2019年中考数学专题复习-第四单元 三角形 第20课时 直角三角形与勾股定理课件

合集下载

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第20课时 直角三角形与勾股定理

2015年人教版中考数学总复习课件(考点聚焦+归类探究+回归教材):第20课时 直角三角形与勾股定理

考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
解 析 由勾股定理的逆定理,可知只要验证两小边的平方和 是否等于最长边的平方即可. A项,42+52=41≠62,不可以构成直角三角形,故本选项 错误. B项,1.52+22=6.25=2.52,可以构成直角三角形,故本 选项正确.
C项,22+32=13≠42,不可以构成直角三角形,故本选项 错误. D项,12+( 2 )2=3≠32,不可以构成直角三角形,故本选 项错误.
第20课时 直角三角形与勾股定理
第20课时┃ 直角三角形与勾股定理
考 点 聚 焦
考点1 直角三角形的概念、性质与判定 直角
斜边的一半 斜边的一半
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
考点2
勾股定理及逆定理
a2+b2=c2
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理 考点3 命题、定义、定理、公理
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
方法点析 判断三个正数能不能构成直角三角形的三边长的主要方法是 看两个较小的数的平方和是否等于最大数的平方.
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理
回 归 教 材
勾股定理与面积问题 教材母题——人教版八下P29T13 如图20-4,分别以等腰Rt△ACD的边AD,AC,CD为直径画 半圆.求证:所得两个月形图案AGCE和DHCF的面积之和(图中 阴影部分)等于Rt△ACD的面积.
考点聚焦
归类探究
回归教材
第20课时┃ 直角三角形与勾股定理

人教版数学九年级下册《 解直角三角形》PPT课件

人教版数学九年级下册《  解直角三角形》PPT课件

∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,

中考数学总复习 第5章 第20讲 直角三角形课件

中考数学总复习 第5章 第20讲 直角三角形课件
解:设BN=x,由折叠的性质可得DN=AN=9-x, ∵D是BC的中点,∴BD=3,在Rt△NBD中,
x2+32=(9-x)2,解得x=4,故线段BN的长为4
第十七页,共30页。
直角三角形两直角边长分别为a,b,斜边长为c. 1.勾股定理:直角三角形两直角边的平方和等于斜 边的平方,即有________. 2.勾股定理的逆定理:如果三角形一条(yī tiáo)边的 平方等于另外两条边的________(即满足式子 ________),那么这个三角形是直角三角形.
【解析】(1)过点C作AB的垂线,交AB的延长线于E点,利用勾股定理求 得AC的长即可;(2)分别求得乘车时间,然后比较(bǐjiào)即可得到答案.
解:(1)过点 C 作 AB 的垂线,交 AB 的延长线于 E 点, ∵∠ABC=120°,BC=20,∴BE=10,CE=10 3,在△ACE 中,∵AC2=8100+300,∴AC=20 21=20×4.6=92(km) (2)乘客车需时间 t1=8600=131(小时);乘列车需时间 t2=19820+ 2400=1910(小时),∴选择城际列车
因此,当知道直角三角形的两边时,可以求出第 三边;当只知道直角三角形的一边时,列出关系式, 转化(zhuǎnhuà)为方程解决. 求解时应注意辨别哪一 边是斜边.
第二十一页,共30页。
勾股定理(ɡōu ɡǔ dìnɡ lǐ)及其逆定理的实际
1.(2014·黄石)小明听说“武黄城际列车”已经开通, 便设计了如下问题:如图,以往从黄石A坐客车到 武昌客运站B,现在(xiànzài)可以在A坐城际列车到 武汉青山站C,再从青山站C坐市内公共汽车到武昌 客运站B.设AB=80 km,BC=20 km,∠ABC= 120°.请你帮助小明解决以下问题:

第20讲圆与相似三角形的结合复习课件(共38张PPT)

第20讲圆与相似三角形的结合复习课件(共38张PPT)
在 Rt△ADC 中,∵∠ACD=30°,∴AD=1,CD= 3, S 阴影=S 梯形 OCDA-S 扇形 AOC=12(1+2)× 3-60·3π60·22= 323-2π3 .
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
圆与类似三角形的综合运用 (1)证明圆的切线的常用辅助线是作过切点的半径,证明 直线与这条半径垂直; (2)运用切线的性质时,常连结切点和圆心.
CD=235.
又∵CF=FD,∴CF=12CD=12×235=265,
∴EF=CF-CE=265-3=76,
7
∴在 Rt△AFE 中,sin∠EAF=EAFE=63=178.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
2.如图6-20-4,在△ABC中,BA= BC,以AB为直径作半圆O,交AC于点D.连 结DB,过点D作DE⊥BC,垂足为点E.
∴AD=3,BD=
3.∴B2E=
33,∴BE=23
3 .
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
(3)如答图②,当 E 与 A 重合时,∵AB 是直径,AD⊥CD, ∴∠ADB=∠ADC=90°,∴C,D,B 共线.
∵AC⊥AB,∴在 Rt△ABC 中,AB=2 3,AC=2, ∴tan∠ABC=AACB= 33,∴∠ABC=30°, ∴α=∠DAB=90°-∠ABC=60°, 当E′在BA的延长线上时,可得∠D′AB>∠DAB=60°, ∵0°<α<90°,∴α的取值范围是60°<α<90°.
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
判定圆中的类似三角形 例1 如图6-20-1,AC是⊙O的直径, 弦BD交AC于点E. (1)求证:△ADE∽△BCE; (2)如果AD2=AE•AC,求证:CD=CB.

