提升;国际地位空前提高。
充分说明()①只有中国共产党才能领导中国,只有社会主义才能救中国②只有改革开放才能发展中国、发展社会主义③我国已经成为世界上的发达国家④只有中国特色社会主义道路才能引领中国走向繁荣富强A.①②③B.①②④C.②③④D.①③④2.我国宪法规定:“中华人民共和国的一切权力属于人民。
”这意味着()A.公民具有直接管理国家的权力B.公民都应有选举权和被选举权C.公民的言论、集会、游行自由不受约束D.公民有参与国家政治生活的权利和自由3.近日,国务院新闻办发表《改革开放 40 年中国人权事业的发展进步》白皮书。
白皮书从消除贫困、确保饮用水安全、改善基本居住条件、人民出行、生命健康权、社会救助、环境权利保障等方面,总结了 40 年来中国人权事业取得的进展。
对我国人权事业,我们应有的认识是()①尊重和保障人权是我国的宪法原则②只是尊重和保障我国公民的人权③国家政府历来重视人权的尊重和保障④人的自由、平等地生存和发展是人权的实质内容和目标A.①②③B.①③④C.②③④D.①②④4.我国国家机构贯彻民主集中制原则,主要表现为()①国家权力来自人民,由人民组织国家机构②在同级国家机构中,国家司法机关居于主导地位③遵循在中央的统一领导下,充分发挥地方的主动性④在国家机构内部,作出决策、决定时也要实行少数服从多数A.①③B.②④C.③④D.①④5.我国宪法规定,对于任何国家机关和国家工作人员的违法失职行为,我国公民有权向有关国家机关提出申诉、控告或者检举的权利。
宪法作出这一规定是()A.要求行政机关必须独立行使职权B.加强对行政权的监督和制约C.要求人大代表必须履行代表职责D.要求公民行使权利不要超越界限6.中国新民主主义革命的胜利和社会主义事业的成就,是中国共产党领导中国各族人民,战胜许多艰难险阻而取得的.新中国成立后,中国共产党领导人民制定宪法,以法律的形式确认了中国各族人民奋斗的成果,确立了党的领导地位。
2012年下期八年级期未检测题

生物温馨提示:1.本试卷包括第I卷(选择题)和第Ⅱ卷(非选择题),满分100分,考试时量60分钟。
2.考生作答时,在试卷上按要求答题。
3.考试结束后,将本试题卷交回。
第Ⅰ卷选择题(请将正确答案填写在下表中,每小题2分,共50分。
每小题只有一个符合题意的选项)1.要使一株果树上结出几种不同品种的果实,应采取的方式是A. 分根B. 嫁接C.扦插D.压条2.依靠果实表面的钩刺附着在其他动物身上来传播种子的植物是A.苍耳B.美人蕉C.豌豆D.蒲公英3.下列昆虫发育过程为不完全变态发育的是A.蝇B.蚊C.菜粉蝶D.蟋蟀4.受精的鸡蛋在母鸡体内开始发育,但鸡蛋产出后就停止发育,原因是外界A.阳光太强B.具有空气C.温度太高D.温度太低5.人的受精卵、生殖细胞、体细胞中染色体的数目分别为A.23条、46条、23条B.23条、46条、46条C.46条、23条、46条D.46条、46条、23条6. 下列各项中能正确表述基因、DNA和染色体三者之间的关系的是A.基因——→DNA——→染色体 B.基因——→染色体——→DNA C.DNA——→染色体——→基因 D.DNA——→基因——→染色体7.若把一只白色雌鼠受精卵的细胞核去掉,移入一只黑色雌鼠胚胎细胞的细胞核,培养成胚胎后再植入一只灰色雌鼠子宫内发育,生下的小鼠毛色为黑色,由以上实验能得到的结论是A.控制鼠毛颜色的遗传物质是染色体B.DNA是鼠的遗传物质C.基因是有特定遗传效应的DNA片段D.遗传信息主要储存于细胞核中8.假如控制双眼皮的为显性基因D,控制单眼皮的为隐性基因d,则一个双眼皮的人的基因组成应为A.DDB.DdC.DD或DdD.dd9.下列哪一组是相对性状?①肤色正常和白化病②有酒窝和无酒窝③有耳垂和无耳垂④卷发与黑发⑤近视与色盲A.①②④B.①②③C.①②⑤D.①③④10.从理论上讲,“生男”还是“生女”是由谁来决定的?A.父母亲产生的性激素B.母亲提供的卵子C.父亲提供的精子D.受精卵生长的环境11.哺乳动物亲代的性状遗传给子代是通过A.血液B.母亲的乳汁C. 体细胞D. 亲代产生的生殖细胞12.遗传和变异现象在生物世界是普遍存在的,下列属于生物变异现象的是A.牛和羊的毛色明显不同B.蝗虫的体色夏季为绿色,秋季为褐色C.青蛙的发育过程中,成体与幼体有显著的差异D.一棵桃树上所结的果实,在大小、形态、颜色上有差异13.下列疾病中不属于遗传病的是A.先天性裂唇B.先天性愚型C.孕妇乱吃药造成的婴儿畸形D.白化病14.下列关于动物行为的叙述,正确的是A.动物的行为都是先天性行为B.后天性行为是动物生来就有的C.亲鸟育雏的行为是学习获得的D.大象表演是后天学习的结果15.杜鹃将自己的卵产到别的小鸟巢中,小鸟辛勤地为杜鹃孵卵并精心喂食杜鹃的雏鸟。
八年级语文下学期期末复习诗歌鉴赏综合检测试题含答案

八年级语文下学期期末复习诗歌鉴赏综合检测试题含答案一、八年级下册诗歌鉴赏1.阅读诗歌,回答问题。
春草宫①怀古(唐)刘长卿君王不可见,芳草旧宫春。
犹带罗裙色②,青青向楚人。
【注】①春草宫是隋炀帝所建的离宫。
此地春色芳草浓盛,故而命名。
②罗裙色:古代宫妃罗裙的颜色。
(1)自然的规律是严峻无情的,历史的法则也是严峻无情的,曾不可一世的隋炀帝终被人民前进的激浪吞没。
面对久已消沉的隋宫废殿遗墟,诗人发出“________”(用诗中的原句回答)的感慨,这既是对历史法则的深刻揭示,也同时深含着对暴君隋炀帝的鞭笞。
(2)请你说一说诗中“犹带罗裙色”一句的作用。
2.古诗阅读硕鼠硕鼠硕鼠,无食我黍①!三岁贯女,莫我肯顾②。
逝将去女,适彼乐土。
乐土乐土,爰得我所③。
硕鼠硕鼠,无食我麦!三岁贯女,莫我肯德④。
逝将去女,适彼乐国。
乐国乐国,爰得我直?硕鼠硕鼠,无食我苗!三岁贯女,莫我肯劳。
逝将去女,适彼乐郊。
乐郊乐郊,谁之永号?(选自《诗经·魏风》)【注释】①硕:大。
黍:黏米。
②三岁:多年。
贯:供养。
女,同“汝”,你。
③逝:誓。
适彼:到那个。
爰:哪里。
④德:感德。
(1)《诗经》的表现手法主要有赋、比、兴三种。
《毛诗序》里说本诗“刺重敛也。
国人刺其君重敛,蚕食于民,不修其政,贪而畏人,若大鼠也”,用的是________的手法。
(2)本诗采用重章叠句的形式,上下章基本相同,重复中又有变化。
请结合本诗内容具体分析重章叠句的表达效果。
3.阅读下面的诗歌,完成下面小题。
送杜少府之任蜀州王勃城阙辅三秦,风烟望五津。
与君离别意,同是宦游人。
海内存知己,天涯若比邻。
无为在歧路,儿女共沾巾。
(1)下列对诗的理解和分析不正确的....一项是()A.这首五言律诗是送别诗的名作,诗人在慰勉友人不用伤悲难过。
B.首联点出送别地与友人即将赴任地,隐含送别情意,对仗严整。
C.诗歌颔联是说诗人跟朋友都要去外地做官,是值得高兴的事。
D.尾联点出“送”的主题,不要在临别之时像儿女一般泪洒衣裳。
八年级期末试卷综合测试(Word版 含答案)
