高中生物选修三知识点归纳
人教版高中生物选修三知识点总结(详细)

人教版高中生物选修三知识点总结(详细)人教版高中生物选修三主要包括进化论、生物技术与生物工程和病毒学三个部分。
下面是具体的知识点总结:一、进化论1. 进化的基本概念:进化是指种群遗传结构和适应环境的性状在时间和空间上的改变。
进化可以分为宏进化和微进化。
2. 进化的证据:包括化石记录、生物地理学、生态学、生理学比较等方面的证据。
化石记录是最为直接的证据,可以通过化石记录推测生物的起源和发展。
3. 进化机制:包括自然选择、基因突变、基因流动和遗传漂变等。
自然选择是进化的驱动力,通过物竞天择、适者生存的原理,逐渐改变种群的遗传结构。
4. 人类的进化:人类的起源和进化是生物学的基本问题之一。
人类最早出现在非洲,经历了直立行走、手的独立运动、大脑的扩大等特征的演化。
二、生物技术与生物工程1. DNA技术:包括DNA提取、DNA聚合酶链式反应(PCR)、DNA电泳等技术。
这些技术可以用于DNA分析、DNA重组和基因检测等。
2. 基因工程:包括DNA重组、基因克隆和转基因技术等。
基因工程可以用于改良农作物、治疗疾病和生物工业等方面。
3. 生物工程应用:包括基因药物、转基因农作物、转基因微生物等应用。
基因药物可以用于治疗疾病;转基因农作物可以提高作物的产量和品质;转基因微生物可以生产有用的化学物质。
三、病毒学1. 病毒的基本特征:病毒是一种非细胞的生物,由核酸和蛋白质组成。
病毒需要寄生于细胞内才能繁殖。
2. 病毒的分类:病毒可以分为DNA病毒和RNA病毒,根据寄生细胞的类型可以分为动物病毒和植物病毒。
3. 病毒的传播途径:包括直接接触、空气传播、食物和水源传播等。
病毒传播可以导致传染病的发生。
4. 抗病毒的技术:包括病毒的预防和控制、病毒的诊断技术以及病毒的治疗等。
疫苗接种可以预防某些病毒感染,药物可以用于治疗某些病毒感染。
以上就是人教版高中生物选修三的主要知识点总结。
高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。
- 转录:将分离得到的基因转录成RNA。
- 修饰:对转录后的基因进行修饰,使其更具表达效果。
- 克隆:用适当的载体将修饰过的基因导入目标细胞中。
- 表达:使目标细胞中导入的基因表达。
2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。
- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。
- 自组织培养技术:包括离心、培养基选择、细胞培养等。
- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。
3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。
- 农业育种:通过基因工程技术改良作物品质和产量。
- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。
- 环境污染治理:通过基因工程技术处理污染物。
4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。
- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。
- 技术安全:基因工程技术的安全性需要持续进行研究和维护。
5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。
- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。
新高中生物选修三知识点总结归纳

