2020届高考数学(理)一轮复习精品特训专题八:立体几何(2)空间几何体的表面积与体积

合集下载

2020届高三理科数学一轮复习 第八章 第2节 空间几何体的表面积和体积

2020届高三理科数学一轮复习 第八章 第2节 空间几何体的表面积和体积

类型1 外接球的问题 1.必备知识:
(1)简单多面体外接球的球心的结论. 结论1:正方体或长方体的外接球的球心是其体对角线的中点. 结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的 (2)构造正方体或长方体确定球心. (3)利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦 的性质,确定球心.
即 R= 3.所以球的表面积 S=4πR2=12π.
答案 A
5.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径
面上,则该圆柱的体积为( )

π
π
A.π
B. 4
C.2
D.4
解析 如图画出圆柱的轴截面ABCD,O为球心.
球半径 R=OA=1,球心到底面圆的距离为 OM=12.
∴底面圆半径 r= OA2-OM2= 23,
故S球=4πR2=169π.
【迁移探究2】 若将题目的条件变为“如图所示是一个几何体的三 何体外接球的表面积.
解 设外接球的半径为 R,由三视图可知该几何体是两个正四棱锥 合),上、下两顶点之间的距离为 2R,正四棱锥的底面是边长为
规律方法 1.与球有关的组合体问题,一种是内切,一种是外接 通常是作它们的轴截面解题,球与多面体的组合,通过多面体的 或“切点”、“接点”作出截面图,把空间问题化归为平面问题 2.若球面上四点P,A,B,C中PA,PB,PC两两垂直或三棱锥的 可构造长方体或正方体确定直径解决外接问题.
A.20π
B.24π
C.28π
D.
(2)(2018·烟台二模)某几何体的三视图如图所示,其中俯视图右 则几何体的表面积为( )

