反应器串级控制系统整定

反应器串级控制系统整定
反应器串级控制系统整定

西华大学课程设计说明书

目录

1 前言 (1)

2 总体方案设计 (2)

2.1 方案比较 (2)

2.2 方案选择 (4)

3 反应器串级控制系统分析 (5)

3.1 被控变量和控制变量的选择 (5)

3.2 主、副回路的设计 (5)

3.3 主、副控制器正、反作用的选择 (7)

3.4 控制系统方框图 (7)

3.5 分析被控对象特性及控制算法的选择 (8)

4 串级控制系统的参数整定 (9)

4.1 参数整定方法 (9)

4.2 参数整定 (9)

4.3 两步法的整定步骤 (10)

5 MATLAB仿真 (12)

5.1 控制系统的MATLAB仿真 (12)

5.2 串级控制系统PID参数整定: (14)

5 结论 (18)

6 总结与体会 (19)

7 参考文献 (20)

1

1 前言

反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。

夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比较复杂,夹套反应器的自动控制就尤为重要,他直接关系到产品的质量、产量和安全生产。

化工生产过程通常可划分为前处理、化学反应及后处理三个工序。前处理工序为化学反应做准备,后处理工序用于分离和精制反应产物,而化学反应工序通常是整个生产过程的关键,因此在化学反应工序中设计一套比较完善的控制系统是很重要的。

设计夹套式反应器的控制方案应从质量指标,物料平衡和能量平衡,约束条件三个方面考虑(假设在本反应器中反应物为一般性的,无腐蚀,无爆炸的液液反应物)。

2

2 总体方案设计

2.1 方案比较

(1) 简单控制系统

如图所示,温度调节器TC 是根据反应器内物料的温度T 与设定值的偏差进行控制,当冷却水部分出现干扰后系统并不能及时产生控制作用,克服干扰对被控参数T 的影响控制质量差。但在冷却水扰动可以忽略或很小的情况下,并生产工艺对物料温度要求不是很严格时,简单控制系统还是可以满足要求的,如果冷却水的扰动大,而且对系统产生很大影响,则简单控制系统很难满足工艺要求。简单控制系统框图如图所示。

图2.1 反应器温度简单控制系统

图2.2 反应器物料温度简单控制系统框图

3

被控变量:反应器内物料的温度;

操控变量:冷却水流量。

(2)串级控制系统

串级控制系统采用两套检测変送器和两个调节器,前一个调节器的输出作为后一个调节器的输入,后一个调节器的输出送往调节阀。

中间被控变量:夹套和槽壁温度;

被控变量:反应器内物料的温度;

操纵变量:冷却水流量。

夹套和槽壁温度变化时,TC 可以及时动作,克服扰动。

图2.3和图2.4分别为串级系统工艺流程图和串级系统框图。

图2.3 串级系统工艺流程图

4

图2.4 串级系统框图

2.2 方案选择

方案一的简单控制系统有干扰时,TC 输出信号改变阀门开度,进而改变冷却水的流量。在开始时,物料的温度离设定值偏差大,用冷却水降温传温慢,就造成开始是反应时间过长,动作不及时,偏差在短时间内不能消除。

方案二的串级控制系统中,由于引进了副回路,不仅能迅速克服作用于副回路内的干扰,也能加速克服主回路的干扰。在系统开始时,在副回路的作用下先对槽壁进行冷却,这样就等于较少了一个热容,继而加速了系统的平衡。对于串级系统而言,副回路有先调、初调、快调的特点;主回路有后调、细调、慢调的特点。两者相互配合,使控制质量明显提高,与简单系统相比,对离被控对象较远的扰动(二次扰动)有明显的抑制作用,增加了系统的稳定性,提高了系统的响应速度。

综上所述,根据本设计系统的特点,选择串级控制。

5

3 反应器串级控制系统分析

3.1 被控变量和控制变量的选择

(1)被控变量的选择

根据工艺过程的控制要求,主被控变量应该能反映工艺指标。夹套式反应器的工艺指标主要是反应器内温度,利用反应器内温度来衡量反应物之间反映的充分情况。因此,

若要反映工艺指标,夹套式反应器内反应温度必须是T-T 串级控制系统的主被控变量。 从串级控制的特点可知,当扰动进入副回路时,副回路能迅速而强有力地克服它,起到超前控制作用,因此在选择副变量时,一定要把主要扰动包括在副回路内,并力求把尽量多的扰动包含在副回路中,以充分发挥串级控制的最大优点,吧对主变量影响最严重、最剧烈、最频繁的扰动因素抑制到最低程度,以确保主被控变量的控制质量。同时冷却水温度变化是主要扰动,包括水温变化、水量变化等许多的扰动。因此采用夹套水温度作为副被控变量。这样完全符合副被控变量包括主要扰动且包含尽可能多的扰动的原则。