欢迎阅读高中生物选修三知识点总结一、基因工程1.?基因工程的诞生(1)基因工程:按照人们的意愿,进行严格的设计,并通过体外?DNA?重组和转基因等技术,从而创造出更符合人们需要的新的生物类型和生物产品。
(2)基因工程诞生的理论基础是在生物化学、分子生物学和微生物学科的基础上发展起来,技术支持有基因转移载体的发现、工具酶的发现,DNA?合成和测序仪技术的发明等。
2. 基因工程的原理及技术(3)基因工程操作中用到了限制酶、DNA?连接酶、运载体考点限制酶细化:①?②?DNA?③?⑤(4考点细化:①?②?③?发挥作用。
④?⑤?⑥?⑦?⑧??????????⑨?目的基因的获取、基因表达载体的构建、目的基因的检测和表达一般需要碱基互补配对。
将目的基因导入受体细胞不需要碱基互补配对3.?基因工程的应用(5)在农业生产上:主要用于提高农作物的抗逆能力(如:抗除草剂、抗虫、抗病、抗干旱和抗盐碱等),以及改良农作物的品质和利用植物生产药物等方面。
(6)基因治疗不是对患病基因的修复,基因检测所用的?DNA?分子只有处理为单链才能与被检测的样品,按碱基配对原则进行杂交。
4.?蛋白质工程(7)蛋白质工程的本质是通过基因改造或基因合成,对先有蛋白质进行改造或制造新的蛋白质,所以被形象地称为第二代基因工程;基因工程在原则上只能生产自然界已存在的蛋白质二、克隆技术1.?植物的组织培养(1)细胞工程:指应用细胞生物学和分子生物学的原理和方法,通过细胞水平或者细胞器水平上的操作,按照人们的意愿来改变细胞内的遗传物质或获取细胞产品的一门综合科学技术。
在细胞器水平上改变细胞的遗传物质,属于细胞工程。
(2)细胞全能性:具有某种生物全部遗传信息的任何一个细胞,都具有发育成完整生物体的潜能。
考点细化:①?都具有该生物全部遗传信息,因此从理论上讲,生物体的每一个活细胞都应该具有全能性。
②?细胞在生物体内没有表现出全能性的原因是基因选择性表达。
高中生物选修三知识点总结

高中生物选修三知识点总结高中生物选修三是高中生物学的一门选修课程,主要涉及生物科学中的生物技术、生物工程以及遗传工程等内容。
在这门课程中,学生将学习到许多重要的知识点,本文将对其中的三个知识点进行总结。
1. 生物技术生物技术是利用生物学原理和方法来解决生物学问题或开发生物制品的技术。
生物技术可以分为传统生物技术和现代生物技术两类。
传统生物技术包括发酵技术、培养技术和遗传改良技术等。
现代生物技术则包括基因工程、细胞工程和蛋白质工程等。
在高中生物选修三中,学生将学习到基因工程的相关知识。
基因工程是一种利用重组DNA技术来改变或嵌入物种DNA的方法。
学生将了解到基因工程的基本原理和技术方法,包括DNA切割、连接和转化等。
他们还将学习到基因工程在农业、医学和环境保护等领域的应用,如转基因作物的产生和基因治疗的原理。
2. 生物工程生物工程是利用生物科学和工程技术来开发和应用生物制品的领域。
生物工程主要包括生物工艺学和生物制药学两个方面。
生物工艺学是利用微生物、生物反应器和生产工艺技术来制造有用产品的工程学科。
生物制药学则关注药物生产和相关生物产品的研发。
在高中生物选修三中,学生将学习到生物工程的基本概念、工艺流程和应用。
他们将了解如何使用细菌、酵母和真菌等微生物来生产药物和化学品。
学生还将学习到生物反应器的设计和运行原理,以及生物工程在生态修复、食品工业和传统药用工艺中的应用。
3. 遗传工程遗传工程是一种通过人为手段来改变生物遗传物质的方法。
它包括了诸多的技术和方法,如基因克隆、DNA测序和基因敲除等。
遗传工程的应用领域广泛,包括农业、医学、环境和工业等。
在高中生物选修三中,学生将学习到遗传工程的基本原理和方法。
他们将了解到基因克隆的过程,包括DNA提取、切割、连接和转化等。
他们还将学习到基因测序的原理和方法,以及基因敲除和基因编辑的技术。
学生还将了解到遗传工程在农业中的应用,如转基因作物的培育和抗病虫害的改良。
高中生物选修3知识点总结(全)