2020版高考数学北京版大一轮精准复习精练:8.1空间几何体的表面积和体积含解析

2020版高考数学北京版大一轮精准复习精练:8.1空间几何体的表面积和体积含解析

专题八立体几何【真题典例】8.1空间几何体的表面积和体积挖命题【考情探究】5年考情考点内容解读预测热度考题示例考向关联考点认识柱、锥、台、球及其简单组合体的1.空间几何体的结构特征结构特征,并能运用这些特征描述现实生活中简单物体的2018北京,52017北京,72014北京文,11空间几何体的结构特征三视图★★★结构2.空间几何体的表面积和体理解球、柱体、锥体、台体的表面积和体积的计算公式(不要2016北京,62015北京,52015北京文,18空间几何体的表面积和体积空间直线与平面的位置关系以及平面与平面的位★★★积求记忆)置关系的判定分析解读 1.理解多面体、棱柱、棱锥、棱台的概念,牢记它们的几何特征.2.理解圆柱、圆锥、圆台、球等几何体的形成过程,理解轴截面、中截面的含义及掌握将圆柱、圆锥、圆台的空间问题转化为平面问题的方法.3.理解柱、锥、台、球的侧面积、表面积和体积的概念.4.结合模型,在理解的基础上熟练掌握柱、锥、台、球的表面积公式和体积公式.5.备考时关注以柱、锥与球的接、切问题为命题背景,突出空间几何体的线面位置关系的试题.6.高考对本节内容的考查以计算几何体的表面积和体积为主,分值约为5分,属于中档题.破考点【考点集训】考点一空间几何体的结构特征1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线答案DC.棱锥的侧棱长与考点二空间几何体的表面积和体积2.(2015北京,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+B.4+C.2+2D.5答案C3.(2015安徽改编,19,13分)如图,在三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.求三棱锥P-ABC的体积.解析可得S 由AB=1,AC=2,∠BAC=60°, =·AB·AC·sin 60°=. △ABC由PA⊥平面ABC,可知PA是三棱锥P-ABC的高,又PA=1, 所以三棱锥P-ABC的体积V=·S ·PA=.△ABC方法1炼技法【方法集训】空间几何体表面积与体积的求解方法1.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π答案A2.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A. B. C. D.1答案A3.(2015课标Ⅰ,6,5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛答案B4.(2018江苏,10,5分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.答案5.(2014山东文,13,5分)一个六棱锥的体积为2 ,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为.答案12方法2与球有关的切、接问题的求解方法6.(2015课标Ⅱ,10,5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π答案C7.(2017课标Ⅱ,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π8.(2017天津,11,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案πA组过专题【五年高考】自主命题·北京卷题组1.(2018北京,5,5分)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案C2.(2017北京,7,5分)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3B.2C.2D.2答案B3.(2012北京,7,5分)某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6B.30+6C.56+12D.60+12答案B4.(2011北京,7,5分)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A.8B.6C.10D.8答案C5.(2014北京文,11,5分)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为.答案26.(2015北京文,18,14分)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M 分别为AB,VA的中点.(1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面VAB;(3)求三棱锥V-ABC的体积.解析(1)证明:因为O,M分别为AB,VA的中点,所以OM∥VB.又因为VB平面MOC,OM⊂平面MOC,所以VB∥平面MOC.(2)证明:因为AC=BC,O为AB的中点,所以OC⊥AB.又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC, 所以OC⊥平面VAB.因为OC⊂平面MOC,所以平面MOC⊥平面VAB.(3)解法一:在等腰直角三角形ACB中,AC=BC= ,所以AB=2,则OC=1.所以等边三角形VAB的面积S又因为OC⊥平面VAB,=AB·BVsin 60°=×2×2×= . △VAB所以三棱锥C-VAB的体积等于S ·OC=.△VAB又因为三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,所以三棱锥V-ABC的体积为.解法二:连接VO,与(2)同理,可证VO⊥平面ABC,在等边三角形VAB中,AB=2,所以VO= .所以三棱锥V-ABC的体积等于S ·VO=××××= .△ABC思路分析(1)在△ABV中,利用中位线定理得OM∥VB,由此证明VB∥平面MOC.(2)先证OC⊥AB,再由平面VAB⊥平面ABC证得OC⊥平面VAB,由此证明平面MOC⊥平面VAB.(3)解法一:通过三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,计算求解.解法二:直接求解V-ABC的体积.评析本题主要考查直线与平面、平面与平面的位置关系的判定,以及几何体体积的求解,考查学生空间想象能力和逻辑推理能力.B组统一命题、省(区、市)卷题组1.(2017课标Ⅲ,8,5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.π答案BB. C. D.2.(2014课标Ⅱ,7,5分)正三棱柱ABC-A B C的底面边长为2,侧棱长为1 1 1,D为BC中点,则三棱锥A-B DC的体积为( )1 1A.3B.C.1D.答案C3.(2014大纲全国,8,5分)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A. B.16π答案AC.9πD.4.(2014陕西,5,5分)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A. B.4π C.2π D.答案D5.(2018课标Ⅱ,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为,SA与圆锥底面所成角为45°.若△SAB 的面积为5 ,则该圆锥的侧面积为.答案40π6.(2017江苏,6,5分)如图,在圆柱O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O O的体积为V,1 2 1 2 1球O的体积为,则的值是.V2答案7.(2015江苏,9,5分)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.答案8.(2018课标Ⅰ,18,12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕△将ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积.解析(1)证明:由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 .又BP=DQ=DA,所以BP=2 .作QE⊥AC,垂足为E,则QE DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为·S·QE=××3×2sin 45°×1=1.△ABP规律总结证明空间线面位置关系的一般步骤:(1)审清题意:分析条件,挖掘题目中平行与垂直的关系;(2)明确方向:确定问题的方向,选择证明平行或垂直的方法,必要时添加辅助线;(3)给出证明:利用平行、垂直关系的判定或性质给出问题的证明;(4)反思回顾:查看关键点、易漏点,检查使用定理时定理成立的条件是否遗漏,符号表达是否准确.解题关键(1)利用平行关系将∠ACM=90°转化为∠BAC=90°是求证第(1)问的关键;(2)利用翻折的性质将∠ACM=90°转化为∠ACD=90°,进而利用面面垂直的性质定理及线面垂直的性质定理得出三棱锥Q-ABP的高是求解第(2)问的关键.9.(2017课标Ⅱ文,18,12分)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面PAD;(2)若△PCD的面积为2 ,求四棱锥P-ABCD的体积.解析本题考查线面平行的判定和体积的计算.(1)证明:在平面ABCD内,因为∠BAD=∠ABC=90°,所以BC∥AD,又BC平面PAD,AD⊂平面PAD,故BC∥平面PAD.(2)取AD的中点M,连接PM,CM.由AB=BC=AD及BC∥AD,∠ABC=90°得四边形ABCM为正方形,则CM⊥AD.因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD,所以PM⊥AD,PM⊥底面ABCD.因为CM⊂底面ABCD,所以PM⊥CM.设BC=x,则CM=x,CD= x,PM= x,PC=PD=2x.取CD的中点N,连接PN,则PN⊥CD,所以PN= x.因为△PCD的面积为2 ,所以×x×x=2 ,解得x=-2(舍去)或x=2.于是AB=BC=2,AD=4,PM=2 .所以四棱锥P-ABCD的体积V=××2=4 .10.(2016课标Ⅱ文,19,12分)如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在AD,CD上,AE=CF,EF交BD于点H.将△DEF沿EF折到△D'EF的位置.(1)证明:AC⊥HD';(2)若AB=5,AC=6,AE=,OD'=2,求五棱锥D'-ABCFE的体积.解析(1)证明:由已知得AC⊥BD,AD=CD.又由AE=CF得= ,故AC∥EF.(2分)由此得EF⊥HD,EF⊥HD',所以AC⊥HD'.(4分)(2)由EF∥AC得= =.(5分)由AB=5,AC=6得DO=BO=-=4.所以OH=1,D'H=DH=3.于是2+OH2=(2 )2+12=9=D'H2,OD'故OD'⊥OH.由(1)知AC⊥HD',又AC⊥BD,BD∩HD'=H,所以AC⊥平面BHD',于是AC⊥OD'.又由OD'⊥OH,AC∩OH=O,所以OD'⊥平面ABC.(8分)又由=得EF=.五边形ABCFE的面积S=×6×8-××3=.(10分)所以五棱锥D'-ABCFE的体积V=××2= .(12分)C组教师专用题组1.(2015陕西,5,5分)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案D2.(2015湖南,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率= ( )原工件的体积A. B. C.- D.-答案A3.(2014湖北,8,5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈L h相当于将圆锥体积公式中的π近似取为( )A. B. C. D.答案B4.(2015四川,14,5分)在三棱柱ABC-A B C中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边1 1 1的长为1的等腰直角三角形.设点M,N,P分别是棱AB,BC,BC的中点,则三棱锥P-A MN的体积是1 1 1.答案5.(2013课标Ⅰ文,15,5分)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为答案.新工件的体积26.(2013 江苏,8,5 分)如图,在三棱柱 A B C -ABC 中,D,E,F 分别是 AB,AC,AA 的中点,设三棱锥 F-ADE 的体积为 V ,三棱1 1 1 1 1 柱 AB C -ABC 的体积为 V ,则 V ∶V =.1 1 12 1 2答案7.(2016 江苏,17,14 分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥 P-A B C D ,下部的形状是正1 1 1 1 四棱柱 ABCD-A B C D (如图所示),并要求正四棱柱的高 O O 是正四棱锥的高 PO 的 4 倍.1 1 1 111(1)若 AB=6 m,PO =2 m,则仓库的容积是多少?1(2)若正四棱锥的侧棱长为 6 m,则当 PO 为多少时,仓库的容积最大?1解析(1)由 PO1=2 m 知 O O=4PO =8 m.11因为 AB =AB=6 m,1 1所以正四棱锥 P-A B C D 的体积1 1 1 1V = ·A1·PO = ×62×2=24(m 3);1正四棱柱 ABCD-AB C D 的体积1 1 1 1V =AB 2·O O=62×8=288(m 3).1所以仓库的容积 V=V +V =24+288=312(m 3).(2)设 A B =a(m),PO =h(m),则 0<h<6,O O=4h(m).如图,连接 O B .1 1 1 1 1 1因为在 Rt △P OB中,O 1 11+P =P ,所以+h 2=36,即 a 2=2(36-h 2). 于是仓库的容积V=V +V =a 2·4h+ a 2·h= a 2h= (36h-h 3),0<h<6,锥 柱锥 柱柱锥令V'=0,得h=2或h=-2 (舍).当0<h<2时,V'>0,V是单调增函数;当2 <h<6时,V'<0,V是单调减函数.故h=2时,V取得极大值,也是最大值.因此,当PO=2 m时,仓库的容积最大.1评析本题主要考查函数的概念、导数的应用、棱柱和棱锥的体积等基础知识,考查空间想象能力和运用数学模型及数学知识分析和解决实际问题的能力.8.(2015课标Ⅱ文,19,12分)如图,长方体ABCD-A B C D中,AB=16,BC=10,AA=8,点E,F分别在A B,D C上,A E=D F=4.过1 1 1 1 1 1 1 1 1 1 1点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.解析(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A E=4,EB=12,EM=AA=8.1 1 1因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.-所以=(A E+AH)×A A=(4+10)×8=56,梯形1 1=(HB+EB)×A A=(6+12)×8=72,梯形1 1又长方体被平面α分成两个等高的直棱柱,高为10,所以其体积的比值为梯形= =也正确.梯形【三年模拟】一、选择题(每小题5分,共10分)1.(2018北京海淀一模,6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S,则S的值不可能是( )A.1B. C. D.答案 D2.(2019 届北京大兴 9 月统练,7)某空间几何体的三视图如图所示,则此几何体体积的最大值为()A.2B.4C.6D.8答案 A二、填空题(每小题 5 分,共 10 分)3.(2017 北京海淀零模,14)已知正方体 ABCD-A B C D 的棱长为 2,长度为 2 的线段 MN 的一个端点 M 在棱 DD 上运动,另一1 1 1 1 1 个端点 N 在正方形 ABCD 内运动,则 MN 中点的轨迹与正方体 ABCD-AB C D 的表面所围成的较小的几何体的体积等1 1 1 1于.答案4.(2017 北京西城一模,14)如图,正方体 ABCD-A B C D 的棱长为 2,点 P 在正方形 ABCD 的边界及其内部运动.平面区域 W1 1 1 1 由所有满足 A 1P ≤ 的点 P 组成,则 W 的面积是;三棱锥 P-A BC 的体积的最大值是1.答案;三、解答题(共 30 分)5.(2019 届北京通州期中文,19)如图,在三棱锥 P-ABC 中,PA ⊥平面 ABC,E,F 分别为 PC,PB 的中点,∠ACB=90°. (1)求证:EF ∥平面 ABC; (2)求证:EF ⊥AE;(3)若 PA=AC=CB,AB=4,求几何体 EFABC 的体积.解析(1)证明:因为 E,F 分别为 PC,PB 的中点, 所以 EF ∥BC,又因为 EF 平面 ABC,BC ⊂ 平面 ABC, 所以 EF ∥平面 ABC.(2)证明:因为 PA ⊥平面 ABC,BC ⊂ 平面 ABC,所以 PA⊥BC, 又因为∠ACB=90°,所以 AC⊥BC,又 PA ∩AC=A, 所以 BC ⊥平面 PAC,又因为 AE ⊂ 平面 PAC, 所以 BC ⊥AE, 又因为 EF ∥BC, 所以 EF ⊥AE.(3)在 Rt△ABC 中,AC=BC,AB=4,所以 AC=BC=2 . 因为 PA ⊥平面 ABC,AC ⊂ 平面 ABC,所以 PA⊥AC,所以 S= PA ·AC= ×2 ×2 =4.△PAC因为 BC ⊥平面 PAC,所以三棱锥 P-ABC 的体积 V1=V = ·S ·BC= ×4×2 = B-PAC △PAC,因为 BC ⊥平面 PAE,EF ∥BC, 所以 EF ⊥平面 PAE,又 S= S =2,EF= BC= ,△PAE△PAC所以三棱锥 P-AEF 的体积 V2=V = ·S ·EF= ×2× = F-PAE △PAE,所以几何体 EFABC 的体积 V=V-V =2 .126.(2018 北京东城一模,18)如图,四边形 ABCD 为菱形,∠DAB=60°,ED ⊥平面 ABCD,ED=AD=2EF=2,EF ∥AB,M 为 BC 的中点. (1)求证:FM ∥平面 BDE; (2)求证:AC ⊥BE;(3)若 G 为线段 BE 上的点,当三棱锥 G-BCD 的体积为时,求的值.解析(1)证明:设 AC ∩BD=O,连接 EO,MO. 因为 M,O 分别是 BC,BD 的中点.所以EF∥OM,且EF=OM.所以四边形EOMF为平行四边形.所以FM∥EO.又因为EO⊂平面BDE,FM平面BDE,所以FM∥平面BDE.(2)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为ED⊥平面ABCD,所以ED⊥AC.因为BD∩ED=D,所以AC⊥平面BDE.又因为BE⊂平面BDE,所以AC⊥BE.(3)过G作ED的平行线交BD于H.因为ED⊥平面ABCD,所以GH⊥平面ABCD.所以GH为三棱锥G-BCD的高.因为三棱锥G-BCD的体积为,所以三棱锥G-BCD的体积V=×·BD·BC·sin60°·GH=,又BC=BD=2,所以GH=.因为GH∥ED,所以△BGH∽△BED,所以= = =.。