八年级期末试卷综合测试(Word版含答案)一、初二物理声现象实验易错压轴题(难)1.某兴趣小组计划探究“铝棒的发声”.同学们使用一根表面光滑的实心铝棒,一只手捏住铝棒的中间部位,另一只手的拇指和食指粘少许松香粉,在铝棒表面由手捏部位向外端摩擦,可以听见铝棒发出声音,而且发现在不同情况下铝棒发声的频率是不同的,为了探究铝棒发声频率的影响因素,该兴趣小组找到不同规格的铝棒、虚拟示波器等器材进行探究.实验前同学们提出了以下猜想:猜想A:铝棒发声的频率可能和铝棒的横截面积有关猜想B:铝棒发声的频率可能和铝棒的长度有关猜想C:铝棒发声的频率可能和手捏铝棒的部位有关为了验证猜想A,同学们选择4根铝棒,每次均捏住铝棒的中间部位,由手捏部位向外端摩擦,实验所得的数据记录于下面的表格中,在2%的误差允许范围内(频率相差在70Hz 以内)的测量值可以认为是相等的.(1)分析表格中数据,可知铝棒的发声频率与横截面积是______________的.(选填“有关”或“无关”)(2)为了验证猜想B,同学们选择横截面积均为2.9×10﹣5m2的铝棒,实验所得的数据记录于下面的表格中,同学们从表中前两列数据很难得出频率f与长度L之间的关系,他们利用图象法处理数据,画出了频率f与长度的倒数1/L的关系如图所示,分析可知发生频率f 与铝棒的长度L的关系是成______(正/反)比.(3)同学们又通过实验探究了铝棒发声的频率和手捏铝棒部位的关系,在实验过程中,有同学们将发声的铝棒一端插入水中,可以看到______________现象,有同学用手迅速握住正在发声的铝棒,可以听见声音很快衰减,原因是____________________________.【答案】无关反比例水花四溅振幅减小,响度减小【解析】(1)通过比较表格中的1和3(或者2和4)可知,,当铝棒长度都为0.71m时,横截面积不同,频率为3500hHz和3530Hz,由于这两个频率在2%的误差允许范围内(频率相差在70Hz以内),故频率是相同的,故结论为:铝棒的发声频率与横截面积是无关的;(2)由图象可知,频率f与长度的倒数1L的关系是一条直线,即成正比,故发生频率f与铝棒的长度L的关系是成反比; (3)有同学们将发声的铝棒一端插入水中,铝棒振动,引起水的振动,故可以看到水花四溅;有同学用手迅速握住正在发声的铝棒,可以听见声音很快衰减,原因是铝棒的振幅减小,响度减小。
八年级期末试卷综合测试(Word版 含答案)
八年级期末试卷综合测试(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)解:如图3,延长DC 到点G ,截取CG =AE ,连接BG ,在△AEB 与△CGB 中,∵AE CG A BOG AF BF =⎧⎪∠=∠⎨⎪=⎩,∴△AEB ≌△CGB (SAS ),∴BE =BG ,∠ABE =∠CBG .∵∠EBF =45°,∠ABC =90°,∴∠ABE +∠CBF =45°,∴∠CBF +∠CBG =45°.在△EBF 与△GBF 中,∵BE BG EBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴△EBF ≌△GBF (SAS ),∴EF =GF ,∴△DEF 的周长=EF +ED +CF =AE +CF +DE +DF =AD +CD =10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.2.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯= BMD ∴是等腰直角三角形.()2解:如图2,BDM是等腰直角三角形,理由是:延长ED交AC 于F,ADE和ABC△是等腰直角三角形,45BAC EAD∠∠∴==,AD ED⊥,ED DF∴=,M为EC中点,EM MC∴=,12DM FC∴=,//DM FC,45BDN BND BAC∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,DM FM∴=,DE FC=,AD ED FC∴==,作AN EC ⊥于点N ,由已知90ADE ∠=,90ABC ∠=,可证得DEN DAN ∠∠=,NAB BCM ∠∠=,//CF ED ,DEN FCM ∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD ∠∠∠∠∠∠∠∠∴=+=+=+=, BCF ∴≌BAD ,BF BD ∴=,DBA CBF ∠∠=,90DBF DBA ABF CBF ABF ABC ∠∠∠∠∠∠∴=+=+==,DBF ∴是等腰直角三角形,点M 是DF 的中点,则BMD 是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.3.在四边形 ABCD 中,E 为 BC 边中点.(Ⅰ)已知:如图,若 AE 平分∠BAD ,∠AED =90°,点 F 为 AD 上一点,AF =AB .求证:(1)△ABE ≌AFE ;(2)AD =AB +CD(Ⅱ)已知:如图,若 AE 平分∠BAD ,DE 平分∠ADC ,∠AED =120°,点 F ,G 均为 AD 上的点,AF =AB ,GD =CD .求证:(1)△GEF 为等边三角形;(2)AD =AB + 12BC +CD .【答案】(Ⅰ)(1)证明见解析;(2)证明见解析;(Ⅱ)(1)证明见解析;(2)证明见解析.【解析】【分析】(Ⅰ)(1)运用SAS 证明△ABE ≌AFE 即可;(2)由(1)得出∠AEB=∠AEF ,BE=EF ,再证明△DEF ≌△DEC (SAS ),得出DF=DC ,即可得出结论;(Ⅱ)(1)同(Ⅰ)(1)得△ABE ≌△AFE (SAS ),△DGE ≌△DCE (SAS ),由全等三角形的性质得出BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,进而证明△EFG 是等边三角形;(2)由△EFG 是等边三角形得出GF=EE=BE=12BC ,即可得出结论. 【详解】(Ⅰ)(1)∵AE 平分∠BAD ,∴∠BAE=∠FAE ,在△ABE 和△AFE 中, AB AF BAE FAE AE AE ⎪∠⎪⎩∠⎧⎨===,∴△ABE ≌△AFE (SAS ),(2)∵△ABE ≌△AFE ,∴∠AEB=∠AEF ,BE=EF ,∵E 为BC 的中点,∴BE=CE ,∴FE=CE ,∵∠AED=∠AEF+∠DEF=90°,∴∠AEB+∠DEC=90°,∴∠DEF=∠DEC ,在△DEF 和△DEC 中,FE CE DEF DEC DE DE ⎪∠⎪⎩∠⎧⎨===,∴△DEF ≌△DEC (SAS ),∴DF=DC ,∵AD=AF+DF ,∴AD=AB+CD ;(Ⅱ)(1)∵E 为BC 的中点,∴BE=CE=12BC , 同(Ⅰ)(1)得:△ABE ≌△AFE (SAS ),△DEG ≌△DEC (SAS ),∴BE=FE ,∠AEB=∠AEF ,CE=GE ,∠CED=∠GED ,∵BE=CE ,∴FE=GE ,∵∠AED=120°,∠AEB+∠CED=180°-120°=60°,∴∠AEF+∠GED=60°,∴∠GEF=60°,∴△EFG 是等边三角形,(2)∵△EFG 是等边三角形,∴GF=EF=BE=12BC , ∵AD=AF+FG+GD , ∴AD=AB+CD+12BC . 【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.4.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E与点A重合时,请说明线段BF DC=;②如图2,若点E不与点A重合,请说明BF DC AE=+;()2当点E在线段DA的延长线上()DE DB>时,用等式表示线段,,AE BF CD之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF=AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG ,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF=BG+GF=CD+AE(2)如图3,和(1)中②相同,过点A做AG∥EF交BC于点G,由(1)可知,AE=GF,DC=BG,BF CD BF BG GF AE∴+=+===-.