高中生物选修3知识点总结(全)生物质与天然气是两种常见的可再生能源,它们在减少化石燃料使用和减少空气污染方面都有着重要作用。
下面我们将对生物质和天然气进行比较。
一、定义生物质是指来自植物和动物等生物体的可再生、有机的原料,包括木材、麦秸、秸秆、谷物皮、枯枝落叶等。
天然气指的是主要由甲烷组成的一种气体燃料,通常来自石油和天然气田。
二、来源生物质可以通过农作物、林业、草原系畜牧业等方式获得。
生物质利用可以促进农业、林业、草原生态环境的可持续发展,也可以解决农作物秸秆等废弃物的处理问题。
天然气则主要来自油气井,是地球上自然形成的化石燃料。
三、能源密度生物质的能源密度较低,普遍不能直接用作燃料,需要进行加工处理。
例如,生物质可以经过压缩成为生物质颗粒进行燃烧,或者制成液态生物质燃料进行利用。
而天然气的能源密度较高,可以直接用于工业、生活和交通等领域。
四、环境影响生物质燃烧会产生二氧化碳,但这些二氧化碳不会对大气环境产生影响,因为这些二氧化碳来自于生物质在生长过程中吸收的二氧化碳。
而燃烧化石燃料会产生大量的二氧化碳,进一步加剧气候变化和环境污染。
天然气的燃烧会产生二氧化碳和少量的一氧化碳等污染物,但与化石燃料相比,它们排放的污染物要少得多。
五、可持续性生物质是可持续的能源来源,因为它们是可再生和可回收的。
生物质产生的废弃物可以用于肥料或其他用途,从而最大限度地减少了浪费和污染。
天然气则是一种非可再生和枯竭的资源。
六、价格与供应目前,天然气的价格较为稳定,主要取决于市场供需关系和国际油价。
而生物质的价格相对较低,但受到生产成本、产量和销售渠道等因素的影响。
生物质的供应也不够稳定,因为它们的收集和加工需要大量的能源和资金。
综上所述,生物质和天然气都是重要的可再生能源,它们在环保和可持续性方面具有很大的潜力,但它们也存在一些差异。
因此,在选择可再生能源时,应根据不同的能源来源、应用和地区,综合考虑其成本、可持续性和环保效益等因素。
高中生物选修3知识点总结

选修3知识点复习专题1 基因工程(一)基因工程又叫基因拼接技术或DNA重组技术。
原理是基因重组,操作水平是分子水平。
优点:打破物种界限;定向地改造生物的遗传性状。
(二)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要从原核生物中分离纯化出来。
(2)功能:使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开(3)特点具有专一(特异)性。
(4)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区别:E·coliDNA连接酶只能连接黏性末端;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个脱氧核苷酸加到已有的脱氧核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备的条件:①能够稳定保存并复制;②有一至多个限制酶酶切位点③含有标记基因,便于筛选。
④对受体细胞无害。
(2)最常用的载体是质粒,化学本质是DNA分子。
(3)其它载体:λ噬菌体的衍生物、动植物病毒(三)基因工程的基本操作程序第一步:目的基因的获取1.目的基因主要是指编码蛋白质的结构基因。
3.人工合成目的基因的两个条件:基因比较小;核苷酸序列已知。
4.PCR技术扩增目的基因(1)PCR是多聚酶链式反应的缩写,原理DNA双链复制。
(2)过程:第一步变性:加热至90~95℃,DNA解链,不需要解旋酶;第二步复性:冷却到55~60℃,引物结合到互补DNA链。
变性和复性利用了DNA的热变性原理;第三步延伸:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