2019年中考数学总复习《三角形内角和定理》专题复习练习及答案

2019年中考数学总复习《三角形内角和定理》专题复习练习及答案

2019 初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠13. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF =____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC中,∠A∶∠B=2∶1,∠C=60°,则∠A=____°.17. 如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD11. 3512. 60°13. 4514. 30°15. 360°16. 8017. 解:在△ABN中,∠A+∠B+∠1=180°,在△CDP中,∠C+∠D+∠3=180°,在△EFM中,∠E +∠F+∠2=180°,∴∠A+∠B+∠1+∠C+∠D+∠E+∠F+∠3+∠2=540°,在△MNP中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD=90°-∠FED=90°-(∠B+∠BAE)=90°-∠B-12∠BAC=90°-∠B-12(180°-∠B-∠C)=90°-∠B-90°+12∠B+12∠C=12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD=12(∠C-∠B)20. 证明:∵∠BAC>∠ACE,∠DCE>∠B,又∠ACE=∠DCE,∴∠BAC>∠B21. 证明:∠BOC=180°-(∠OBC+∠OCB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A2019-2020学年数学中考模拟试卷一、选择题1.定义符号min{a ,b}的含义为:当a≥b 时min{a ,b}=b ;当a <b 时min{a ,b}=a .如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x 2+1,﹣x}的最大值是( )C.1D.02.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272-3.如图,两个小正方形的边长都是1,以A 为圆心,AD 为半径作弧交BC 于点G ,则图中阴影部分的面积为( )A. B. C. D.4.下列各因式分解正确的是( ) A .x 2+2x ﹣1=(x ﹣1)2 B .﹣x 2+(﹣2)2=(x ﹣2)(x+2) C .x 3﹣4x =x (x+2)(x ﹣2)D .(x+1)2=x 2+2x+15.合肥市教育教学研究室为了了解该市所有毕业班学生参加2019年安徽省中考一模考试的数学成绩情况(满分:150分,等次:A 等,130分:150分;B 等,110分:129分;C 等,90分:109分;D 等,89分及以下),从该市所有参考学生中随机抽取部分学生进行调查,并根据调查结果制作了如下的统计图表(部分信息未给出):2019年合肥市一模数学成绩频数分布表2019年合肥市一模教学成绩频数分布直方图根据图表中的信息,下列说法不正确的是( ) A .这次抽查了20名学生参加一模考试的数学成绩 B .这次一模考试中,考试数学成绩为B 等次的频率为0.4C .根据频数分布直方图制作的扇形统计图中等次C 所占的圆心角为105︒D .若全市有20000名学生参加中考一模考试,则估计数学成绩达到B 等次及以上的人数有12000人 6.把一副三角板按如图所示摆放,使FD BC ∕∕,点E 恰好落在CB 的延长线上,则BDE ∠的大小为( )A .10︒B .15︒C .25︒D .30°7.已知一次函数y =kx ﹣1和反比例函数y =kx,则这两个函数在同一平面直角坐标系中的图象可能是( )A .B .C .D .8.等腰三角形的周长为16,其一边长为6,那么它的底边长为( ) A.4或6B.4C.6D.59.甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于( )A .第三局B .第四局C .第五局D .第六局10.如图,下图经过折叠不能围成一个正方体是( )A .B .C .D .11.如图,在△ABC 中,∠B =50°,点D 为边AB 的中点,点E 在边AC 上,将△ADE 沿DE 折叠,使得点A 恰好落在BC 的延长线上的点F 处,DF 与AC 交于点O ,连结CD ,则下列结论一定正确的是( )A .CE =EFB .∠BDF =90°C .△EOD 和△COF 的面积相等D .∠BDC =∠CEF+∠A12.若一个多边形的内角和等于1620°,则这个多边形的边数为( ) A .9 B .10C .11D .12二、填空题13.把多项式33327a b ab 分解因式的结果是_____.14.如图,在平面直角坐标系中,点A (0,3),将△AOB 沿x 轴向右平移得到△A'O'B',与点A 对应的点A'恰好在直线y =32x 上,则BB'=_____.15.