故BF AE CD【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.5.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF ',探究AF 、BF '与AB 有何数量关系?并证明.②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.6.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点,且AE CD =,BD 与EC 交于点F ,则BFE ∠的度数是___________度;②如图②,D ,E 分别是边AC ,BA 延长线上的点,且AE CD =,BD 与EC 的延长线交于点F ,此时BFE ∠的度数是____________度;(2)如图③,在ABC ∆中,AC BC =,ACB ∠是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,且AE CD =,BD 与EC 的延长线交于点F ,若ACB α∠=,求BFE ∠的大小(用含法α的代数式表示).【答案】(1)60;(2)60;(3)BFE α∠=【解析】【分析】(1)①只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD ,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE ≌△CBD ,可得∠ACE=∠CBD=∠DCF ,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC ≌△CDB ,可得∠E=∠D ,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点O是AC边的垂直平分线与BC的交点,∴=,OC OA∴∠=∠=OAC ACOα=-,∴∠=∠︒180EAC DCBα=,AE CDAC BC=,AEC CDB∴∆≅∆,∴∠=∠,E D∴∠=∠+∠=∠+∠=∠=.BFE D DCF E ECA OACα【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.7.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.8.如图1,等腰△ABC中,AC=BC=42∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C 作CH ⊥BQ 于H ,∵△ABC 是等腰三角形,∠ACB=45˚,AO 是BC 边上的高,45DAC ∴∠=,ACD BCE ≌,45PBC DAC ∴∠=∠=,∴在Rt BHC 中,2242422CH BC =⨯=⨯=, 54PC CQ CH ===,,3PH QH ∴==,6.PQ ∴=()3OE BQ ⊥时,OE 取得最小值.最小值为:42 2.OE =-9.探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC 与∠A 、∠B 、∠C 之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ 放置在△ABC 上使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =40°,则∠ABX+∠ACX = °.②如图(3),DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =40°,∠DBE =130°,求∠DCE 的度数.【答案】(1)∠BDC =∠BAC+∠B+∠C ,理由见解析;(2)①50;②∠DCE =85°.【解析】【分析】(1)首先连接AD 并延长至点F ,然后根据外角的性质,即可判断出∠BDC =∠BAC+∠B+∠C ;(2)①由(1)可得∠A+∠ABX+∠ACX =∠X ,然后根据∠A =40°,∠X =90°,即可求解;(3)②由∠A =40°,∠DBE =130°,求出∠ADE+∠AEB 的值,然后根据∠DCE =∠A+∠ADC+∠AEC ,求出∠DCE 的度数即可.【详解】(1)如图,∠BDC =∠BAC+∠B+∠C ,理由是:过点A 、D 作射线AF ,∵∠FDC =∠DAC+∠C ,∠BDF =∠B+∠BAD ,∴∠FDC+∠BDF =∠DAC+∠BAD+∠C+∠B ,即∠BDC =∠BAC+∠B+∠C ;(2)①如图(2),∵∠X =90°,由(1)知:∠A+∠ABX+∠ACX =∠X =90°, ∵∠A =40°,∴∠ABX+∠ACX =50°,故答案为:50;②如图(3),∵∠A =40°,∠DBE =130°,∴∠ADE+∠AEB =130°﹣40°=90°,∵DC 平分∠ADB ,EC 平分∠AEB ,∴∠ADC =12∠ADB ,∠AEC =12∠AEB , ∴∠ADC+∠AEC =1(ADB AEB)2∠+∠=45°, ∴∠DCE =∠A+∠ADC+∠AEC =40°+45°=85°.【点睛】本题主要考查了三角形外角性质以及角平分线的定义的运用,熟知三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.10.已知:4590ABC A ACB ∆∠=∠=,,,点D 是AC 延长线上一点,且22AD =,,M 是线段CD 上一个动点,连接BM ,延长MB 到H ,使得HB MB =,以点B 为中心,将线段BH 逆时针旋转45,得到线段BQ ,连接AQ .(1)依题意补全图形;(2)求证:ABQ AMB ∠=∠;(3)点N 是射线AC 上一点,且点N 是点M 关于点D 的对称点,连接BN ,如果QA BN =, 求线段AB 的长.【答案】(1)见解析;(2)证明见解析;(3)22AB =【解析】【分析】(1)根据题意可以补全图形;(2)根据三角形外角的性质即可证明;(3)作QE ⊥AB ,根据AAS 证得QEB BCM ≅,根据HL 证得Rt QEA Rt BCN ≅,设法证得2AB CD =,设AC BC x ==,则2AB x =,22CD x =,结合已知22AD =+,构建方程即可求解. 【详解】(1)补全图形如下图所示:(2)解:∵∠ABH 是ABM 的一个外角,∴ ABH BAM AMB ∠=∠+∠∵ABH HBQ ABQ ∠=∠+∠ 又∵45HBQ BAM ∠=∠=︒∴ ABQ AMB ∠=∠(3)过Q 作QE ⊥AB ,垂足为E , 如下图:∵⊥QE AB∴90QEB BCM ∠=∠=︒, 在QEB 和BCM 中,QEB BCM QBE BMC QB BM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ QEB BCM ≅(AAS)∴EB CM =,QE BC =,在Rt QEA 和Rt BCN 中∵QE BC =,Q A BN = ∴Rt QEA Rt BCN ≅ (HL)∴AE CN CM MD DN ==++∵点N 是点M 关于点D 的对称点,∴MD DN =∴22AE CM MD EB MD =+=+∴ ()2222AB AE EB EB MD EB MD CD =+=+=+=设AC BC x ==,则2AB x =,2CD x =, 又∵22AD =,2 AD AC CD x x =+= ∴2222x x += 解得:2x =∴ 22AB =【点睛】本题主要考查了全等三角形的判定与性质、三角形外角定理、等腰直角三角形的判定与性质等知识点.