第二步:基因表达载体的构建基因表达载体的组成:除了目的基因外,还必须有启动子、终止子、标记基因等。
生物选修3知识点总结7篇

生物选修3知识点总结7篇第1篇示例:生物选修3知识点总结生物选修3是高中生物的一个重要模块,涵盖了生物学中的许多重要概念和知识点。
在这个模块中,我们将深入了解生命的进化、环境与生物多样性、遗传与进化等内容。
本文将对生物选修3中的主要知识点进行总结,帮助同学们更好地复习和理解这些重要概念。
1. 生命的进化生命的进化是生物学中的一个重要课题,通过对化石记录、地质学证据、生物地理分布和生物分类等多方面的研究,科学家们认为生命从简单的单细胞生物逐渐进化到了多细胞有机体,进而形成了地球上的生物多样性。
达尔文的进化论提出了天然选择和适者生存的概念,解释了生物体适应环境的原理。
2. 生物多样性生物多样性是生物学中一个重要的概念,它指的是不同生物种类的多样性和丰富性。
地球上的生物多样性包括物种多样性、遗传多样性和生态系统多样性。
生物多样性对于生态系统的稳定和生物圈的平衡至关重要,保护生物多样性成为当今社会亟待解决的环境问题之一。
3. 遗传与进化遗传与进化是生物选修3中的核心内容之一,通过对基因的遗传规律、基因突变和基因重组等过程的研究,我们可以更好地理解遗传变异在生物进化中的作用。
进化与适应环境密切相关,生物体的性状和行为会随着环境的变化而逐渐演化,从而提高生物体对环境的适应性。
4. 生态系统与可持续发展生态系统是由生物体、非生物体和它们相互作用而形成的生态单位,生态系统中的生物体和环境相互依存、相互影响。
可持续发展是指以满足当前社会需求为前提,不破坏自然环境,保护生物多样性的发展理念。
生态系统的破坏会导致生物多样性减少、生态平衡失调,影响人类的生存和发展。
生物选修3涵盖了生物学中许多重要的知识点和概念,包括生命的进化、生物多样性、遗传与进化、生态系统与可持续发展等内容。
深入理解这些知识点不仅有助于我们更好地了解生物世界的奥秘,还能够引导我们更好地保护环境、维护生态平衡,推动社会可持续发展。
希望同学们在学习生物选修3的过程中,能够深入思考这些知识,积极应用于实际生活中。
重点高中生物选修三知识点整理(完整加强版)

重点高中生物选修三知识点整理(完整加强版)————————————————————————————————作者:————————————————————————————————日期:生物选修3知识点(区别不同工程和不同操作水平)专题1 基因工程概念:按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。
基本原理:让目的基因在受体细胞内稳定且高效的表达理论基础:DNA是生物遗传物质的发现,DNA双螺旋结构,遗传信息传递方式核心:构建重组DNA分子(一)基本工具(技术基础)Cf 工具&工具酶1.限制性核酸内切酶(1)来源:主要是从原核生物中分离纯化出来的(不切割自身DNA的原因:原核生物中无该限制酶的识别序列或其已被修饰)(2)功能:识别和切割DNA分子内一小段特殊的脱氧核苷酸序列(偶数碱基对回文序列)特异性表现:识别特定片段、切割该片段中的特定位点、形成一种末端Cf —G↓GATCC— & —↓GATC—(3)结果:DNA片段末端形成末端碱基互补的黏性末端或平末端①用切割(质粒)②根据目的基因的位置或剪辑序列来确定限制酶的种类③切割后的片段要画全2.DNA连接酶(1)功能:连接具有末端碱基互补的2个DNA片段,形成重组DNA分子Cf DNA聚合酶:只能将单个脱氧核苷酸逐个添加到已有的脱氧核苷酸链之后,需模板DNA,连接磷酸二酯键3.