2020高考数学考点突破——立体几何2:空间几何体的表面积与体积

2020高考数学考点突破——立体几何2:空间几何体的表面积与体积

2020高考数学考点突破之立体几何(2)第2讲空间几何体的表面积与体积【考点梳理】1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式S=2πrl S=πrl S=π(r+r)l【考点突破】考点一、空间几何体的表面积【例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+2 2C.14+2 2 D.15(2)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π[答案](1)B(2)A[解析](1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R,则43πR3-18×43πR3=283π,解得R=2.因此它的表面积为78×4πR2+34πR2=17π.故选A.【类题通法】1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.【对点训练】1.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5C.90 D.81[答案]B[解析]由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.2.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8[答案]B[解析]如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.考点二、空间几何体的体积【例2】(1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π(2)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m 3.[答案](1)C (2)2[解析](1)过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π, V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.【类题通法】1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解. 2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【对点训练】1.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.[答案]83π[解析]由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.2.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π[答案]C[解析]由三视图知,该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.故选C.考点三、多面体与球的切、接问题【例3】在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π3[答案]B[解析]由AB⊥BC,AB=6,BC=8,得AC=10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,则r=2.此时2r=4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=32.故球的最大体积V=43πR3=92π.[变式1]若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解析]将直三棱柱补形为长方体ABEC-A′B′E′C′,则球O是长方体ABEC-A′B′E′C′的外接球,∴体对角线BC′的长为球O的直径.因此2R=32+42+122=13,故S球=4πR2=169π.[变式2]若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解析]如图,设球心为O,半径为r,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16. 【类题通法】1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.【对点训练】已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π[答案]C[解析]如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C为与球的大圆面AOB垂直的直径的端点时,体积V O-ABC最大为13×12R2×R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.。

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

2020版高考数学人教版理科一轮复习第七章 立体几何 (2)

2020版高考数学人教版理科一轮复习第七章 立体几何 (2)

1.(方向 1)(2019·洛阳市第一次统考)某几何体的三视图如图所示,
则该几何体的体积是( B )
15π A. 2
17π C. 2
B.8π D.9π
解析:依题意,题中的几何体是由两个完全相同的圆柱各自 用一个不平行于其轴的平面去截后所得的部分拼接而成的组合 体(各自截后所得的部分也完全相同),其中一个截后所得的部分 的底面半径为 1,最短母线长为 3、最长母线长为 5,将这两个截 后所得的部分拼接,恰好可以形成一个底面半径为 1,母线长为 5+3=8 的圆柱,因此题中的几何体的体积为 π×12×8=8π,故 选 B.
又平面 B1D1D∩平面 B1EDF=B1D,
所以 O1H⊥平面 B1EDF,
所以 O1H 等于四棱锥 C1-B1EDF 的高.
因为△B1O1H∽△B1DD1,
Байду номын сангаас
所以
O1H=B1OB11·DDD1=
6 6 a.
方向 3 利用体积法求点面距离 【例 4】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是矩形,PD ⊥底面 ABCD,M,N 分别为 AB,PC 的中点,PD=AD=2,AB=4.
如图,连接 AB′,AD′,B′D′,因为三棱锥 A′-AB′D′ 是正三棱锥,所以 A′A,A′B′,A′D′与平面 AB′D′所成 的角都相等.分别取 C′D′,B′C′,BB′,AB,AD,DD′ 的中点 E,F,G,H,I,J,连接 EF,FG,GH,IH,IJ,JE, 易得 E,F,G,H,I,J 六点共面,平面 EFGHIJ 与平面 AB′D′ 平行,且截正方体所得截面的面积最大.又 EF=FG=GH=IH =IJ=JE= 22,所以该正六边形的面积为 6× 43×( 22)2=343, 所以 α 截此正方体所得截面面积的最大值为34 3,故选 A.