熟悉全等三角形的判定方法以及正确作出辅助线、构建方程是解答的关键.二、八年级数学 轴对称解答题压轴题(难)11.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.12.如图,在ABC△中,已知AD是BC边上的中线,E是AD上一点,且BE AC=,延长BE交AC于点F,求证:AF EF=.【答案】证明见解析【解析】【分析】延长AD到点G,使得AD DG=,连接BG,结合D是BC的中点,易证△ADC和△GDB全等,利用全等三角形性质以及等量代换,得到△AEF中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD到点G,延长AD到点G,使得AD DG=,连接BG.∵AD是BC 边上的中线,∴DC DB=.在ADC和GDB△中,AD DGADC GDBDC DB=⎧⎪∠=∠⎨⎪=⎩(对顶角相等),∴ADC≌GDB△(SAS).∴CAD G∠=∠,BG AC=.又BE AC=,∴BE BG=.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.13.(1)已知△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数)(2)已知△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.【答案】(1)图形见解析(2) ∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角.【解析】试题分析:(1)已知角度,要分割成两个等腰三角形,可以运用直角三角形、等腰三角形性质结合三角形内角和定理,先计算出可能的角度,或者先从草图中确认可能的情况,及角度,然后画上.(2)在(1)的基础上,由“特殊”到“一般”,需要把直角三角形分成两个等腰三角形的各种情形列方程,可得出角与角之间的关系.试题解析:(1)如图①②(共有2种不同的分割法).(2)设∠ABC=y ,∠C =x ,过点B 的直线交边AC 于点D.在△DBC 中,①若∠C是顶角,如图,则∠CBD=∠CDB=90°-12x,∠A=180°-x-y.故∠ADB=180°-∠CDB=90°+12x>90°,此时只能有∠A=∠ABD,即180°-x-y=y-1902x⎛⎫-⎪⎝⎭,∴3x+4y=540°,∴∠ABC=135°-34∠C.②若∠C是底角,第一种情况:如图,当DB=DC时,∠DB C=x.在△ABD中,∠ADB=2x,∠ABD=y-x.若AB=AD,则2x=y-x,此时有y=3x,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况:如图,当BD =BC 时,∠BDC =x ,∠ADB =180°-x >90°,此时只能有AD =BD ,∴∠A =∠ABD =12∠BDC =12∠C <∠C ,这与题设∠C 是最小角矛盾. ∴当∠C 是底角时,BD =BC 不成立.综上所述,∠ABC 与∠C 之间的关系是∠ABC=135°-34∠C 或∠ABC=3∠C 或∠ABC=180°-3∠C 或∠ABC=90°,∠C 是小于45°的任意锐角. 点睛:本题考查了等腰三角形的性质;第(1)问是计算与作图相结合的探索.本问对学生运用作图工具的能力,以及运用直角三角形、等腰三角形性质等基础知识解决问题的能力都有较高的要求.第(2)问在第(1)问的基础上,由“特殊”到“一般”,“分类讨论”把直角三角形分成两个等腰三角形的各种情形并结合“方程思想”探究角与角之间的关系.本题不仅趣味性强,创造性强,而且渗透了由“特殊”到“一般”、“分类讨论”、“方程思想”、“转化思想”等数学思想,是一道不可多得的好题.14.如图,在等腰直角ABC △中,AB AC =,90BAC ∠=︒,点D 是ABC △ 内一点,连接 AD ,AE AD ⊥ 且 AE AD =,连接 BD 、CE 交于点 F .(1)如图 1,求BFC ∠的度数;(2)如图 2,连接ED 交 BC 于点 G ,连接 AG ,若 AG 平分BAD ∠,求证:2EAC EDF ∠=∠;(3)如图 3,在(2)的条件下,BF 交 AG 、AC 分别于点M 、N ,DH AM ⊥,连接 HN ,若ADN ∆的面积与DHN 的面积差为 6,6DF =,求四边形 AMFE 的面积.【答案】(1)∠BFC =90°;(2)见解析;(3)20AMFE S =四边形.【解析】【分析】(1)根据SAS 证明ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)根据题意先求出180ABG ADG ∠+∠=︒,在AB 上截取AK AD =,连接KG ,由AKG ADG ≌,180BKG AKG ∠+∠=︒,可证得BKG KBG ∠=∠,GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)根据题意和(2)中结论先证明AD AN AE ==,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,证明ANR AET ≌,所以AR AT =,然后根据等腰三角形的性质可得出DM FN =,过点H 作HP FM ⊥,垂足为P ,所以HP PM DP ==,设DP x =,DR y =,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,226DF x y =+=,求出x ,y ,不难得到AEF ANF ADM S S S ∆∆∆===4,然后可得20AMFE S =四边形.【详解】(1)因为ABC 是等腰直角三角形,所以AB AC =,90BAC DAE ∠=︒=∠, 所以BAD CAE ∠=∠,因为AD AE =,所以ABD ACE ≌,所以ABD ACF ∠=∠,所以90BFC BAC ∠=∠=︒.(2)因为AD AE =,90DAE ∠=︒,所以45AED ACG ∠=︒=∠,所以CAE CGE ∠=∠,由(1)知:BAD CAE ∠=∠,所以BAD CGD ∠=∠,设2BAD CGD α∠==∠, 所以1802BGD α∠=︒-,所以180BAD BGD ∠+∠=︒, 所以180ABG ADG ∠+∠=︒, 因为AG 平分BAD ∠,所以BAG DAG α∠=∠=, 在AB 上截取AK AD =,连接KG ,因为AG AG =,所以AKG ADG ≌,所以AKG ADG ∠=∠,DG KG =, 因为180BKG AKG ∠+∠=︒,所以BKG KBG ∠=∠,所以GB GK DG ==,所以DBG BDG EDF α∠=∠=∠=, 因为2CAE BAD α∠=∠=,所以2CAE EDF ∠=∠.