载体(1)条件:①能在受体细胞中稳定保存并大量复制,基本不影响受体细胞正常生命活动②一至多个限制酶酶切位点(必须在所需标记基因外),供外源DNA片段插入③标记基因,便于筛选含有重组DNA分子的受体细胞——往往需要根据需求改造天然载体(2)功能:①作为运载工具将目的基因转移到受体细胞内——载体选质粒的原因:具有环状结构,能够携带目的基因②利用它在受体细胞内对目的基因进行大量复制和转录/表达(3)质粒(最常用的载体)一种能够自主复制,在细菌(或酵母菌)中独立于染色体之外存在的双链环状DNA分子(4)其它载体:噬菌体、动植物病毒(二)基因工程的基本操作程序第一步:获取目的基因1.目的基因:人们所需要的编码蛋白质的结构基因2.方法(1)序列已知①化学合成法——较长DNA单链合成过程中容易出现碱基缺失如反转录法(e.g获取mRNA逆转录成cDNA再用DNA聚合酶生成双链)②聚合酶链式反应(PCR)扩增Polymerase Chain Reaction(1)原料:水、缓冲液、4种游离脱氧核苷酸、TaqDNA聚合酶、模板DNA(……基因)、对…基因特异的2段DNA引物(防止相互或自身折叠)(2)过程:第一步:加热至90~95℃,DNA在高温下变性解链第二步:冷却到55~60℃,引物结合到互补DNA链(退火)第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成能量来源于dNTP(2)序列未知建立基因文库:建立一个包括目的基因在内的基因文库(保存在受体菌中),再从基因文库中获取3.目的基因大量扩增/分子水平的克隆①利用受体细胞(如E.coli)无性繁殖,利用基因探针钓取,再导入最终受体细胞e.g目的基因→大肠杆菌→农杆菌→植物细胞→植物(主要在细菌分裂时几何级扩增,尽管质粒独立于拟核,可在分裂时发生自我复制,但由于多数细菌对胞内质粒数量有限制,故该种复制对扩增效果不大)②PCR技术第二步:形成重组DNA分子(基因表达载体:启动子+目的基因+终止子+标记基因)1.目的:转运目的基因,并使在受体内稳定存在、复制、表达/转录并稳定遗传(基因型X0)2.过程:(1)单酶切:用同种限制酶分别切割目的基因和载体从而形成相同的粘性末端,然后用DNA连接酶将目的基因和载体连接起来——有时用不同限制酶也可以形成相同的粘性末端(2)双酶切:用两种限制酶切割使目的基因和载体两端各形成两种粘性末端,防止载体和目的基因自身环化第三步:将重组DNA分子导入受体细胞——需将目的基因整合到动植物细胞的染色体DNA上目的基因是否整合到染色体DNA上决定于基因表达载体上是否有相关序列(形成酶)1.植物体细胞:农杆菌转化法(插入Ti质粒上的T-DNA),基因枪法、花粉管通道法——导入叶绿体DNA中,由于细胞质/器DNA的遗传与性别相关联,故可避免因花粉传播而造成基因污染(目的基因传播到非转基因生物中)2.动物受精卵:显微注射技术用(如显微注射)技术/方法将目的基因导入cf转基因/基因工程技术3.原核细胞:CaCl2/Ca2+ 处理法(先用Ca2+处理增加细胞壁通透性,使之成为感受态细胞,再将重组质粒与感受态细胞混合,在一定温度下感受态细胞吸收DNA分子)——原核生物作为受体细胞的原因:①繁殖快②体积小新陈代谢旺盛(目的产物合成效率高)③遗传物质少(便于操作)、④单细胞(容易培养)第四步:筛选含有目的基因的受体细胞1.原因:受体细胞接纳重组DNA分子存在概率2.原理:载体如质粒上的抗性基因等标记基因3.方法:利用选择培养基筛选①蔗糖转运蛋白:仅以蔗糖作为碳源的培养基②菌落表现型:抗……不抗……第五步:目的基因的检测和表达——目的基因导入受体细胞可能仅进行大量扩增,但不一定以此为目的1.DNA/核酸分子杂交技术用cDNA作为探针与从受体细胞中提取并解旋的DNA/mRNA杂交,观察是否会出现杂交带检测①染色体DNA上是否插入了目的基因②目的基因是否转录出了mRNA——①一种基因探针只能检测水体中的一种病毒;检测病毒可对照核酸序列②放射性同位素标记探针③基因探针是一小段cDNA,可以与相应基因转录出的mRNA结合(即使被切割)采用DNA分子杂交技术/方法,用基因探针检测2.