高考数学一轮复习第八章 立体几何

高考数学一轮复习第八章 立体几何

第八章 立 体 几 何1.立体几何初步 (1)空间几何体①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.③会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④了解球、棱柱、棱锥、台的表面积和体积的计算公式.(2)点、直线、平面之间的位置关系①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:·公理1:如果一条直线上的两点在同一个平面内,那么这条直线在此平面内.·公理2:过不在一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线平行. ·定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理: ·平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.·一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.·一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.·一个平面过另一个平面的垂线,则两个平面垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.·两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.·垂直于同一个平面的两条直线平行.·两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.2.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会简单应用空间两点间的距离公式. 3.空间向量与立体几何 (1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示. (3)掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.(4)理解直线的方向向量及平面的法向量. (5)能用向量语言表述线线、线面、面面的平行和垂直关系.(6)能用向量方法证明立体几何中有关线面位置关系的一些简单定理(包括三垂线定理).(7)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.§8.1 空间几何体的结构、三视图和直观图1.棱柱、棱锥、棱台的概念 (1)棱柱:有两个面互相______,其余各面都是________,并且每相邻两个四边形的公共边都互相______,由这些面所围成的多面体叫做棱柱.※注:棱柱又分为斜棱柱和直棱柱.侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱.(2)棱锥:有一个面是________,其余各面都是A.棱柱的底面一定是平行四边形( 得到图解:还原正方体知该几何体侧视图为正方形,为实线,B 1C 的正投影为A 1D ,且B 1C 被遮挡为虚故选B.(2014·福建)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面________.解:所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故填2π.已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为________.解:如图所示是实际图形和直观图.由图可知,A ′B ′=AB =a ,O ′C ′=12OC =34在图中作C ′D ′⊥A ′B ′,垂足为D ′,则C ′D ′O ′C ′=68a.各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是三棱柱 C.四棱锥解:该几何体的三视图由一个三角形,两个矩形组成,经分析可知该几何体为三棱柱,故选解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是解:D 选项的正视图应为如图所示的图形.故选积为20cm ________cm 解:由三视图可知,该几何体为三棱锥,此三棱锥的底面为直角三直角边长分别为5cm ,6cm ,三棱锥的高为则三棱锥的体积为V =13×12×5×6×h =20,解得4.对于空间几何体的考查,从内容上看,锥的定义和相关性质是基础,以它们为载体考查三视图、体积和棱长是重点.本题给出了几何体的三视图,要掌握三视图的画法“长对正、高平齐,宽相等”,不难将其还原得到三棱锥.(2014·北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为__________.解:该三棱锥的直观图如图所示,易知PB ⊥平面ABC ,则有PA =22+2,故最长棱为P A.类型三 空间多面体的直观图 如图是一个几何体的三视图,用斜二测画法画出它的直观图解:由三视图知该几何体是一个简单组合体,它的下部是一个正四棱台,上部是一个正四棱锥画法:(1)画轴.如图1,画x 轴、y 使∠xOy =45°,∠xOz =90°.图1画底面.利用斜二测画法画出底面′使OO ′等于三视图中相应高度,过的平行线′,Oy 的平行线O ′y ′,利用′画出底面A ′B ′C ′D ′.图2画正四棱锥顶点.在Oz 上截取点等于三视图中相应的高度.连接PA ′,PB ′,PC ′,PD ′D ,整理得到三视图表示的几何体2所示.点拨:根据三视图可以确定一个几何体的长、宽、高,再按照斜二测画法,建立x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,确定几何体在x 轴、y 轴、z 轴方向上的长度,最后连线画出直观图.已知一个四棱锥的高为3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为( )A. 2B.6 2C.13D.2 2解:因为四棱锥的底面直观图是一个边长为1的正方形,该正方形的对角线长为2,根据斜二测画法的规则,原图底面的底边长为1,高为直观图中正方形的对角线长的两倍,即22,则原图底面积为S =22.因此该四棱锥的体积为V =13Sh =13×22×3=22.故选D.类型四 空间旋转体的直观图用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3cm ,求圆台的母线长.解:设圆台的母线长为l ,截得圆台的上、下底面半径分别为r ,4r.根据相似三角形的性质得, 33+l =r4r,解得 l =9. 所以,圆台的母线长为9cm .点拨:用平行于底面的平面去截柱、锥、台等几何体,注意抓住截面的性质(与底面全等或相似),同时结合旋转体中的轴截面(经过旋转轴的截面)的几何性质,利用相似三角形中的相似比,设相关几何变量列方程求解.(2014·湖南)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4解:该几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,其最大球的半径为底面直角三角形内切圆的半径r ,由等面积法可得12×(6+8+10)·r =12×6×8,得r =2.故选B.1.在研究圆柱、圆锥、圆台的相关问题时,主要方法就是研究它们的轴截面,这是因为在轴截面中容易找到这些几何体的有关元素之间的位置关系以及数量关系.2.正多面体(1)正四面体就是棱长都相等的三棱锥,正六面体就是正方体,连接正方体六个面的中心,可得到一个正八面体,正八面体可以看作是由两个棱长都相等的正四棱锥拼接而成.(2)如图,在棱长为a 的正方体ABCD ­A 1B 1C 1D 1中,连接A 1B ,BC 1,A 1C 1,DC 1,DA 1,DB ,可以得到一个棱长为2a的正四面体A 1­BDC 1,其体积为正方体体积的13.(3)正方体与球有以下三种特殊情形:一是球内切于正方体;二是球与正方体的十二条棱相切;三是球外接于正方体.它们的相应轴截面如图所示(正方体的棱长为a ,球的半径为R).3.长方体的外接球(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)棱长为a 的正方体的体对角线长等于外接球的直径,即3a =2R .4.棱长为a 的正四面体(1)斜高为32a ;(2)高为63a ;(3)对棱中点连线长为22a ; (4)外接球的半径为64a ,内切球的半径为612a ;(5)正四面体的表面积为3a 2,体积为212a 3.5.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度.由此得到:主俯长对正,主左高平齐,俯左宽相等.6.一个平面图形在斜二测画法下的直观图与原图形相比发生了变化,注意原图与直观图中的“三变、三不变”.三变:坐标轴的夹角改变,与y 轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x 轴平行的线段长度不变,相对位置不变.1.由平面六边形沿某一方向平移形成的空间几何体是( )A.六棱锥B.六棱台C.六棱柱D.非棱柱、棱锥、棱台的一个几何体解:平面六边形沿某一方向平移形成的空间几何体符合棱柱的定义,故选C.2.下列说法中,正确的是( ) A.棱柱的侧面可以是三角形B.若棱柱有两个侧面是矩形,则该棱柱的其它侧面也是矩形C.正方体的所有棱长都相等D.