已知x 满足(x+3)3=64,则x 等于_____. 16.写出一个比5大且比6小的无理数________.17.若直线232y x b =-++经过第一、二、四象限,则b 的取值范围是_____.18.小明有5根小棒,长度分别为3cm ,4cm ,5cm ,6cm ,7cm ,现从中任选3根小棒,怡好能搭成三角形的概率是______ 三、解答题19.如图,AB 为⊙O 的直径,F 为弦AC 的中点,连接OF 并延长交弧AC 于点D ,过点D 作⊙O 的切线,交BA 的延长线于点E . (1)求证:AC ∥DE ; (2)连接AD 、CD 、OC .填空①当∠OAC 的度数为 时,四边形AOCD 为菱形; ②当OA =AE =2时,四边形ACDE 的面积为 .20.计算或化简:(1(12)﹣1π)0. (2)(x ﹣2)2﹣x (x ﹣3).21.如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC . (1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.22.如图,二次函数图象的顶点为(﹣1,1),且与反比例函数的图象交于点A (﹣3,﹣3) (1)求二次函数与反比例函数的解析式;(2)判断原点(0,0)是否在二次函数的图象上,并说明理由;(3)根据图象直接写出二次函数的值小于反比例函数的值时自变量x 的取值范围.23.计算:14011(2018)|12sin 602π-︒⎛⎫-+---+- ⎪⎝⎭24.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为0.9.(1)若引种树苗A 、B 、C 各10棵. ①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A 的概率: (2)该农户决定引种B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?25.如图,在△ABC 中,∠C=90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E. F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=2,BF=2,求⊙O 的半径.【参考答案】*** 一、选择题二、填空题13.3ab (a+3b )(a ﹣3b ). 14.2 15.16 17.23b >-; 18.35.三、解答题19.(1)证明见解析;(2)①30°;②【解析】【分析】(1)由垂径定理,切线的性质可得FO⊥AC,OD⊥DE,可得AC∥DE;(2)①连接CD,AD,OC,由题意可证△ADO是等边三角形,由等边三角形的性质可得DF=OF,AF=FC,且AC⊥OD,可证四边形AOCD为菱形;②由题意可证△AFO∽△ODE,可得21222AO OF AFOE OD DE====+,即OD=2OF,DE=2AF=AC,可证四边形ACDE是平行四边形,由勾股定理可求DE的长,即可求四边形ACDE的面积.【详解】(1)∵F为弦AC的中点,∴AF=CF,且OF过圆心O∴FO⊥AC,∵DE是⊙O切线∴OD⊥DE∴DE∥AC(2)①当∠OAC=30°时,四边形AOCD是菱形,理由如下:如图,连接CD,AD,OC,∵∠OAC=30°,OF⊥AC∴∠AOF=60°∵AO=DO,∠AOF=60°∴△ADO是等边三角形又∵AF⊥DO∴DF=FO,且AF=CF,∴四边形AOCD是平行四边形又∵AO=CO∴四边形AOCD是菱形②如图,连接CD,∴△AFO∽△EDO∴21222 AO OF AFOE OD DE====+∴OD=2OF,DE=2AF∵AC=2AF∴DE=AC,且DE∥AC∴四边形ACDE是平行四边形∵OA=AE=OD=2∴OF=DF=1,OE=4∵在Rt△ODE中,DE=∴S四边形ACDE=DE×DF1==故答案为:【点睛】本题是圆的综合题,考查了圆的有关知识,菱形的判定,等边三角形的判定和性质,平行四边形的判定和性质,相似三角形的判定和性质,勾股定理,熟练运用这些性质进行推理是本题的关键.20.(1)3;(2)﹣x+4.【解析】【分析】(1)先化简二次根式、负整数指数幂、代入三角函数值及零指数幂,再先后计算乘法和加减运算即可;(2)先计算完全平方式和单项式乘多项式的积,再合并同类项即可得.【详解】(1)原式=+2﹣4×2+1=+2﹣=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.【点睛】本题主要考查实数和整式的混合运算,解题的关键是熟练掌握实数和整式的混合运算顺序和运算法则.21.(1)详见解析;(2)26.【解析】【分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB =∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)y=﹣(x+1)2+1,9yx=;(2)原点(0,0)是在二次函数的图象上;(3)当x<﹣3或x>0时二次函数的值小于反比例函数的值.