(3)由(2)知:BAG DBG α∠=∠=,因为90BAC ∠=︒,45ABC ∠=︒,所以45ABN α∠=︒-,因为2BAD α∠=,所以45ADN α∠=︒+,因为902DAN α∠=︒-,所以45AND ADN α∠=︒+=∠,所以AD AN =,因为AD AE =,所以AE AN =,过 A 作BF 、CE 垂线,垂足分别为R 、T , 连接AF ,因为45ACE ABD α∠=∠=︒-,2CAE α∠=,所以45AET ANR α∠=︒+=∠, 因为AE AN =,所以ANR AET ≌,所以AR AT =,所以FA 平分BFT ∠, 所以45AFN AFE ∠=∠=︒,因为45AMN ∠=︒,所以AFM AMF ∠=∠,所以AF AM =,所以FR MR =,因为DR RN =,所以DM FN =,过点H 作HP FM ⊥,垂足为P , 因为45AMN ∠=︒,90DHM ∠=︒,所以45MHP DHP HDP ∠=∠=∠=︒,所以HP PM DP ==,设DP x =,所以2DM FN x ==,设DR y =,所以2DN y =,所以2MR x y =+,因为45MAR ∠=︒,所以2AR MR x y ==+,所以ADN DHN S S ∆∆-= 1122DN AR DN HP ⋅⋅-⋅ ()6y x y =+=,因为226DF x y =+=,所以3x y +=,所以2y =,1x =,因为AF AF =,ANF AEF ∠=∠,所以AEF ANF ≌,所以FN EF =,因为AR AT =,所以AEF ANF ADM S S S ∆∆∆==,因为142ADM S DM AR ∆=⋅⋅=, 所以20ADM ADN ANF AEF AMFE S S S S S ∆∆∆∆=+++=四边形.【点睛】本题是三角形综合题,考查了等腰三角形的性质、三角形内角和定理、全等三角形的判定和性质等知识点,解题的难点在于学会添加常用辅助线,构造三角形全等解决问题,属于中考压轴题.15.如图,△ABC 中,∠ABC=∠ACB ,点D 在BC 所在的直线上,点E 在射线AC 上,且AD=AE ,连接DE .⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE 的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD 的度数;⑶当点D 在直线BC 上(不与点B 、C 重合)运动时,试探究∠BAD 与∠CDE 的数量关系,并说明理由.【答案】(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D 在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解: (1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75°,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D在点B的左侧时,∠ADC=x°﹣α∴y xy xααβ=+⎧⎨=-+⎩①②-②得,2α﹣β=0,∴2α=β;②如图2,当点D在线段BC上时,∠ADC=y°+α∴+y xy xααβ=+⎧⎨=+⎩①②-①得,α=β﹣α,∴2α=β;③如图3,当点D在点C右侧时,∠ADC=y°﹣α∴180180y xy xαβα-++=⎧⎨++=⎩①②-①得,2α﹣β=0,∴2α=β.综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.16.问题探究:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.(1)证明:AD=BE;(2)求∠AEB的度数.问题变式:(3)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.(Ⅰ)请求出∠AEB的度数;(Ⅱ)判断线段CM、AE、BE之间的数量关系,并说明理由.【答案】(1)见详解;(2)60°;(3)(Ⅰ)90°;(Ⅱ)AE=BE+2CM,理由见详解.【解析】【分析】(1)由条件△ACB和△DCE均为等边三角形,易证△ACD≌△BCE,从而得到对应边相等,即AD=BE;(2)根据△ACD≌△BCE,可得∠ADC=∠BEC,由点A,D,E在同一直线上,可求出∠ADC=120°,从而可以求出∠AEB的度数;(3)(Ⅰ)首先根据△ACB和△DCE均为等腰直角三角形,可得AC=BC,CD=CE,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE;然后根据全等三角形的判定方法,判断出△ACD≌△BCE,即可判断出BE=AD,∠BEC=∠ADC,进而判断出∠AEB的度数为90°;(Ⅱ)根据DCE=90°,CD=CE,CM⊥DE,可得CM=DM=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM.【详解】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE.在△ACD和△BCE中,AC BCACD BCE CD CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE(SAS),∴AD=BE;(2)如图1,∵△ACD≌△BCE,∴∠ADC=∠BEC,∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC-∠CED=60°;(3)(Ⅰ)如图2,∵△ACB和△DCE均为等腰直角三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=90°,∠CDE=∠CED=45°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE,在△ACD和△BCE中,AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△BCE(SAS),∴BE=AD,∠BEC=∠ADC,∵点A,D,E在同一直线上,∴∠ADC=180-45=135°,∴∠BEC=135°,∴∠AEB=∠BEC-∠CED=135°-45°=90°,故答案为:90°;(Ⅱ)如图2,∵∠DCE=90°,CD=CE,CM⊥DE,∴CM=DM=EM,∴DE=DM+EM=2CM,∵△ACD≌△BCE(已证),∴BE=AD,∴AE=AD+DE=BE+2CM,故答案为:AE=BE+2CM.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定方法和性质,等边三角形的性质以及等腰直角三角形的性质的综合应用.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.17.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.。
北师大版数学八年级下册期末复习(六) 平行四边形
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
语文八年级下学期期末复习诗歌鉴赏综合试题附答案
语文八年级下学期期末复习诗歌鉴赏综合试题附答案一、八年级下册诗歌鉴赏1.阅读下面的诗歌,回答小题。
蒹葭蒹葭苍苍,白露为霜。
所谓伊人,在水一方。
溯洄从之,道阻且长。
溯游从之,宛在水中央。
蒹葭萋萋,白露未晞。
所谓伊人,在水之湄。
溯洄从之,道阻且跻。
溯游从之,宛在水中坻。
蒹葭采采,白露未已。
所谓伊人,在水之涘。
溯洄从之,道阻且右。
溯游从之,宛在水中沚。
(1)下列对这首诗的理解和分析,不正确的一项是()A.这首诗写一位恋者在深秋的清晨,于河畔徘徊往复,神魂颠倒,焦急地寻求他思念的恋人的故事。
B.“溯洄从之,道阻且长”说明了诗人追寻之路漫长曲折,充满艰难阻隔。