棱柱的所有棱长都相等 解:棱柱的侧面都是平行四边形,选项A 错误;其它侧面可能是平行四边形,选项B 错误;棱柱的侧棱与底面边长并不一定相等,选项D 错误;易知选项C 正确.故选C.3.将一个等腰梯形绕着它的较长的底边所在直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆锥D.一个圆柱、两个圆锥解:把等腰梯形分割成两个直角三角形和一个矩形,由旋转体的定义可知所得几何体包括一个圆柱、两个圆锥.故选D.4.(2014·江西)一几何体的直观图如图,下列给出的四个俯视图中正确的是( )解:由直观图可知,该几何体由一个长方体和一个截角三棱柱组成,从上往下看,外层轮廓线是一矩形,矩形内部有一条线段连接两个三角形.故选B.5.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )A.棱柱B.棱台C.圆柱D.圆台解:由俯视图可知该几何体的上、下两底面为半径不等的圆,又∵正视图和侧视图相同,∴可判断其为旋转体.故选D.6.(2014·课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.4 2C.6D.4解法一:如图甲,设辅助正方体棱长为4,三视图对应的多面体为三棱锥D ­ABC ,最长的棱为AD =6.解法二:将三视图还原为三棱锥D ­ABC ,如图若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于________.解:由正视图知,三棱柱是底面边长为的正三棱柱,所以底面积为2×3×2×1=6,所以其表面积为3.已知某一多面体内接于球构成一个简单组合体,该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球____________.解:由三视图可知该组合体为球内接棱长为∴正方体的体对角线为球的直径,,r=3.故填是截去一个角的长方体,试按图示的中几何体三视图如图b.如图1是某几何体的三视图,试说明该几何体的结构特征,并用斜二测画法画出它的直观图1中几何体是由上部为正六棱柱,下部为倒立的正六棱锥堆砌而成的组合体.斜二测画法:(1)画轴.如图2,画x轴,xOy=45°,∠xOz=∠yOz=90°画底面,利用斜二测画法画出底面ABCDEF 轴上截取O′,使OO′等于正六棱柱的高,过的平行线O′x′,Oy的平行线O′x′与O′y′画出底面A′.画正六棱锥顶点.在Oz上截取点P,使等于正六棱锥的高.成图.连接PA′,PB′,PC′,PD′,′,BB′,CC′,DD′,EE′,FF理得到三视图表示的几何体的直观图如图3注意:图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来..某长方体的一条对角线长为7,在该长方体的正视图中,这条对角线的投影长为6,在该长方体的侧视图与俯视图中,这条对角线的投影长分和b,求ab的最大值.解:如图,则有1=7,DC1=6,1=a,AC=b,AB=x,AD=y,AA1=z,有图如图所示,其中与题中容器对应的水的高度解:由三视图知其直观图为两个圆台的组合体,水是匀速注入的,所以水面高度随时间变化的变化率先逐渐减小后逐渐增大,又因为容器的对称性,所以函数图象关于一点中心对称.故选C.§8.2 空间几何体的表面积与体积1.柱体、锥体、台体的表面积(1)直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=__________,S 正棱锥侧=__________, S 正棱台侧=__________(其中C ,C ′为底面周长,h 为高,h ′为斜高).(2)圆柱、圆锥、圆台的侧面积S 圆柱侧=________,S 圆锥侧=________,S 圆台侧=________(其中r ,r ′为底面半径,l 为母线长). (3)柱或台的表面积等于________与__________的和,锥体的表面积等于________与__________的和. 2.柱体、锥体、台体的体积 (1)棱柱、棱锥、棱台的体积 V 棱柱=__________,V 棱锥=__________,V 棱台=__________ (其中S ,S ′为底面积,h 为高). (2)圆柱、圆锥、圆台的体积V 圆柱=__________,V 圆锥=__________,V 圆台=__________(其中r ,r ′为底面圆的半径,h 为高). 3.球的表面积与体积(1)半径为R 的球的表面积S 球=________. (2)半径为R 的球的体积V 球=________,________).自查自纠:1.(1)Ch 12Ch ′ 12()C +C ′h ′(2)2πrl πrl π(r +r ′)l (3)侧面积 两个底面积 侧面积 一个底面积2.(1)Sh 13Sh 13h ()S +SS ′+S ′(2)πr 2h 13πr 2h 13πh ()r 2+rr ′+r ′23.(1)4πR 2 (2)43πR 3圆柱的侧面展开图是边长为6π和4π的矩形,则圆柱的表面积为( ) A.6π(4π+3)B.8π(3π+1)C.6π(4π+3)或8π(3π+1)D.6π(4π+1)或8π(3π+2) 解:分两种情况:①以边长为6π的边为高时,4π为圆柱底面周长,则2πr =4π,r =2,∴S 底=πr 2=4π,S 侧=6π×4π=24π2,S 表=2S 底+S 侧=8π+24π2=8π(3π+1);②以边长为4π的边为高时,6π为圆柱底面周长,则2πr =6π,r =3.∴S 底=πr 2=9π,S 表=2S 底+S 侧=18π+24π2=6π(4π+3).故选C. 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( ) A.23 2 B. 2 C.23 D.43 2解:∵正三棱锥的侧面均为直角三角形,故侧面为等腰直角三角形,且直角顶点为棱锥的顶点,∴侧棱长为2,V =13×12×(2)2×2=23.故选C.(2014·安徽)一个多面体的三视图如图所示,则该多面体的体积是( )A.233B.476C.6D.7 解:如图示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.故选A. 长方体ABCD ­A 1B 1C 1D 1的8个顶点在同一个球面上,且AB =2,AD =3,AA 1=1,则球面面积为________.单位:解:由三视图可知,该几何体为圆柱与圆锥的其体积V =π×12×4+13π×22×.类型一 空间几何体的面积问题 如图,在△ABC 中,∠ABC =45°,AD 是BC 边上的高,沿AD 把△ABD BDC =90°.若BD =1,求三棱锥D ­ABC解:∵折起前AD 是BC 边上的高,∴沿AD 把△ABD 折起后,AD ⊥DC ,AD ⊥又∠BDC =90°.=DA =DC =1,∴AB =BC =CA =2.从而S △DAB =S △DBC =S △DCA =12×1×1=12,ABC =12×2×2×sin60°=32. ∴三棱锥D ­ABC 的表面积S =12×3+. 的矩形,正视图高为4的等腰三角形,侧视图底边长为6,面积S.解:由已知可得该几何体是一个底面为矩形,,顶点在底面的射影是矩形中心的四棱锥PAD ,PBC 是全等的等腰三角形,边上的高为h 1=42+⎝ ⎛2PAB ,PCD 也是全等的等腰三角形,h 2=42+⎝ ⎛⎭⎪⎫622⎝ ⎛12×6×42+12×8×5空间旋转体的面积问题如图,半径为4的球O 柱,当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是______.设球的一条半径与圆柱相应的母线的夹角为=2π×4sin α=π4时,S 取最大值球的表面积与该圆柱的侧面积之差为32π.点拨:根据球的性质,内接圆柱上、下底面中心连线的中点为球心,且圆柱的上、下底面圆周均在球面上,球心和圆柱的上、下底面圆上的点的连线与母线的夹角相等,这些为我们建立圆柱的侧面积与上述夹角之间的函数关系提供了依据.圆台的上、下底面半径分别是10 cm和20 cm ,它的侧面展开图的扇环的圆心角是180°,那么圆台的侧面积是____________cm 2.解:如图示,设上底面周长为c.∵扇环的圆心角是180°,∴c =π·S A. 又∵c =2π×10=20π, ∴SA =20.同理SB =40. ∴AB =SB -SA =20,∴S 圆台侧=π(10+20)·AB=600π(cm 2).故填600π.类型三 空间多面体的体积问题如图,在多面体ABCDEF 中,已知ABCD是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )A.23 B.33 C.43 D.32 解:如图,过A ,B 两点分别作AM ,BN 垂直于EF ,垂足分别为M ,N ,连接DM ,CN ,可证得DM ⊥EF ,CN ⊥EF ,则多面体ABCDEF 分为三部分,即多面体的体积V ABCDEF =V AMD ­BNC +V E ­AMD +V F ­BN C.依题意知AEFB 为等腰梯形.易知Rt △DME Rt △CNF ,∴EM =NF =12.又BF =1,∴BN =32. 作NH 垂直于BC ,则H 为BC 的中点,∴NH =22. ∴S △BNC =12·BC ·NH =24.∴V F ­BNC =13·S △BNC ·NF =224,V E ­AMD =V F ­BNC =224,V AMD ­BNC =S △BNC ·MN =24.∴V ABCDEF =23,故选A.点拨:求空间几何体体积的常用方法为割补法和等积变换法:①割补法:将这个几何体分割成几个柱体、锥体,分别求出柱体和锥体的体积,从而得出要求的几何体的体积;②等积变换法:特别的,对于三棱锥,由于其任意一个面均可作为棱锥的底面,从而可选择更容易计算的方式来求体积;利用“等积性”还可求“点到面的距离”.