【解析】(1)设二次函数为y=a(x+1)2+1,设反比例函数的解析式为y=kx,把A点的坐标代入,关键待定系数法即可求得;(2)把x=0代入求得的二次函数的解析式即可判断;(3)由两函数的图象直接写出x的取值范围即可.【详解】解:(1)设二次函数为y=a(x+1)2+1,∵经过点A(﹣3,﹣3)∴﹣3=4a+1,∴a=﹣1,∴二次函数的解析式为y=﹣(x+1)2+1,设反比例函数的解析式为y=kx,∵二次函数的图象与反比例函数的图象交于点A(﹣3,﹣3)∴k=﹣3×(﹣3)=9,∴反比例函数的解析式为y=9x;(2)把x=0代入y=﹣(x+1)2+1,得y=﹣1+1=0,∴原点(0,0)是在二次函数的图象上;(3)由图象可知,二次函数与反比例函数图象的交点为A(﹣3,﹣3),当x<﹣3或x>0时二次函数的值小于反比例函数的值.【点睛】本题是一道函数的综合试题,考查了待定系数法求反比例函数的解析式和求二次函数的解析式,由图象特征确定自变量的取值范围.23.1【解析】【分析】直接利用零指数幂、负指数幂的性质以及绝对值的性质和特殊角的三角函数值分别化简得出答案.【详解】解:原式=11(2)122-+---⨯=﹣﹣1=1.【点睛】此题主要考查了实数运算,正确应用整数指数幂和绝对值的性质化简各数是解题关键.24.(1)①自然成活的有26棵;②16;(2)至少引种B种树苗700棵.【解析】(1)①根据成活率求得答案即可;②列出树状图,利用概率公式求解即可;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x,未能成活棵数为0.04x,利用农户为了获利不低于20万元列出不等式求解即可.【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵),答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A的有2种,∴P=16;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x,未能成活棵数为0.04 x 300(0.96 x)﹣50(0.04x)≥200000x≥100000143=69943143∴x=700棵答:该户至少引种B种树苗700棵.【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大.25.(1)相切,理由见解析;(2)2.【解析】【分析】(1)求出OD//AC,得到OD⊥BC,根据切线的判定得出即可;(2)根据勾股定理得出方程,求出方程的解即可.【详解】(1)直线BC与⊙O的位置关系是相切,理由是:连接OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,即OD⊥BC,∵OD为半径,∴直线BC与⊙O的位置关系是相切;(2)设⊙O的半径为R,则OD=OF=R,在Rt△BDO中,由勾股定理得:OB=BD+OD,即(R+2) =(2)+R,解得:R=2,即⊙O的半径是2.【点睛】此题考查切线的判定,勾股定理,解题关键在于求出OD⊥BC.2019-2020学年数学中考模拟试卷一、选择题1.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.122.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为()A.1.361×104B.1.361×105C.1.361×106D.1.361×1073.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°4.若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n.则11m n+的值为()A.35B.35-C.53D.53-5.如图,在△ABC中,BD、CE是高,点G、F分别是BC、DE的中点,则下列结论中错误的是()A.GE=GD B.GF⊥DE C.∠DGE=60°D.GF平分∠DGE6.某同学做了四道题:①3m+4n=7mn;②(﹣2a2)3=﹣8a6;③6x6÷2x2=3x3;④y3•xy2=xy5,其中正确的题号是()A.②④B.①③C.①②D.③④7.如图,AD是△ABC外接圆的直径.若∠B=64°,则∠DAC等于()8.下列四个数中,最大的数是( )A .-5BC .0D .π91导致乘积减小最大?( )A B C D10.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32π C.6﹣ππ11.为了美化校园,学校决定利用现有的2660盆甲种花卉和3000盆乙种花卉搭配A 、B 两种园艺造型共50个摆放在校园内,已知搭配一个A 种造型需甲种花卉70盆,乙种花卉30盆,搭配一个B 种造型需甲种花卉40盆,乙种花卉80盆.则符合要求的搭配方案有几种( ) A .2B .3C .4D .512.下列计算结果为a 2的是( ) A .a 8÷a 4(a≠0) B .a 2•a C .