(2)控制变量的选择

控制变量是在系统中加以控制的变量。除去系统的主、副被控变量外的一切变量,这些变量有些必须加以控制。在夹套式反应器中反应温度和夹套水温度构成的T-T 串级控制系统中,冷却水流量这一变量在系统中包括的扰动变量最多,因此选取冷却水流量作为系统的控制变量,这样符合系统的整体控制。

3.2 主、副回路的设计

(1)主回路的设计

串级控制系统的主回路仍是一个定值控制系统,主回路的设计仍可用单回路控制系统的设计原则进行。因此主回路应包括主要的质量指标等标准。因此确定了主被控变量、主控制变量及主要扰动变量就能组成主回路。由上述的主被控变量和控制变量的选择可设计出系统主回路。如图3.1所示;

6

图3.1 串级控制系统主回路

(2)副回路的设计

副回路可看作是一种新的动态环节。副回路设计是串级控制系统设计的一个关键问题。从结构上看,副回路也是一个单回路,问题的实质在于如何从整个对象中选取一部分作为父对象,然后组成一个控制回路,即可归纳为如何选择福参数。首先副参数的选择应使副回路的时间常数小,调节通道短,反应灵敏;其次副回路因包含被控对象所受到主要干扰。

由此可设计出系统的副回路。如图3.2所示;

图3.2 串级控制系统副回路

7

3.3 主、副控制器正、反作用的选择

假设夹套式反应器中反应为放热反应。则选择如下:

(1)控制阀:从安全角度考虑,选择气关型控制阀0v k <;

(2)副控制对象(2T T ):冷却水流量增加,夹套温度下降,因此

20p k <; (3)副控制器(2T C ):为保证负反馈,应满足

2220c v p m k k k k >,因此20m k >,应选20c k >,即选用反作用控制器;

(4)主被控对象(1TT ):当夹套温度升高时,反应器温度升高,因此10p k >;

(5)主控制器(1T C ):为保证负反馈,应满足

1110c p m k k k >,因此10m k >,应选10c k >,

即选用反作用控制器。[3] 3.4 控制系统方框图

图3.3 反应温度与夹套水温度串级控制系统方框图

8

如图3.3所示;反应温度与夹套温度构成串级控制系统,反应温度为主被控变量,夹套温度为副被控变量。反应温度控制器的输出作为夹套温度控制的设定值。

此温度串级控制系统的具体工作过程为:当工况稳定时,物料的流量和温度不变,冷却水的压力和温度稳定。反应温度和夹套水温度均处于相对平衡状态,调节阀保持一定开度,1T 也稳定在设定值上。如果工况平衡被破坏,一方面冷却水干扰2F 会影响夹套水的温度,副控制器动作,控制调节阀改变冷却水流量,以克服其对夹套水温度的影响。如果干扰量不大,经过副回路的及时控制一般不会影响反应温度。如果干扰量副职较大,副回路虽能及时矫正,但仍可能影响反应温度,此时再通过主控制器的进一步调节,就可以完全克服上述扰动。若进料干扰1F 使反应温度变化,通过主回路即可抑制其影响。显然由于副回路的存在加快了控制作用,使扰动对反应温度的影响比单回路要小。

3.5 分析被控对象特性及控制算法的选择

(1)被控对象特性分析

由于被控变量的选择中可知主被控变量为反应器内的反应温度,副被控变量为夹套内冷却水的温度。由设计可知;主扰动为进料口进料流量,副扰动为冷却水流量。

依据文献资料可做以下假设:对于夹套式反应器反应温度对象,控制通道与扰动通道的动态特性可假设为:111()1p

s P P P K e G s T s τ=+, 111()1D s D D D K e G s T s τ=+。对于夹套冷却水温度对象,控制通道与扰动通道动态特性可假设为:

222()1P P P K G s T s =+,222()1D D D K G s T s =+。 (2)控制算法的选择

根据夹套式反应器的工艺指标及工艺要求,该系统设计的控制算法选择PID 算法。

9

4 串级控制系统的参数整定

串级控制系统从整体上来看是定制控制系统,要求主参数有较高的控制精度。但副回路是随动系统,要求副参数能准确、快速地跟随主调节器输出的变化。串级控制系统主、副回路的原理不同,对主、副参数的要求也不同。通过正确的参数整定,可取得理想的控制效果。

4.1 参数整定方法

串级控制系统主、副调节器的参数整定方法有逐步逼近法、两步整定法和一步整定法。

1. 逐步逼近法

逐步逼近法是一种依次整定主回路、副回路,然后循环进行,逐步接近主、副回路最佳整定的一种方法。

2.两步整定法

两步整定法就是让系统处于串级工作状态,第一步按单回路控制系统整定副调节器参数,第二步把已经整定好的副回路视为串级控制系统的一个环节,仍按单回路对主调节器进行一次参数整定。

3.一步整定法

一步整定发就是根据经验,先将副调节器参数一次调好,不再变动,然后按一般单回路控制系统的整定方法直接整定主调节器参数。

本设计选择两步整定法来整定串级控制系统的参数。

4.2 参数整定

在串级控制系统中,主、副回路中被控过程的时间常数应有适当的匹配关系,一般为1o T =(3~10)2o T 。主回路的工作周期远大于副回路的工作周期,主、副回路间的动态

10

关联较小。因此,当副调节器参数整定好之后,视其为主回路的一个环节,按单回路控制系统的方法整定主调节器参数,而不再考虑主调节器参数变化对副回路的影响。一般串级系统对主参数的控制质量要求高,而对副参数的控制要求相对较低。因此,当副调节器参数整定好之后再去整定主调节器参数时,虽然会影响副参数的控制品质,但只要主参数控制品质得到保证,副变量的控制品质差一点也是可以接受的。

4.3 两步法的整定步骤

1) 在生产工艺稳定,系统处于串级运行状态,主、副调节器均为比例作用的条件下,先将主调节器的比例度1P 置于100%刻度上,然后由大到小逐渐降低副调节器的比例度2P ,直到得到副回路过渡过程衰减比为4:1的比例度2s P ,过渡过程的振荡周期为2s T 。

2) 在副调节器的比例度等于2s P 的条件下,逐步降低主调节器的比例度1P ,直到

同样得到主回路过渡过程衰减比为4:1的比例度1s P

,过渡过程的振荡周期为1s T 。 3) 按已求得的1s P

、1s T 和2s P 、2s T 值,结合已选定的调节规律,按下表衰减曲线法整定参数的经验公式,计算出主、副调节器的整定参数。

11

4)按照“先副回路,后主回路”的顺序,将计算出的参数值设置到调节器上,做一些扰动试验,在做扰动实验时观察过渡过程曲线,与此同时作适当的参数调整。

5)调整参数后,一直直到控制品质最佳为止,同时记录最佳数据。

12

5 MATLAB 仿真

5.1 控制系统的MATLAB 仿真

由主对象传递函数: 011()(301)G s s =

+ ,和副对象传递函数: 0221

()(101)(1)G s s s =++,在MATLAB 中画出仿真框图。由各个传递函数等模块所组成的

模型如下图所示,其中两个温度控制器都采用PID 调节器。对应的对象模型参数分别取值为:

1%/%v K =,25/(/)P K C T hr =?,22min P T =,21/(/)D K C T hr =?

24min D T =,15/(/)P K C T hr =?,14min p T =,3min P τ=

12/(/)D K C T hr =?,13min D T =,2min D τ=

首先封装控制器模块,如图所示:

13

图5.1 PID 控制器模块

接着根据要求设计可得到串级控制系统仿真模型,如图所示;

图5.2 夹套式反应器温度串级控制系统仿真模型

14

5.2 串级控制系统PID 参数整定:

夹套反应器串级控制系统PID 参数整定过程为:进行控制器的参数整定。

步骤一 首先随机设定控制器PID 参数的初始值为:

δ1=50%,Ti1=0.5min ,Td1=0min

δ2=50%,Ti2=0.5min ,Td2=0min

可得到系统输出图如图5.3所示;因为是发散振荡,故此图不符合整定要求。

图5.3 系统初始输出图

步骤二 再根据设定值跟踪速度的快慢,调整PID 中的值,以起到增加调控力度。可得到整定输出图,如图5.4所示;