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解:由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥得到的.所以该几何体的体积为V =12×3×4×5-13×12×3×4×3=24.故选C. 类型四 空间旋转体的体积问题已知某几何体的三视图如图所示,其中,正(主)视图、侧(左)视图均是由三角形与半圆构成,俯视图由圆与其内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+12B.4π3+16C.2π6+16 D.2π3+12解:由三视图可得该几何体的上部是一个三棱锥,下部是半球,根据三视图中的数据可得V =12×43π×⎝ ⎛⎭⎪⎫223+13×⎝ ⎛⎭⎪⎫12×1×1×1=2π6+16.故选C.点拨:根据已知三视图想象出该几何体的直观图,然后分析该几何体的组成,再用对应的体积公式进行计算.(2014·课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727 B.59 C.1027 D.13解:原来毛坯体积为:π·32·6=54π(cm 3),由三视图知该零件由左侧底面半径为2cm ,高为4cm 的圆柱和右侧底面半径为3cm ,高为2cm 的圆柱构成,故该零件的体积为:π·22·4+π·32·2=34π(cm 3),切削掉部分的体积为54π-34π=20π(cm 3),故切削掉部分的体积与原来毛坯体积的比值为20π54π=1027 .故选C.1.几何体的展开与折叠 (1)几何体的表面积,除球以外,都是利用展开图求得的,利用空间问题平面化的思想,把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法.(2)多面体的展开图①直棱柱的侧面展开图是矩形;②正棱锥的侧面展开图是由一些全等的等腰三角形拼成的,底面是正多边形;③正棱台的侧面展开图是由一些全等的等腰梯形拼成的,底面是正多边形.(3)旋转体的展开图①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线长;②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周长;③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.注:①圆锥中母线长l 与底面半径r 和展开图扇形中半径和弧长间的关系及符号容易混淆,同学们应多动手推导,加深理解.②圆锥和圆台的侧面积公式S 圆锥侧=12cl 和S 圆台侧=12(c ′+c )l 与三角形和梯形的面积公式在形式上相同,可将二者联系起来记忆.2.空间几何体的表面积的计算方法有关空间几何体的表面积的计算通常是将空间图形问题转化为平面图形问题,这是解决立体几何问题常用的基本方法.(1)棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和,对于直棱柱、正棱锥、正棱台也可直接利用公式;(2)圆柱、圆锥、圆台的侧面是曲面,计算其侧面积时需将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和;(3)组合体的表面积应注意重合部分的处理. 3.空间几何体的体积的计算方法(1)计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面特别是轴截面,将空间问题转化为平面问题求解.(2)注意求体积的一些特殊方法:分割法、补体法、还台为锥法等,它们是计算一些不规则几何体体积常用的方法,应熟练掌握.(3)利用三棱锥的“等体积性”可以解决一些点到平面的距离问题,即将点到平面的距离视为一个三棱锥的高,通过将其顶点和底面进行转化,借助体积的不变性解决问题.1.已知圆锥的正视图是边长为2的等边三角π B.8-π2 D.8-π4解:直观图为棱长为2的正方体割去两个底面14圆柱,其体积V =23-2×14×π×故选B.将长、宽分别为4和3的长方形ABCD 折成直二面角,得到四面体A ­BCD ,则四面体的外接球的表面积为( )B.50πC.5πD.10π解:由题设知AC 为外接球的直径,∴,S 表=4πR 2=4π×⎝ ⎛⎭⎪⎫522=25π.故选,N 是球O 半径OP 上的两点,且分别过N ,M ,O 作垂直于OP 的平面,得三个圆,则这三个圆的面积之比为( )∶6 B.3∶6∶8 ∶9 D.5∶8∶9解:设球的半径为R ,以N ,M 为圆心的圆的半,r 2.由题知M ,N 是OP 的三等分点,三个圆的面积之比即为半径的平方比,在球的轴截面的外接圆的半径R 2-r 2=63,的距离为2d =2d =13×34×23ABC ×2R =36,排除)一个六棱锥的体积为的正六边形,侧棱长都相等,则该________.设该六棱锥的高是h ,则V ,解得h =1.∴侧面三角形的高为,∴侧面积S =12×由题意可设直角梯形上底、下底和高为,它们分别为圆台的上、下底半径和高BC ⊥OA 于C ,则Rt ′B =4x -2x =2x ,+BC 2=(2x )2侧=[π(2x )2∶[π=2∶8∶9.·上海)底面边长为,其表面展开图是三角形P 1的边长及三棱锥的体积V.解:由正三棱锥P ­ABC 的性质及其表面展开图,B ,C 分别是△P 1P 2P .依三角形中位线定理可得4.易判断正三棱锥P 的正四面体,其体积为V =212×四面体体积公式可见8.1名师点津4)一个圆锥的底面半径为R =2,高为在这个圆锥内部有一个高为x 的内接圆柱值时,圆柱的表面积最大?最大值是多少?解:如图是圆锥的轴截面,设圆柱的底面半径,解得r =R -R H x =2- (图所示,该几何体从上到下由四个简单几何体组成,4<V 3 B.V 1<V 3<V 2<V 4 3<V 4 D.V 2<V 3<V 1<V 4解:由已知条件及三视图可知,该几何体从上到下依次是圆台,圆柱,正方体,棱台,则·π+4π)=7π3,V 2=π×8,V 4=13×1×(4+4×16+<V 1<V 3<V 4.故选C.§8.3 空间点、线、面之间的位置关系1.平面的基本性质 (1)公理1:如果一条直线上的______在一个平面内,那么这条直线在此平面内.它的作用是可用来证明点在平面内或__________________.(2)公理2:过____________上的三点,有且只有一个平面.公理2的推论如下:①经过一条直线和直线外一点,有且只有一个平面;②经过两条相交直线,有且只有一个平面; ③经过两条平行直线,有且只有一个平面. 公理2及其推论的作用是可用来确定一个平面,或用来证明点、线共面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们____________过该点的公共直线.它的作用是可用来确定两个平面的交线,或证明三点共线、三线共点等问题.2.空间两条直线的位置关系 (1)位置关系的分类 错误!(2)异面直线①定义:不同在任何一个平面内的两条直线叫做异面直线.注:异面直线定义中“不同在任何一个平面内的两条直线”是指“不可能找到一个平面能同时经过这两条直线”,也可以理解为“既不平行也不相交的两条直线”,但是不能理解为“分别在两个平面内的两条直线”.②异面直线的画法:画异面直线时,为了充分显示出它们既不平行又不相交,也不共面的特点,常常需要以辅助平面作为衬托,以加强直观性.③异面直线所成的角:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).异面直线所成角的范围是____________.若两条异面直线所成的角是直角,则称两条异面直线__________,所以空间两条直线垂直分为相交垂直和__________.3.平行公理公理4:平行于____________的两条直线互相平行(空间平行线的传递性).它给出了判断空间两条直线平行的依据.4.等角定理等角定理:空间中如果两个角的两边分别对应平行,那么这两个角____________.自查自纠:1.(1)两点 直线在平面内 (2)不在一条直线 (3)有且只有一条2.(1)一个公共点 没有公共点 没有公共点(2)③⎝⎛⎦⎥⎤0,π2 互相垂直 异面垂直3.同一条直线4.相等或互补(2013·安徽)在下列命题中,不是..公理的是( )A.平行于同一个平面的两个平面相互平行B.过不在同一直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线解:公理是不需要证明的原始命题,而选项A 是面面平行的性质定理,故选A.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1的方向相同,则下列结论中正确的是( )A.OB ∥O 1B 1且方向相同B.OB ∥O 1B 1C.OB 与O 1B 1不平行D.OB 与O 1B 1不一定平行解:两角相等,角的一边平行且方向相同,另一边不一定平行,如圆锥的母线与轴的夹角.故选D.若点P ∈α,Q ∈α,R ∈β,α∩β=m ,且R ∉m ,PQ ∩m =M ,过P ,Q ,R 三点确定一个平面γ,则β∩γ是( )A.直线Q RB.直线P RC.直线R MD.以上均不正确 解:∵PQ ∩m =M ,m ⊂β,∴M ∈β.又M ∈平面PQ R ,即M ∈γ,故M 是β与γ的公共点.又R∈β,R ∈平面PQ R ,即R∈γ,∴R 是β与γ的公共点.∴β∩γ=M R .故选C.给出下列命题:①空间四点共面,则其中必有三点共线; ②空间四点不共面,则其中任何三点不共线; ③空间四点中有三点共线,则此四点必共面; ④空间四点中任何三点不共线,则此四点不共。