﹣3a 2+(﹣2a )2D .a 4﹣a 2二、填空题13.已知关于x 的一元二次方程x 2﹣x+m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是_____. 14.如图,在.△ABC 中,各边的长度如图所示,∠C=90°,AD 平分∠CAB 交BC 于点D ,则点D 到AB 的距离是__.15.如图,AD 是△ABC 的中线,点E 在边AB 上,且DE ⊥AD ,将△BDE 绕着点D 旋转,使得点B 与点C 重合,点E 落在点F 处,联结AF 交BC 于点G ,如果52AE BE =,那么GFAB的值等于______.16.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,点D 是边AB 上的动点,将△ACD 沿CD 所在的直线折叠至△CDA 的位置,CA'交AB 于点E .若△A'ED 为直角三角形,则AD 的长为_____.17.中国高铁被誉为“新四大发明”,截止2018年底中国高速铁路营业里程已达29000公里,请将29000用科学记数法表示为_____.18.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法: ①两人相遇前,甲的速度小于乙的速度; ②出发后1小时,两人行程均为10km ; ③出发后1.5小时,甲的行程比乙多3km ; ④甲比乙先到达终点. 其中正确的有_____个.三、解答题19.如图,在平面直角坐标系中,直线l :y =﹣12与y 轴、x 轴分别交于点E 、F ,边长为2的等边△ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点重合时,解答下列问题: (1)写出点E 、F 坐标;(2)求出点A 1的坐标,并判断点A 1是否在直线l 上;(3)如果点A 1在直线l 上,此问不作答,如果点A 1不在直线l 上,继续平移△ABC ,直到点A 的对应点A 2落在直线l 上这时点A 2横坐标为多少?20.现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩.(1)用x 的式子分别表示y、z ;(2)问如何安排劳力与养殖亩数收益最大?21.先化简,再求值:22211211x x x x x x ⎛⎫-÷-+ ⎪-+-⎝⎭,其中1x =.221tan 602|︒-+-.23.有四张完全一样的卡片,在正面分別写上2、3、4、6四个数字后洗匀,反面朝上放在桌上.小明从中先后任意抽取两张卡片,然后把先抽到的卡片上的数字作为十位数,后抽到的卡片上的数字作为个位数,组成一个两位数.求这个两位数恰好能被4整除的概率.(请用“画树状图”或“列表”等方法写出分析过程)24.红星公司生产的某种时令商品每件成本为20元,经过市场调查发现,这种商品在未来40天内的日销售量y 1(件)与时间t (天)的关系如图所示;未来40天内,每天的价格y 2(元/件)与时间t (天)的函数关系式为:y 2=1t 25(1t 20)41t 40(21t 40)2⎧+⎪⎪⎨⎪-+⎪⎩剟剟(t 为整数);(1)求日销售量y 1(件)与时间t (天)的函数关系式;(2)请预测未来40天中哪一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定销售一件商品就捐赠a 元(a 为定值)利润给希望工程.公司通过销售记录发现,前20天中,第18天的时候,扣除捐赠后日销售利润为这20天中的最大值,求a 的值.25.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:“中位数”,“众数”或“平均数”)(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【参考答案】*** 一、选择题二、填空题 13.m <54. 14.3 15.106316.3 2 17.18.1 三、解答题19.(1) 点E 的坐标为:(0,,点F 的坐标为:(0),(2) 点A 1的坐标为:(1,点A 1不在直线l 上;(3)点A 2横坐标为 【解析】 【分析】(1)把x =0,y =0分别代入y =﹣12x +E,F 的坐标(2)先根据点A 1的横坐标为1,纵坐标为:2sin60°=2×求出A1的坐标,然后A1的坐标y=﹣12x +(3)根据前面两题把把y y =﹣12x + 【详解】解:(1)把x =0代入y =﹣12x +得:y =,把y =0代入﹣12x +﹣12x +0,解得:x =,即点F 的坐标为:(0),(2)根据题意得:点A 1的横坐标为1,即点A 1的坐标为:(1,把x =1代入y =﹣12x +y =12即点A 1不在直线l 上,(3)把y 代入y =﹣12x +﹣12x +,解得:x =,这时点A 2横坐标为【点睛】此题为一次函数的综合题,要运用到三角形函数来解答20.(1)y =140﹣2x ,z =x ﹣40.(2)对虾400亩,大黄鱼600亩,蛏子0亩;养植对虾的劳动力是12人,养殖大黄鱼的劳动力是12人,养殖蛏子的劳动力是0人.