136%δ=,110min I T =, 10min D T =

233%δ=,24min I T = , 20min D T =

15

图5.4 系统整定输出图

由此图分析可知:控制系统的过渡过程是一个单调过程,虽然起到了控制的作用,使被控变量最终稳定下来,但其回复到平衡状态的速度慢,时间长,故还要进一步优化PID 参数设计。

步骤三 继续调整PID 参数:

δ1=100%,Ti1=1min ,Td1=0min ;

δ2=100%,Ti2=1min ,Td2=0min :可得到整定输出图5.5:

16

图5.5 系统输出整定图

由图分析可知,此参数下的控制系统过渡过程为衰减振荡,可以快速有效的使被控变量稳定下来。

步骤四 步骤二中的单调过程也是可以通过参数的调整起到优化控制作用的,设定参数为: δ1=80%,Ti1=5min ,Td1=0min ;

δ2=33%,Ti2=5min ,Td2=0min ;可得到输出整定图5.6:

17

图5.6 系统输出整定图

由图分析可知:虽然此参数下的控制系统过渡过程为单调非振荡过程,但仍能以比较快的速度来使被控变量稳定下来。

18

5 结论

经过上述PID 控制系统的仿真实验和参数设定,可知知道的是,串级控制系统能迅速的克服进入副回路扰动的影响,对进入副环的扰动具有较强的抗干扰能力;它还改善了除主控制器以外的广义对象特性,是系统的工作频率提高;并且消除副过程的非线性特性和由于调解阀流量不适合而造成的对控制质量的影响;可兼顾两个变量,更精确控制操作变量,控制方式灵活,必要时可切除副调节器。这些都大大的提高了串级控制系统在工业生产中的应用,与单回路控制系统相比,串级控制系统能改善被控过程的动态特性,抗干扰能力增强,对负荷和操作条件变化的适应能力增强。

19

6 总结与体会

经过这次的课程设计,不仅在书上学到的知识得到了巩固,而且还在设计过程中拓展了其他没有学过的知识。这次的课程设计经历了将近一个暑假,从查找资料,到确定方案,最后再到用软件仿真,我们组都团结协作,互相帮助,并且得到老师的关怀。我们以前学习的知识都渐渐离我们远去,甚至不知道、不清楚哪些知识该用到哪些地方,什么时候用。学校安排了这次课程设计,通过自己查找资料,了解情况,让我们清楚我们学的知识与现实工业生产之间的联系,使得我们对知识深刻的了解和巩固。与此同时,在团队的协作中使我们在与人共事之中学会交流学会合作。因为在今后的工作中一个人独立完成不与别人合作,是基本不可能的,所以在这次课程设计中也锻炼了我们的团队的协作精神,为今后的学习和工作积累了经验,是一笔难得的财富。

串级控制系统

习题六 1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而

主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。5.怎样选择串级控制系统中主、副控制器的控制规律? 答串级控制系统的目的是为了高精度地稳定主变量,对主变量要求较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律,当对象滞后较大时,也可引入适当的微分作用。 串级控制系统中对副变量的要求不严。在控制过程中,副变量是不断跟随主控制器的输出变化而变化的,所以副控制器一般采用比例控制规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要的。 6.如何选择串级控制系统中主、副控制器的正、反作用? 答副控制器的作用方向与副对象特性、控制阀的气开、气关型式有关,其选择方法与简单控制系统中控制器正、反作用的选择方法相同,是按照使副回路成为—个负反馈系统的原则来确定的。 主控制器作用方向的选择可按下述方法进行:当主、副变量在增加(或减小时),如果要求控制阀的动作方向是一致的,则主控制器应选“反”作用的;反之,则应选“正”作用的。 从上述方法可以看出,串级控制系统中主控制器作用方向的选择完全由工艺情况确定,或者说,只取决于主对象的特性,而与执行器的气开、气关型式及副控制器的作用方向完全无关。这种情况可以这样来理解:如果将整个副回路看作是构成主回路的一个环节时,副回路这个环节的输入就是主控制器的输出(即副回路的给定),而其输出就是副变量。由于副回路的作用总是使副变量跟随主控制器的输出变化而变化,不管副回路中副对象的特性及执行器的特性如何,当主控制器输出增加时,副变量总是增加的,所以在主回路中,副回路这个环节的特性总是“正”作用方向的。由图可见,在主回路中,由于副回路、主测量变送这两个环节的特性始终为“正”,所以为了使整个主回路构成负反馈,主控制器的作用方向仅取决于主对象的特性。主对象具有“正”作用特性(即副变量增加时,主变量亦增加)时,主控制器应选“反”作用方向,反之,当主对象具有“反”作用特性时,主控制器应选“正”作用方向。