(课标Ⅰ卷)2020届高考数学一轮复习第八章立体几何8.1空间几何体的三视图、表面积和体积课件理


2
=12.故选B.
题型归纳 有关三视图的基本问题一般有两类:一类是根据给定的空间几何体(或物体模型)
画出该几何体(或物体模型)的三视图;另一类是已知某几何体的三视图,想象该几何体的结构
特征,画出该几何体的空间图形.
4.(2019课标Ⅱ,16,5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为
长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半
正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图
2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱
长为1.则该半正多面体共有
个面,其棱长为
.(本题第一空2分,第二空3分)
3.(2015课标Ⅰ,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何 体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r= ( )
A.1 B.2 C.4 D.8 答案 B 由已知可知,该几何体的直观图如图所示,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由 5πr2+4r2=16+20π,得r=2.故选B.
答案 A 本题考查空间几何体的三视图. 两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A. 故选A.
3.(2017课标Ⅰ,7,5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角 三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯 形,这些梯形的面积之和为 ( )
图1 图2

(山东专用)2020届高考数学一轮复习第八章立体几何8.1空间几何体的表面积和体积教师用书(PDF,含解析)


第八章 立体几何 6 9
§ 8.1 空间几何体的表面积和体积
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
全等的 等腰梯形
侧面 展开

矩形
扇形
扇环
大圆
对应学生用书起始页码 P126
考点二 斜二测画法
水平放置的平面图形的直观图的斜二测画法的步骤: (1)在已知图形中取互相垂直的 x 轴和 y 轴ꎬ两轴相交于 O
点.画直观图时ꎬ把它们画成对应的 x′轴与 y′轴ꎬ两轴相交于 O′ 点ꎬ且使∠x′O′y′ = 45°( 或 135°) ꎬ它们确定的平面表示水平面ꎻ
1.求简单几何体的体积ꎬ要选择适当的底面和高ꎬ然后应用
公式进行计算.
2.有关旋转体的问题或球与多面体的切、接问题ꎬ特别要注
意应用轴截面.
3.求几何体体积的常用方法有:割补法和等积转换法.
(1) 割补法:求一个几何体的体积可以将这个几何体分割成
几个规则的柱体、锥体等ꎬ或拼补成一个规则的柱体、锥体等ꎬ分
S表 = 2πr(r+l) S表 = πr(r+l)
V = S底 h = πr2 h
V=
1 3
S底
h=
1 3
πr2 h
圆台 S侧 = π( r+r′) l

2020年高考数学(理)总复习:空间几何体的三视图、表面积与体积(原卷版)

2020年高考数学(理)总复习: 空间几何体的三视图、表面积与体积题型一 空间几何体的三视图与直观图【题型要点】 三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.由三视图还原几何体的步骤(1)根据俯视图确定几何体的底面;(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置;(3)确定几何体的形状,即可得到结果.【例1】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16【例2】.已知某锥体的正(主)视图和侧(左)视图如图,则该锥体的俯视图不可能是( )题组训练一 空间几何体的三视图与直观图1.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )2.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18C.24 D.30题型二空间几何体的表面积与体积【题型要点】(1)求解几何体的表面积及体积的技巧①求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键所在.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.②求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规则几何体以易于求解.(2)根据几何体的三视图求其表面积与体积的三个步骤第一步:根据给出的三视图判断该几何体的形状.第二步:由三视图中的大小标示确定该几何体的各个度量.第三步:套用相应的面积公式与体积公式计算求解.【例3】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63πC.42π D.36π【例4】.某几何体的三视图如图所示,若该几何体的体积为12π+8,则该几何体的表面积为()A.18π+82+4 B.20π+8 2C.10π+4 2 D.45π+272+9题组训练二空间几何体的表面积与体积1.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(单位:cm),则该“阳马”的外接球的体积为()A .100π cm 3B.500π3 cm 3C .400π cm 3D.4 000π3cm 32.由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为________.3.一个四棱锥的三视图如图所示,其俯视图为等腰直角三角形,则该几何体的体积为( )A.223B.43 C. 2D .4题型三 多面体与球 【题型要点】(1)解决球与几何体的切、接问题的关键在于确定球的半径与几何体的度量之间的关系,这就需要灵活利用球的截面性持以及组合体的截面特征来确定.对于旋转体与球的组合体,主要利用它们的轴截面性质建立相关数据之间的关系;而对于多面体,应抓住多面体的结构特征灵活选择过球心的截面,把多面体的相关数据和球的半径在截面图形中体现出来.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.【例5】某几何体的三视图如图所示,则该几何体的外接球的体积为( )A.43πB.32327πC.28327πD.282127π【例6】.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2 D.π4题组训练三 多面体与球1.等腰△ABC 中,AB =AC =5,BC =6,将△ABC 沿BC 边上的高AD 折成直二面角B -AD -C ,则三棱锥B -ACD 的外接球的表面积为( )A .5π B.203π C .10πD .34π 2.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3cm 3D.2 048π3cm 3题型四 转化思想在三视图与直观图中的应用空间几何体的三视图还原为直观图求其表面积与体积能让学生经历由三视图到实物图,再到直观图的过程,能较好地考查学生的空间想象能力,命题涉及几何体的结构特征、表面积和体积问题是课标区高考的热点之一.(1)根据三视图判断空间几何体的形状,应特别注意三个视图中的实线与虚线,知道为什么是实线或虚线,为什么有这些线或没有某些线,对于正视图、侧视图中的直角,更要弄清楚它们是直角的原因.(2)要弄清三视图的有关数据与空间几何体的哪些数据相当,只需搞清由空间几何体如何得到三视图即可,平时应多加练习,总结规律.【例7】 已知一个空间几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是________cm 3.题组训练四 转化思想在三视图与直观图中的应用1.如图,网络纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱与最短的棱所成角的余弦值是( )A.22B.32 C.12D.33【专题训练】 一、选择题1.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1 B.π2+3 C.3π2+1 D.3π2+3 2.在正三棱锥S -ABC 中,点M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π3.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A.163πB.643C.16π+643D .16π+644.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为()5.如图,在正方体ABCD-A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P-BCD 的俯视图与正视图面积之比的最大值为()A.1 B. 2C. 3 D.26.一个长方体被一个平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为()A.24 B.48C.72 D.967.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A.64π B.68πC.72π D.100π8.下图中,是某几何体的三视图,且该几何体的顶点都在同一球面上,则该几何体的外接球的表面积为()A.32π B.48πC.50π D.64π9.如图所示,平面四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD,将其沿对角线BD折成四面体A′­BCD,使平面A′BD⊥平面BCD,若四面体A′­BCD的顶点在同一个球面上,则该球的体积为()A.32π B.3πC.23π D.2π10.一光源P在桌面A的正上方,半径为2的球与桌面相切,且P A与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△P AB,其中P A=6,则该椭圆的短轴长为()A.6 B.8C.4 3 D.311.已知在三棱锥P—ABC中,P A⊥平面ABC,AB=AC=P A=2,且在△ABC中,∠BAC=120°,则三棱锥P —ABC 的外接球的体积为________.12.如图是某组合体的三视图,则内部几何体的体积的最大值为( )A.52()2-1π B.254()3-22π C .25()3-22π D.1256()52-7π 二、填空题13.如图所示,三棱锥P -ABC 中, △ABC 是边长为3的等边三角形, D 是线段AB 的中点, DE ∩PB =E ,且DE ⊥AB ,若∠EDC =120°, P A =32, PB =332,则三棱锥P -ABC 的外接球的表面积为________.14.如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.15.已知三棱锥A -BCD 中,AB =AC =BC =2,BD =CD =2,点E 是BC 的中点,点A 在平面BCD 上的射影恰好为DE 的中点,则该三棱锥外接球的表面积为________.16.如图,四棱锥P -ABCD 中,四边形ABCD 为矩形,平面P AD ⊥平面ABCD .若∠BPC =90°,PB =2,PC =2,则四棱锥P -ABCD 的体积最大值为________.11。