【解析】【分析】(1)本题考查对方程组的应用能力,要注意由题中提炼出的两个等量关系,即所需劳动力的总和是24、所养殖的总亩数是1000,据此可列方程组解应用题;(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T=2x+8y+1.6z ,再根据实际问题,求出定义域,然后,由函数的单调性来求值即可.【详解】解:(1)根据题意,得1010101000(1)0.30.20.124(2)x y z x y z ++=⎧⎨++=⎩解得,140240y x z x =-⎧⎨=-⎩∴y =140﹣2x ,z =x ﹣40.(2)设对虾10x 亩,大黄鱼10y 亩,蛏子10z 亩的收益为T ,则T =2x+8y+1.6z ①由(1)解得,140240y x z x =-⎧⎨=-⎩将其代入①并整理,得T =﹣12.4x+1056,∵0<10x≤1000,即0<x≤100,又∵01000100y z <⎧⎨<⎩……即01402100040100x x <-⎧⎨<-⎩…… 解得40≤x≤70,∵函数T =﹣12.4x+1056在[40,70]上是减函数,∴当x =40时,T 最大,∴y =140﹣2×40=60,z =40﹣40=0,10x =400,10y =600,10z =0,21.2. 【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2221(1)121x x x x x x -÷-+--+, =2221(1)(1)(1)1x x x x x x ----÷-- =222211(1)21x x x x x x --⋅--+- =211121x x x -⋅-- =11x -,当1x === 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.12【解析】【分析】根据负整数指数幂和12 【详解】原式=+12 =12. 【点睛】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算.也考查了负整数指数幂以及特殊角的三角函数值.23.这个两位数恰好能被4整除的概率为13. 【解析】【分析】将可能出现的情况全部列举出来,一共12种可能,其中符合条件的只有4种可能即可求解【详解】画树状图如下:由树状图知共有12种等可能结果,其中这个两位数恰好能被4整除的有4种结果,所以这个两位数恰好能被4整除的概率为41123=. 【点睛】此题考查了列表法或树状图法求概率24.(1)y =﹣2t+96;(2)第14天时,销售利润最大,为578元;(3)a =2.【解析】【分析】(1)从表格可看出每天比前一天少销售2件,所以判断为一次函数关系式;(2)日利润=日销售量×每件利润,据此分别表示前20天和后20天的日利润,根据函数性质求最大值后比较得结论;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数性质求a 的取值.【详解】解:(1)设一次函数为y =kt+b ,将(30,36)和(10,76)代入一次函数y =kt+b 中,有36307610k b k b=+⎧⎨=+⎩ 解得:.296k b =-⎧⎨=⎩故所求函数解析式为y =﹣2t+96;(2)设前20天日销售利润为W1元,后20天日销售利润为W2元.由W1=(﹣2t+96)(14t+25﹣20)=(﹣2t+96)(14t+5)=﹣12t2+14t+480=﹣12(t﹣14)2+578,∵1≤t≤20,∴当t=14时,W1有最大值578(元).由W2=(﹣2t+96)(﹣12t+40﹣20)=(﹣2t+96)(﹣12t+20)=t2﹣88t+1920=(t﹣44)2﹣16.∵21≤t≤40,此函数对称轴是t=44,∴函数W2在21≤t≤40上,在对称轴左侧,随t的增大而减小.∴当t=21时,W2有最大值为(21﹣44)2﹣16=529﹣16=513(元).∵578>513,故第14天时,销售利润最大,为578元;(3)由题意得:W=(﹣2t+96)(14t+25﹣20﹣a)(1≤t≤20),配方得:W=﹣12[t﹣2(a+7)]2+2(a﹣17)2(1≤t≤20)∵a为定值,而t=18时,W最大,∴2(a+7)=18,解得:a=2【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.25.(1)10、10、11;(2)中位数和众数;(3)2200次【解析】【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是10102+=10(次),众数为10次,平均数为015110415320110⨯+⨯+⨯+⨯+⨯=11(次),故答案为:10、10、11;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为200×11=2200次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.。