换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 目录 (2) 1、题目................................................................................................................. 错误!未定义书签。 2、换热器概述..................................................................................................... 错误!未定义书签。 换热器的用途............................................................................................... 错误!未定义书签。 换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。 3、控制系统 (3) 控制系统的选择 (3) 工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 被控变量的选择 (4) 操纵变量的选择 (4) 被控对象特性 (5) 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 测温元件及变送器 (7) 执行器 (10) 调节器 (12) 、仪表型号清单列表 (12) 6、系统方块图 (13) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13) 调节控制参数 (13) PID参数整定及系统仿真 (14) 系统性能分析 (16) 8、参考文献 (17)

PCS串级控制实例

P C S串级控制实例 The latest revision on November 22, 2020

西门子 PCS7在焦炉温度控制中的应用 [摘要] 温度调节在连续过程控制中有着非常重要的作用。本文以焦炉火道为被控对象,阐述了在西门子PCS7环境下应用串级、前馈等复杂调节控制方式对焦炉火道温度进行自动调节的原理、编程实现以及如何正确投运的方法。 [关键词] 串级前馈 PCS7 温度控制焦炉 1引言 随着计算机技术的普及以及国内炼焦行业对生产技术要求以及焦炭质量的不断提高,应用复杂控制系统甚至于先进控制算法对焦炉温度进行控制已经成为提高焦化企业生产技术水平,增加经济和社会效益的有效手段之一。 焦炉的加热过程是单个燃烧室间歇、全炉连续、受多种因素干扰的热工过程,是一个典型的大惯性、非线性、时变快且受到多种扰动因素影响的复杂系统,其加热控制难度较其它工业窑炉要大得多【3】。传统意义上PLC或DCS系统通常应用的单回路PID控制方式已不能完全适应目前生产上对温度精确控制的需要。因此,应用较为先进的控制方式和手段对焦炉温度进行控制已成为各个焦化厂进行技术改造的必然趋势。经过工程实践检验,本文提出了一种基于DCS系统内的、应用西门子PCS系统自带的控制器构成的以反馈为主辅之以前馈来对焦炉火道温度进行控制的方案。

2 火道温度在焦炉生产中的作用 焦炉火道温度系在下降气流底部火嘴和鼻梁砖间的大砖温度,鉴于目前温度检测仪器上的原因以及火道温度点的特殊位置,实际的焦炉火道温度一般难以准确测量。目前国内焦化厂均采用火道直行温度来反映焦炉温度。焦炉全炉温度用机、焦侧侧温火道平均温度来代表,全炉总供热的调节(以加减煤气和空气的方式进行调节)应当使机、焦侧测温火道平均温度符合工艺所规定的标准温度,并保持稳定。作为衡量全炉温度的稳定性重要指标,反映焦炉稳定稳定性的指标一般用直行温度的安定系数Kc来衡量,Kc能否接近1并保持稳定,对焦炭质量的提高、降低耗热量以及延长焦炉炉龄至关重要【4】。 3 控制原理 传统PLC或DCS控制方式是当班炼焦测温工每隔四小时在交换前后从焦炉炉顶测量直行温度并计算出平均温度后,根据计算出来的平均温度与标准温度比较产生偏差进行煤气流量的增减以达到控制温度始终保持在标准温度允许范围内的偏差内。这种控制方式对温度和吸力的控制存在着比较大的滞后性,而且由于是人工加减煤气流量(或者压力),加之煤气热值随着供气设备的情况存在着不稳定性和操作人员主观上的偏差,实际操作时经常会造成温度大幅度

夹套式反应器温度串级控制控制方案设计设计

目录 一.概述……………………………………………………………2-6页 1.1化学反应器的基本介绍…………………………………2-3页 1.2夹套式反应器的控制要求…………………………………3 页 1.3夹套式反应器的扰动变量………………………………3-4页 1.4基本动态方程式…………………………………………4-6页二.控制系统方案的确定…………………………………………6-7页三.控制系统设计…………………………………………………7-18页 3.1被控变量和控制变量的选择………………………………7-8页 3.2主、副回路的设计…………………………………………8-9页 3.3现场仪表选型………………………………………………9-12页 3.4主、副控制器正反作用选择………………………………12-13页 3.5控制系统方框图……………………………………………13页 3.6分析被控对象特性及控制算法的选择……………………13-14页 3.7控制系统整定及参数整定…………………………………14-18页四.课程设计总结……………………………………………………18页五.结束语……………………………………………………………18页六.参考文献…………………………………………………………19页