2020届高考数学理一轮复习空间几何体的表面积和体积文科


栏目索引
1-2 给出下列四个命题:
①有两个侧面是矩形的立体图形是直棱柱;
②侧面都是等腰三角形的棱锥是正棱锥;
③侧面都是矩形的直四棱柱是长方体;
④底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱.
其中不正确的命题为
.
栏目索引
答案 ①②③ 解析 对于①,平行六面体的两个相对侧面也可能是矩形,故①错;对于 ②,对等腰三角形的腰是否为侧棱未作说明(如图),故②错;对于③,若底 面不是矩形,则③错;④由线面垂直的判定,可知侧棱垂直于底面,故④正 确. 综上,命题①②③不正确.
作VO⊥AD交AD于O,易知O为正三角形ABC的中心,所以AO= 2 AD=2,所
3
以在Rt△VOA中,VO= VA2 AO2 =2 3 ,正三棱锥V-ABC的高h=VO=2 3 .
因为△ABC为正三角形,所以BC=AC=2 3 .
所以侧视图的面积S= 1 BC×h= 1 ×(2 3 )2=6.故选C.
栏目索引
方法技巧 解决与空间几何体结构特征有关问题的技巧 (1)要想真正把握几何体的结构特征,必须多角度、全方面地去分析,多 观察实物,提高空间想象能力; (2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件 构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加 线、面等基本元素,然后依据题意判定; (3)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举 出一个反例即可.
4.柱、锥、台、球的表面积和体积
几何体
表面积
柱体(棱柱和圆柱)
S=S侧+2S底
锥体(棱锥和圆锥)
S=S侧+S底
台体(棱台和圆台)

S=S侧+S上+S下 S= 4πR2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 倍
B. 倍
C. 倍
D. 倍
3、某四棱锥的三视图如图所示,则该四棱锥的表面积是( )
A. B. C. D.
4、如图, 中, , ,以 所在直线为轴旋转一周,所得几何体的表面积等于( )
A.
B.
C.
D.
5、在三棱锥 中,底面 是等边三角形,侧面 是直角三角形,且 .当三棱锥 的表面积最大时,该三棱锥外接球的表面积为()
侧面积为 ,
而它的底面积为 ,
故它的表面积为 ,
故选:A.
5答案及解析:
答案:A
解析:根据题意,画出示意图如图所示.
由条件可得等边三角形 的边长为 ,且 ,所以 .设 ,则三棱锥 的表面积 .故当 ,即 时,三棱锥表面积最大,此时 ,所以 .取 的中点 ,连接 ,则 ,故点 为三棱锥外接球的球心,且球的半径 .所以该三棱锥外接球的表面积 ,故选A
8答案及解析:
答案:C
解析:由三视图还原三棱锥,得如图所示的三棱锥 ,所以最长的棱为 ,棱长为3.故选C.
9答案及解析:
答案:D
解析:根据三视图可知,该刍童是由上,下两个矩形与侧面四个等腰梯形构成,其对应的表面积为 .
10答案及解析:
答案:C
解析:设长方体过同一顶点的棱长分别为a, b,c,
则长方体的体积为 ,
2答案及解析:
答案:A
解析:
设圆柱的高为 ,底面半径为 ,圆柱的外接球的半径为 ,则 ,
因为圆锥的母线长 .所以圆锥的高为 ,圆锥的侧面积为 ,
所以 ,
所以 ,整理可得 ,
则 ,故选A.
3答案及解析:
答案:C
解析:
4答案及解析:
答案:A
解析:
由题意可得旋转体为圆锥,底面半径为3,高为4,故它的母线长 ,
立体几何(2)空间几何体的表面积与体积
1、若正三棱柱的各个顶点均在同一个半径为1的球面上,且正三棱柱的侧面均为正方形,则该三棱柱的表面积为( )
A. B. C. D.
2、有一个圆锥与一个圆柱的底面半径相等,圆锥的母线与底面所成角为 ,若圆柱的外接球的表面积是圆锥的侧面积的 倍,则圆柱的高是其底面半径的( )
∴ .
14答案及解析:
答案:
解析:设点 ,则 ,所以圆环的面积为 .
因为 ,所以 ,所以圆环的面积为 .
根据祖暅原理可知,该双曲线型冷却塔挖出一个以渐近线为母线的圆锥后的几何的体积等于底面半径为 、高为 的圆柱的体积,所以冷却塔的体积为: .
15答案及解析:
答案:1.如图所示,设圆台上、下底面半径分别为 ,则 .
6答案及解析:
答案:B
解析:如图,由三视图可还原得几何体 ,过 分别作垂直于底面的截面 和 ,将原几何体拆分成两个底面积为3,高为1的四棱锥和一个ቤተ መጻሕፍቲ ባይዱ面积为 ,高为2的三棱柱,所以 ,故选B.
7答案及解析:
答案:B
解析:设圆柱与圆锥的底面半径长都为r,则圆柱的高长为2r.因为圆锥的母线长为 ,所以几何体的表面积为 ,解得 ,则该几何体的主视图面积为 ,故选B.
D.
10、如图,在长方体 中,棱锥 的体积与长方体 的体积的比值为( )
A.
B.
C.
D.
11、已知圆柱的轴截面的对角线长为2,则这个圆柱的侧面积的最大值为__________
12、圆台的一个底面周长是另一个底面周长的 倍,母线长为 ,圆台的侧面积为 ,则圆台较小底面的半径为__________.
13、一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没人水中后,水面上升9厘米,则此球的半径为__________厘米.
15、已知有一块扇形铁皮 ,要剪下来一个扇环 作圆台形容器的侧面,并且在余下的扇形 内剪下一块与扇形相切的圆形,使它恰好作圆台形容器的下底面(大底面).试求:
1. 的长;
2.容器的体积(结果保留 ).
答案以及解析
1答案及解析:
答案:B
解析:如图,记正三棱柱为三棱柱 为外接球的球心,G为底面 的重心,连接 ,则 底面 ,连接 .设正三棱锥的底面边长为a,则由题意知, ,即 ,得 ,故正三棱柱的表面积为 .
14、祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.一般大型热电厂的冷却塔大都采用双曲线型.设某双曲线型冷却塔是曲线 与直线 , 和 所围成的平面图形绕 轴旋转一周所得,如图所示.试应用祖暅原理类比求球体体积公式的方法,求出此冷却塔的体积为.
A.4 B.6 C.8 D.10
8、某三棱锥的三视图如图所示,则该三棱锥最长的棱长为( )
A. B. C. D.
9、我国古代《九章算术》将上下两面为平行矩形的六面体称为刍童.如图所示为一个刍童的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,髙为2,则该刍童的表面积为( )
A.
B.
C.
由题意得
∴ .
2.圆台的高为

解析:
A. B. C. D.
6、《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为( )
A.4 B.5 C.6 D.12
7、如图所示的几何体,其表面积为 ,下部圆柱的底面直径与该圆柱的高相等,上部圆锥的母线长为 ,则该几何体的主视图的面积为( )
四棱锥 的体轵为 ,
所以棱锥 的体积与长方体 的体积的比值为 .
11答案及解析:
答案:
解析:设圆柱的底面半径为r,高为h,那么 ,
圆柱的侧面积为 。
12答案及解析:
答案:7
解析:依题意,设圆台较大底面的半径为 ,较小底面的半径为 ,则 ,故 .
13答案及解析:
答案:12
解析:设球的半径为 ,由题意知 ,
相关文档
最新文档