中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用

中考数学总复习知识点专题讲解8---勾股定理在动点直角三角形存在性问题中的应用

中考数学专题08 勾股定理在动动点题是近年来中考的形存在性问题是这类题目考查数学思想方法,尤其对勾股定基本思路是什么,解答的难点直角三角形是一类特殊三角形在求线段的长度等方面有广泛需掌握以下几个基本图形需掌握以下几个基本图形:题1. 如图1-1,在Rt △ABC 射线BC 以1m /s 的速度移动(1)求BC 边的长;(2)当△ABP 为直角三角形时【答案】(1)4m ;(2)见解析1考数学总复习知识点专题讲解理在动点直角三角形存在性问题中考的一个热点问题也是难点问题,而因动点产目考查的重点. 解这类题目要掌握转化、分类讨论勾股定理的运用炉火纯青,才能准确、快速的解答的难点在哪?我们将通过以下几个例题加以说明三角形,有着丰富的性质,角的关系、边的关系有广泛的应用.:BC 中,∠C =90°,AB =5m ,AC =3m ,动点移动,设运动的时间为t s .图1-1形时,求t 的值.见解析【解析】解:(1)∵∠C =90°在Rt △ABC 中,由勾股定理得4BC ==∴BC =4m .(2)由题意可知,∠ABP ≠90①当∠APB =90°时,此时P由(1)知BP =4,所以t =4②当∠BAP =90°时,如图1-由题意得:BP =t ,CP =t -4在Rt △ABP 中,由勾股定理得AP 2=BP 2-AB 2在Rt △ACP 中,由勾股定理得AP 2=AC 2+CP 2所以BP 2-AB 2=AC 2+CP 2即:()2222534t t −=+−解得:254t = 综上所述,当△ABP 为直角三【点睛】直角三角形存在性问和∠BAP 为直角时,进行分类题2. 如图2-1,在四边形ABC 若点P 是线段AD 上一动点【答案】见解析.【解析】解:∵∠D =90°,∴∠A =90°过B 作BE ⊥CD 于E ,如图则四边形ABED 为矩形所以BE =AD =7,DE =AB =3在Rt △BCE 中,由勾股定理得直角三角形时,t =4或254t =. 在性问题,分类讨论的出发角度是直角的位置行分类讨论,准确画出图形,根据勾股定理列方ABCD 中,∠D =90°,AB ∥DC ,AB =3,动点,当AP 为何值时,△BCP 是直角三角形图2-1AB ∥DC ,如图2-2所示.,CE =CD -DE =1图2-2定理得:BA D C E 位置,此题分∠APB 理列方程求解. DC =4,AD =7. 角形?BC2=CE2+BE2=50.因为∠C<90°,P在线段AD两种情况讨论:①当∠BPC=90°时,如图2-设AP=x,则PD=7-x在Rt△ABP中,由勾股定理得BP2=AP2+AB2=x2+9.在Rt△DCP中,由勾股定理得PC2=PD2+CD2= (7-x) 2+16.在Rt△BCP中,由勾股定理得PC2=PB2+BC2=x2+9+50.(7∴-x)2+16= x2+9+50解得:37 x=.即AP=3 7 .②当∠PBC=90°时,如图2-设AP =x ,则PD =7-x在Rt △ABP 中,由勾股定理得BP 2=AP 2+AB 2=x 2+9.在Rt △DCP 中,由勾股定理得PC 2=PD 2+CD 2= (7-x ) 2+16. 在Rt △BCP 中,由勾股定理得PC 2= BC 2-PB 2 = 50-x 2-9.(7∴-x )2+16=50- x 2-9解得:1234x x ==,.即AP =3或4.综上所述,当AP 为37或3【点睛】直角三角形的存在性位置进行讨论,解题方法除了以图2-4为例,是典型的“一线易知△ABP ∽△DPC ,所以即374x x =−,解得13x =因此在日常学习过程中,我们 图2-4定理得:定理得:定理得:或4时,△BCP 是直角三角形. 存在性问题用到的数学方法是分类讨论,针对直法除了利用勾股定理外,也可用相似三角形、一线三直角”模型.所以AB AP DP CD = 24x =,. 我们要针对每一个题多思考,有没有多种求解BA D C P针对直角所在不同的、三角函数等求解. 种求解方法,这样对拓展眼界有很大的好处.题3. 如图3-1,在△ABC 中向B 以1 cm /s 的速度运动,A ,B 同时出发.(1)经过多少秒,△BMN 为等边(2)经过多少秒,△BMN 为直角【答案】见解析.【解析】解:(1)设经过则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10.所以经过10 s ,△BMN 为等边(2)设经过x 秒,△BMN 根据题意分两种情况讨论:中,AB =30 cm ,BC =35 cm ,∠B =60°,,动点N 自B 向C 以2 cm /s 的速度运动. 若点为等边三角形; 为直角三角形.图3-1x 秒,△BMN 为等边三角形,为等边三角形.MN 是直角三角形.:图3-2①当∠NMB =90°时,如图3∵∠B =60°,∴∠BNM =30°,∴BN =2BM ,即2x =2 (30-x ),解得x =15;②当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°,∴BM =2BN ,即30-x =解得x =6,即经过6秒或15秒,△【点睛】(1)设时间为x ,用解之可得;(2)分①∠BNM 可得;②∠BMN =90°时,题4. 已知在Rt △ABC 中,∠(1)如图4-1,点O 是AB 的中点(2)如图4-2,若∠A =30°,AB3-2所示.图3-32×2x ,BMN 是直角三角形.x 表示出AM 、BN 、BM ,根据等边三角形的判=90°时,即可知∠BMN =30°,依据2BN =∠BNM =30°,依据2BM =BNERROR: undefinedOFFENDING COMMAND: F4S63YFF STACK:。

第一章 解直角三角形复习 课件 浙教版数学九年级下册

第1章复习课
A
B
C
D
解直角三角形
义务教育课程标准实验教科书 浙教版《数学》九年级下册
知识回顾
解直角三角形的依据
1、三边之间的关系: a2+b2=c2(勾股定理);
2、锐角之间的关系:∠ A+ ∠ B= 90º