C.“宛在水中央”一句写出了伊人神韵飘逸,气质高雅的美好形象。
D.《蒹葭》这首诗,动静结合,描摹传神,诗中景物如蒹葭、霜露、秋水、小道、湄、涘等,都是动态描写。
(2)这首诗主要运用了什么艺术手法?请举例分析其表达效果。
2.阅读诗歌,回答问题。
过废园(清)李葂谁家亭院自成春,窗有莓苔案有尘。
偏是关心邻舍犬,隔墙犹吠折花人。
(1)首句的“________”和次句的“窗有霉苔”“________”等与标题中的“废”字呼应。
(2)诗歌的后两句“似是信手拈来,却尽得题外之意”。
请你根据自己的理解,谈谈后两句的“题外之意”。
3.拓展阅读静女其姝《诗经·国风》静女其姝①,俟我于城隅②。
爱③而不见,搔首踟蹰④。
静女其娈,贻我彤管⑤。
彤管有炜⑥,说怿⑦女美。
自牧归荑⑧,洵⑨美且异⑩。
匪女之为美,美人之贻。
________________【注释】①姝:美丽。
②城隅:城角。
③爱:同“薆”,隐藏。
④踟蹰:犹豫徘徊。
⑤彤管:红色的管子,或谓红色箫笛一类管乐器。
⑥炜:鲜明有光的样子。
⑦说怿(yuè yì):喜爱。
⑧牧:郊外田野。
归:赠送。
荑:初生的细嫩茅草。
⑨洵:诚然,确实。
⑩异:特殊。
(1)“搔首踟蹰”表现了“我”怎样的心情?(2)“说怿女美”是单纯表达男主人公对彤管的喜爱吗?4.阅读下面古诗,完成下面小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012八年级下期末复习综合测试题六第一部分听力部分(20分)Ⅰ: 听对话,选择图片。
(共5小题,计5分)1. What’s the weather like?2. Which watch are they talking about?3. What would Mike like to do?4. Which card is Jin Liang’s?5. How did Mr White go to see his aunt?Ⅱ: 听对话,根据问题选择最佳答案。
(共5小题,计5分)6. How often does Cheng watch TV?A.NeverB. Every dayC. Twice a week7. Judy is not feeling well. What should she do?A. Lie down and restB. Drink hot tea with honeyC. See a dentist8. When did Mr.Chen come to Ningbo?A. In 1998B. In 1999C. Two years9. What does Tom want to be?A. An engineerB. An athleteC. A soccer player10. Who is more athletic?A. TomB. SamC. We don’t knowⅢ: 听两段较长对话,回答问题。
(共5小题,计5分)听下面一段较长的对话,回答第11至12两小题。
11. How is Jenny going to Chicago?A. By taxiB. By planeC. By car12. Where is Jenny’s father going?A. To Chicago with JennyB. To the airport with Jenny’s motherC. To Boston with Mr Bell 听下面一段较长的对话,回答第13至第15三小题。
13. What are the speakers talking about?A. Their vacation plansB. A piano lessonC. Ann’s family14. When are William’s uncle’s family going to Qingdao?A. On June 15th .B. On June 25th.C. On June 23rd.15. Which is NOT right?A. William doesn’t know how long he is staying in Qingdao.B. Ann makes her plan to babysit and have piano lessons.C. William is going to Qingdao on June 25th.Ⅳ:短文理解:根据你所听到的短文内容选择正确的答案, (5分)16. Liu Ye’s home is about ______ kilometers from school.A. oneB. twoC. three17. What does he do before he goes to school?A. ExerciseB. Watch TVC. Read English18. He leaves for school at about ________A. 7:20B. 7:40 C 6:2019. How does he go to school?A. By carB. By bikeC. By train20. How long does it take Liu Ye to get from home to school?A. Ten minutesB. Fifteen minutesC. Twenty minutes第二部分笔试部分(90分)Ⅴ.单项选择:(15分)21. ---Why don’t go to the movie?---I hear it is ________.A. interestingB. boringC. funD. great22. ---When was Deng Yaping born? --- ______ Feb. 6.1973.A. InB. ForC. AtD. On23. How old _______ you when you started to learn the piano?A. areB. wereC. didD. was24.---______do you go to school? --I take a bus.A. HowB. WhereC. WhenD. What25. ---_____Kate go to the zoo with you last weekend? ---Yes. We had great fun there.A. DoesB. DoC. DidD. Was26---What did Tom _____ in the Gift Shop for his mother? --- Only some flowers.A. boughtB. buysC. buyD. buying27. ---________ the radio, please! Let’s listen t the weather report.---OK.A. Turn onB. Take outC. Look afterD. Mix up28. ---My mother is ill in bed. ---________.A. That’s goodB. I’m sorry to hear thatC.I hope soD. Fun29. ---I am going to spend time with my grandparents ______. ----Have fun!A. last day offB. yesterdayC. next day offD. two days ago30. Li Yundi ______ to learn the pinao when he was seven.A.startsB. beginsC. startD. started31. ---______does your brother go swimming? --- Sometimes.A. How oftenB. How longC. How manyD. How old32. Tom is _____creative than Tony.A. muchB. veryC. quiteD. more33. ---Did you go to the beach?