抗原-抗体杂交:目的基因是否翻译成蛋白质如E.coli合成人胰岛素原3.个体水平的鉴定:如转基因抗虫植物(让害虫吞食该转基因棉植株的叶片,观察害虫存活情况,以确定其是否具有抗虫形状)——根本原因:联系基因层面,cf基因序列&碱基对/脱氧核苷酸序列(三)基因工程的应用1.动植物基因、细胞工程:优点①所需时间短②克服远缘杂交不亲和的缺陷(对应传统缺点)2.基因工程药物:首次是生长素释放抑制激素,然后胰岛素(E.coli产酶原)、干扰素等干扰素:我国第一个基因重组新药。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修3复习提纲一、基因工程1、(a)基因工程的诞生(一)基因工程的概念基因工程是指依据人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,给予生物以新的遗传特性,创建出更符合人们须要的新的生物类型和生物产品。
基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。
2、(a)基因工程的原理与技术原理:基因重组技术:(一)基因工程的基本工具1.“分子手术刀”——限制性核酸内切酶(限制酶)(1)来源:主要是从原核生物中分别纯化出来的。
(2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。
(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。
2.“分子缝合针”——DNA连接酶(1)两种DNA连接酶(E·coliDNA连接酶和T4DNA连接酶)的比较:①相同点:都缝合磷酸二酯键。
②区分:E·coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。
(2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。
DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。
3.“分子运输车”——载体(1)载体具备的条件:①能在受体细胞中复制并稳定保存。
②具有一至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种袒露的、结构简洁的、独立于细菌染色体之外,并具有自我复制实力的双链环状DNA分子。
(3)其它载体:噬菌体的衍生物、动植物病毒(二)基因工程的基本操作程序第一步:目的基因的获得1.目的基因是指:编码蛋白质的结构基因。
2.原核基因实行干脆分别获得,真核基因是人工合成。
人工合成目的基因的常用方法有反转录法_和化学合成法_。
3.PCR技术扩增目的基因(1)原理:DNA双链复制(2)过程:第一步:加热至90~95℃DNA解链;其次步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始互补链的合成。
其次步:基因表达载体的构建1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。
2.组成:目的基因+启动子+终止子+标记基因(1)启动子:是一段有特别结构的DNA片段,位于基因的首端,是RNA 聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。
(2)终止子:也是一段有特别结构的DNA片段,位于基因的尾端。
(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。
常用的标记基因是抗生素基因。
第三步:将目的基因导入受体细胞_1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。