3、边角之间的关系(锐角三角函数):
sinA=
a c
c a
cosA=
b c

bC
tanA=
A,10 Л C,12.5 Л
B, 25 Л D, 100 Л
QR P
6, 池塘里一枝荷花高出水面20厘米,一阵劲风吹来,荷花从 根部向一边倾斜,顶端与水面平齐,如图,已知荷花被风吹动的 水平距离是60厘米,求池塘中水的深度。
(80厘米)
种树,要求株距(相邻两树间的水平距离)是6m,
斜坡上相邻两树间的坡面距离为
3√5 m.
A
i=1︰2
C
2、如图为了测量小河的宽度,在河
的岸边选择B、C两点,在对岸选择
A
一个目标点A,测得∠BAC=75°,
∠ACB=45°;BC=48m,
求河宽 72-24√3 米
BD
B
C
做一做
3,由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴侵
袭。近日,A城气象局测得沙尘暴中心在A城的正南方向240km的B处,以 每小时12km的速度向北偏东30°方向移动,距沙尘暴中心150km的范围为 受影响区域。
(1)A城是否受到这次沙尘暴的影响,为什么?
(2)若A城受这次沙尘暴的影响,那么遭受影响的时间有多长?
解(2):设点E、F是以A为圆心,150km 为半径的圆与BM的交点,由题意得:

《解直角三角形》-完整版PPT课件


整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm

苏科版八上勾股定理复习课课件(上课用)


蛋糕 B
C
周长的一半 B 6
8 A
8 A
例3,如图是一个三级台阶,它的每一级的长宽和高分别为 20dm、3dm、2dm,A和B是这个台阶两个相对的端点, A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿 着台阶面爬到B点最短路程是多少?

A
20
20
2 3
C 3 2 3 2
B
3
∵ AB2=AC2+BC2=625, ∴ AB=25.
观察下列图形,正方形1的边长为7,则 正方形2、3、4、5的面积之和为多少? 规律:
2 3 4 5
S2+S3+S4+S5= S1
1
如图,是一种“羊头”形图案,其作法是从 正方形1开始,以它的一边为斜边,向外作 等腰三角形,然后再以其直角边为边,分别 向外作正方形2和2′,……依此类推,若 正方形1的边长为64,则正方形7的边长 为 8 。
a2+b2=c2,那么这个三角形是直角三角形
符号语言:∵a2+b2=c2
∴∠C=90° A 或△ABC 为Rt△ABCຫໍສະໝຸດ cB ab
C
直角三角形判定 如果一个三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形吗? C
A
D
B
如何判定一个三角形是直角三角形呢? (1) 有一个内角为直角的三角形是直角三角形
(2) 两个内角互余的三角形是直角三角形 (3) 如果三角形的三边长为a、b、c满足
a2+b2=c2,那么这个三角形是直角三角形
B 符号语言: 在Rt△ABC中 a2+b2=c2 A C (4) 如果一个三角形一边上的中线等于这条边 的一半,那么这个三角形是直角三角形。

中考一轮复习《第19讲直角三角形》课件

3
ABCD的面积为
.
【解析】连接BE.设AB=3x,则BC=5x,
所以BE= BC=5x,由勾股定理得,AE=4x.
所以ED=x,又AE·ED=4 ,
3
即4x·x= 4 ,x2= 4,
3
3
所以矩形ABCD的面积为3x·5x=15x2=5.
答案:5
【变式训练】
(2014·南充中考)如图,有一矩形纸片ABCD,AB=8,AD=17,将
【规律方法】运用勾股定理的逆定理判定一个三角形是直角三 角形的三个步骤 1.确定三角形的最长边. 2.计算最长边的平方以及其他两边的平方和. 3.判断最长边的平方是否与其他两边的平方和相等,若相等, 则此三角形为直角三角形,否则不是直角三角形.
【真题专练】
1.(2014·滨州中考)下列四组线段中,可以构成直角三角形的
此矩形纸片折叠,使顶点A落在BC边的A′处,折痕所在直线同
时 经 过 边 AB , AD( 包 括 端 点 ) , 设 BA′=x , 则 x 的 取 值 范 围

.
【解析】当折痕经过点B时,x取得最大值,此时BA′=BA=8; 当折痕经过点D时,x取得最小值,此时在Rt△DC A′中,由勾 股定理可得BA′=15,∴BA′=2. 答案:2≤x≤8
命题新视角 用勾股定理解展开与折叠问题
【 例 】(2013· 山 西 中 考 ) 如 图 , 在 矩 形 纸 片 ABCD 中 , AB=12 ,
BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上
的点A′处,则AE的长为
.
【审题视点】
【真题专练】
1.(2013·资阳中考)如图,点E在正方形
ABCD内,满足∠AEB=90°,AE=6,BE=8,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档