---Yes, _______ it was terrible! I don’t want to go there again.A. butB. soC. orD. though34. ---Did you take part in the competition? ---Sure, and I______ all the players.A. wonB. joinedC. beatD. held35. ---Did you finish ______ your article?--- Yes, I spent about two hours ______ it.A. writing, to writeB. to write, to writeC. to write, writingD. writing, writingⅥ. 完形填空:(15分)Mr. Young never does any housework. So he can’t __36___ .When he gets home, the meals are always __37__ . He has some time to have a rest after dinner or to do some reading __ 38___ he goes to bed.But last week the man __39___ to look after himself. His wife’s mother was ill in __40__and she had to go to visit her. She bought some __41___for her husband before she left for the hospital. Mr Young __42___it up in a few days. And this evening, after he went back from his office, he couldn’t find ___43__ to eat in the rooms. He was very __44___at that time; he had to go to the nearest__45__ and told the waiter to bring some hot dogs to him. Soon he found they were __46__ and he became angry.“Waiter,” shouted Mr. Young. “There’s something wrong __ 47__ the hot dogs!”“I’m __48__ , sir,” said the waiter. “I’m only a __49__, you know. You’d better go to the veterinary station (兽医站) and __50__ it with them!”( )36. A. work B. drink C. cook D. wash( )37. A. ready(准备好) B. over C. cool D. dry( )38. A. after B. before C. because D. if( )39. A. is going B. has C. have D. had( )40. A. school B. hospital C. class D. office( )41. A. food B. paper C. fruit D. vegetables( )42. A. eat B. eats C. eating D. ate( )43. A. nothing B. something C. anything D. everything( )44. A. tired B. happy C. hungry D. thirsty( )45.A. W.C B. restaurant C. farm D. bookshop( )46.A. terrible B. good C. cheap D. delicious( )47.A. to B. at C. in D. with( )48.A. sorry B. afraid C. sure D. glad( )49.A. student B.teacher C. waiter D. doctor( )50.A. look at B. wait for C. write to D. talk aboutⅦ、阅读理解(共15小题,计25分)AThe Blacks are American tourists. They are visiting Beijing now. This is their first visit to China. they are going to stay in China for three months. They want to visit some big cities and villages. They hope to learn some Chinese, too.Mr. Black is a taxi driver. He likes to drive in Beijing. Mrs Black is a school teacher. She is visiting a city school today and a village school tomorrow. Their daughter is a middle school student. She is going to meet some Chinese students. They are taking a lot of pictures in China. When they return to America, they are going to show the pictures to their friends. They want the American people to know more about China.51. The Blacks are from________.A. ChinaB. EnglandC. CanadaD. the USA52. The Blacks are staying in________ now.A. EnglandB. BeijingC. ShanghaiD. New York53. Mr. Black is________.A. a teacherB. a doctorC. a taxi driverD. a worker54. There are______people in Mr. Black's family.A. twoB. threeC. fourD. five55. Why are they going to show the pictures to their