2.常用的转化方法:将目的基因导入植物细胞:采纳最多的方法是农杆菌转化法,其次还有基因枪法和花粉管通道法等。
将目的基因导入动物细胞:最常用的方法是显微注射技术。
此方法的受体细胞多是受精卵。
将目的基因导入微生物细胞:3.重组细胞导入受体细胞后,筛选含有基因表达载体受体细胞的依据是标记基因是否表达。
第四步:目的基因的检测和表达1.首先要检测转基因生物的染色体DNA上是否插入了目的基因,方法是采纳 DNA分子杂交技术。
2.其次还要检测目的基因是否转录出了mRNA,方法是采纳用标记的目的基因作探针与mRNA杂交。
3.最终检测目的基因是否翻译成蛋白质,方法是从转基因生物中提取蛋白质,用相应的抗体进行抗原-抗体杂交。
4.有时还需进行个体生物学水平的鉴定。
如转基因抗虫植物是否出现抗虫性状。
(三)(b)基因工程的应用1.植物基因工程:抗虫、抗病、抗逆转基因植物,利用转基因改良植物的品质。
2.动物基因工程:提高动物生长速度、改善畜产品品质、用转基因动物生产药物。
3.基因治疗:把正常的外源基因导入病人体内,使该基因表达产物发挥作用。
(四)(a)蛋白质工程的概念蛋白质工程是指以蛋白质分子的结构规律与其生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满意人类的生产和生活的需求。
(基因工程在原则上只能生产自然界已存在的蛋白质)(1)蛋白质工程崛起的缘由:基因工程只能生产自然界已存在的蛋白质(2)蛋白质工程的基本原理:它可以依据人的需求来设计蛋白质的结构,又称为其次代的基因工程。
基本途径:从预期的蛋白质功能动身,设计预期的蛋白质结构,推想应有的氨基酸序列,找到相对应的脱氧核苷酸序列(基因)以上是蛋白质工程特有的途径;以下依据基因工程的一般步骤进行。
(留意:目的基因只能用人工合成的方法)设计中的困难:如何推想非编码区以与内含子的脱氧核苷酸序列二、细胞工程(一)植物细胞工程1.理论基础(原理):细胞全能性2.植物组织培育技术(b)(1)过程:离体的植物器官、组织或细胞―――→愈伤组织―――→试管苗――→植物体(2)用途:微型繁殖、作物脱毒、制造人工种子、单倍体育种、细胞产物的工厂化生产。
A 植物繁殖微型繁殖:可以高效快速地实现种苗的大量繁殖作物脱毒:采纳茎尖组织培育来除去病毒(因为植物分生区旁边的病毒极少或没有)人工种子:以植物组织培育得到的胚状体、不定芽、顶芽和腋芽等为材料,经人工薄膜包装得到的种子。
优点:完全保持优良品种的遗传特性,不受季节的限制;便利贮存和运输B 作物新品种培育单倍体育种:a过程:植株(AaBb)通过减数分裂得到花粉(AB、Ab、aB、ab四种类型);对花粉进行花药离体培育(技术是植物组织培育);得到单倍体植株;对其幼苗时期进行秋水仙素处理;得到了正常的纯合二倍体植株(AABB、AAbb、aaBB、aabb四种类型)。
b 优点:明显缩短育种年限C 突变体利用:在组织培育中会出现突变体,通过从有用的突变体中选育出新品种(如筛选抗病、抗盐、含高蛋白的突变体)D 细胞产物的生产:通过能够产生对人们有利的产物的细胞进行组织培育,从而让它们能够产生大量的细胞产物。
(3)地位:是培育转基因植物、植物体细胞杂交培育植物新品种的最终一道工序。
(1)过程:(2)诱导融合的方法:物理法包括离心、振动、电刺激等。
化学法一般是用聚乙二醇(PEG)作为诱导剂。
(3)意义:克服了远缘杂交不亲和的障碍。
(二)动物细胞工程1. 动物细胞培育(a)(1)概念:动物细胞培育就是从动物机体中取出相关的组织,将它分散成单个细胞,然后放在相宜的培育基中,让这些细胞生长和繁殖。
(2)动物细胞培育的流程:取动物组织块(动物胚胎或幼龄动物的器官或组织)→剪碎→用胰蛋白酶或胶原蛋白酶处理分散成单个细胞→制成细胞悬液→转入培育瓶中进行原代培育→贴满瓶壁的细胞重新用胰蛋白酶或胶原蛋白酶处理分散成单个细胞接着传代培育。