friends when they go back to America?A. Because the pictures are very beautiful.B. Because they like China.C. Because they want the American people to know more about China.D. Because they want the American people to come to China.BMark Twain was an American writer.One day he went to a city by train.He wanted to see one of his friends there.He was a busy man.He usually forgot something.When he was in the train,the conductress asked him for his ticket.Mark Twain looked for the ticket here and there,but he could not find it.The conductress knew Mark Twain.She said,“Show me your ticket on your way ba ck.And if you can't find it,it doesn't matter.”“Oh,but it does.” said Mark Twain,“I must find the ticket.If I can't find it, how can I know where I'm going?”56.Mark Twain was __________ writer.A. a FrenchB. an AmericanC. an EnglishD. Japanese57. How did Mark Twain go to see his friend?A. by busB. by planeC. on footD. by train58. What happened when the conductress asked him for his ticket?A. Mark Twain got angryB. Mark Twain didn't hear what she saidC. Mark Twain said he had forgotten to buy oneD. Mark Twain couldn't find his ticket59.If Mark Twain didn't find his ticket,he would________.A. buy another oneB. get off the trainC. not know where he was goingD. be happy60. Which of the following is NOT right?A. Mark Twain didn’t buy a ticket before he got on the trainB. Mark Twain was forgetfulC. Mark Twain was a busy man.D. The conductress knew Mark Twain( C )Name: Alice Age: 35I like shopping, but shopping with young children is not a good thing. I have to look after them while I'm shopping. I go shopping with my husband only when I buy something for him. When I look at a cheap dress, he always says, "It's beautiful on you.”But when I have an expensive one in my hands, he always says, "I don't think it fits(适合)you well. "So I often go shopping with my friends. It's fun. I like shopping alone(单独), too.Name: Maria Age: 26I like shopping very much, but I never go shopping on weekends. There are too many people in shops. I don't like shopping with other people. It usually takes me much time to buy things because I never buy the first thing I see. I always look around other shops to find the same thing cheaper. I'm good at finding cheap things. I don't like buying food in small shops or street markets.I think food in supermarkets is fresh(新鲜)and cheap.61. Both Alice and Maria like shopping_______.A. with friendsB. aloneC. on weekendsD. on weekdays62. Alice's husband says, "I don't think it fits you well.”It means _______.A. The dress is not good for herB. An expensive dress is not always goodC. He wants his wife to buy a cheap dressD. Alice is very fat63. Why does it take Maria much time to buy things? Because ______.A. she likes going around.B. there are too many people.C. she wants to find the same thing cheaper.D. she likes buying expensive things.64. From what Maria says we know_______.A. many people like shopping on weekendsB. things are cheaper on weekendsC. people don't like shopping on weekendsD. she likes shopping on weekends65. Maria likes to buy food _______.A. in a small shopB. in a supermarketC. in streetsD. in street marketsIX.词汇运用(共15小题;每小题1分,满分15分)(A). 根据下列句子及所给汉语注释,写出空缺处各单词的正确形式,每空只写一词。