(3)细胞贴壁和接触抑制:悬液中分散的细胞很快就贴附在瓶壁上,称为细胞贴壁。
细胞数目不断增多,当贴壁细胞分裂生长到表面相互抑制时,细胞就会停止分裂增殖,这种现象称为细胞的接触抑制。
(4)动物细胞培育须要满意以下条件①无菌、无毒的环境:培育液应进行无菌处理。
通常还要在培育液中添加确定量的抗生素,以防培育过程中的污染。
此外,应定期更换培育液,防止代谢产物积累对细胞自身造成危害。
②养分:合成培育基成分:糖、氨基酸、促生长因子、无机盐、微量元素等。
通常需加入血清、血浆等自然成分。
③温度:相宜温度:哺乳动物多是36.5℃+0.5℃;pH:7.2~7.4。
④气体环境:95%空气+5%CO2。
O2是细胞代谢所必需的,CO2的主要作用是维持培育液的pH。
(5)动物细胞培育技术的应用:制备病毒疫苗、制备单克隆抗体、检测有毒物质、培育医学探讨的各种细胞。
2.动物体细胞核移植技术和克隆动物(1)哺乳动物核移植可以分为胚胎细胞核移植(比较简洁)和体细胞核移植(比较难)。
(2)选用去核卵(母)细胞的缘由:卵(母)细胞比较大,简洁操作;卵(母)细胞细胞质多,养分丰富。
(3)体细胞核移植的大致过程是:高产奶牛(供应体细胞)进行细胞培育;同时采集卵母细胞,在体外培育到减二分裂中期的卵母细胞,去核(显微操作)[注:为什么要用卵细胞?它可以供应足够的养分;操作简便;细胞质不会抑制细胞核全能性的表达];将供体细胞注入去核卵母细胞;通过电刺激使两细胞融合,供体核进入受体卵母细胞,构建重组胚胎;将胚胎移入受体(代孕)母牛体内;生出与供体奶牛遗传基因相同的犊牛(4)体细胞核移植技术的应用:①加速家畜遗传改良进程,促进良畜群繁育;②爱护濒危物种,增大存活数量;③生产宝贵的医用蛋白;④作为异种移植的供体;⑤用于组织器官的移植等。
(5)体细胞核移植技术存在的问题:克隆动物存在着健康问题、表现出遗传和生理缺陷等。
3.动物细胞融合(1)动物细胞融合也称细胞杂交,是指两个或多个动物细胞结合形成一个细胞的过程。
融合后形成的具有原来两个或多个细胞遗传信息的单核细胞,称为杂交细胞。
(2)动物细胞融合与植物原生质体融合的原理基本相同,诱导动物细胞融合的方法与植物原生质体融合的方法类似,常用的诱导因素有聚乙二醇、灭活的病毒、电刺激等。
(3)动物细胞融合的意义:克服了远缘杂交的不亲和性,成为探讨细胞遗传、细胞免疫、肿瘤和生物生物新品种培育的重要手段。
(4)动物细胞融合与植物体细胞杂交的比较:(1)抗体:一个B淋巴细胞只分泌一种特异性抗体。
从血清中分别出的抗体产量低、纯度低、特异性差。
(2)单克隆抗体的制备过程:对免疫小鼠注射特定的抗原蛋白(目的使小鼠产生了效应B细胞);提取B淋巴细胞;同时用动物细胞培育的方法培育骨髓瘤细胞并提取;促使它们细胞融合[注:融合的结果是有许多不符合要求的;如有2个B淋巴细胞融合的细胞等,所以要进行筛选];在特定的选择培育基上筛选出融合的杂种细胞[特点是能快速大量增殖,又能产生专一的抗体];然后对它进行克隆化培育和抗体检测[筛选出能够分泌所需抗体的杂种细胞];最终将杂交瘤细胞在体外做大规模培育或注射入小鼠腹腔内增殖,从细胞培育液或小鼠腹水中可得到大量的单克隆抗体。
(3)杂交瘤细胞的特点:既能大量繁殖,又能产生专一的抗体。
(4)单克隆抗体的优点:特异性强,灵敏度高,并能大量制备。
(5)单克隆抗体的作用:作为诊断试剂:精确识别各种抗原物质的微小差异,并跟确定抗原发生特异性结合,具有精确、高效、简易、快速的优点。
用于治疗疾病和运载药物:主要用于治疗癌症治疗,可制成“生物导弹”,也有少量用于治疗其它疾病。
三、胚胎工程(一)动物胚胎发育的基本过程(1)精子的发生:补充,精原细胞先进行有丝分裂后进行减数分裂;变形过程中,细胞核为精子头的主要部分,高尔基体发育为顶体,中心体演化为精子的尾,线粒体在尾基部形成线粒体鞘膜,其他物质浓缩为原生质滴直至脱落。