一概述 1.1 化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反

什么叫串级控制系统

1.什么叫串级控制系统?画出一般串级控制系统的典型方块图。 答:串级控制系统是由其结构上的特征而得名的。它是由主、副两个控制器串接工作的。 主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。 2.串级控制系统有哪些特点?主要使用在哪些场合? 答串级控制系统的主要特点为: (1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统; (2)系统的目的在于通过设置副变量来提高对主变量的控制质量} (3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响; (4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。 3.串级控制系统中主、剧变量应如何选择? 答主变量的选择原则与简单控制系统中被控变量的选择原则是一样的。 副变量的选择原则是:. (1)主、副变量间应有一定的内在联系,副变量的变化应在很大程度上能影响主变量的变化; (2)通过对副变量的选择,使所构成的副回路能包含系统的主要干扰; (3)在可能的情况下,应使副回路包含更多的主要干扰,但副变量又不能离主变量太近; (4)副变量的选择应考虑到主、副对象时间常数的匹配,以防“共振”的发生 4.为什么说串级控制系统中的主回路是定值控制系统,而副回路是随动控制系统? 答串级控制系统的目的是为了更好地稳定主变量,使之等于给定值,而主变量就是主回路的输出,所以说主回路是定值控制系统。副回路的输出是副变量,副回路的给定值是主控制器的输出,所以在串级控制系统中,副变量不是要求不变的,而是要求随主控制器的输出变化而变化,因此是一个随动控制系统。 5.怎样选择串级控制系统中主、副控制器的控制规律?

2020年换热器温度控制系统简单控制系统

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 目录 目录 (1) 1、题目........................................................ 错误!未定义书签。 2、换热器概述.................................................. 错误!未定义书签。 2.1换热器的用途............................................ 错误!未定义书签。 2.2换热器的工作原理及工艺流程图............................ 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (10) 5.3 调节器 (13) 5.4、仪表型号清单列表 (13) 6、系统方块图 (14) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (14) 7.1调节控制参数 (14)

7.2 PID参数整定及系统仿真 (15) 7.3 系统性能分析 (18) 8、参考文献 (19) 1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及 其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有 下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行; ②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度 范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变 量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、 调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可 以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别 通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体

串级控制系统的构成投运和参数整定及控制质量研究

实验一串级控制系统的构成、投运和参数整定及控制质量 研究 一、实验目的 1、加深理解串级控制系统的工作原理及特点。 2、掌握串级控制系统的设计和组成。 3、学习相关的组态软件 4、初步掌握串级控制系统的控制器参数调整方法。 二、实验设备 1、A3000-FS现场总线型过程控制现场系统4套 2、A3000-CS上位控制系统4套 三、实验要求 1、根据工艺要求和工况条件,设计出合理可行的串级控制系统。 (1)要求及条件 工艺要求:下水箱液位控制在某一高度上。 对下水箱液位产生影响的扰动量:若干变量。 (2)控制方案 主被控变量c1(t)、副被控变量c2(t)及操纵变量q(t)等的选择;主控制器和副控制器控制算法的选择及正、反作用的确定等。 2、掌握串级控制系统的控制器参数整定方法和系统投运步骤。 3、经过参数调整,获得最佳的控制效果,并通过干扰来验证。 四、实验内容 1、液位流量串级控制系统方案及工作原理 实验以串级控制系统来控制下水箱液位,以第二支路流量为副被控变量,右边水泵直接向下水箱注水,流量变动的时间常数小、时延小,控制通道短,从而可加快提高响应速度,缩短过渡过程时间,符合副回路选择的超前,快速、反应灵敏等要求。 以下水箱为主被控对象。流量的改变需要经过一定时间才能反应到下水箱液位的变化,时间常数比较大(时延较大)。如图2-1所示,

图2-1 液位-流量串级控制系统 设计好下水箱和流量串级控制系统。将主控制器的输出送到副控制器的外给定输入端,而副控制器的输出去控制执行器。经反复调试,使第二支路的流量快速稳定在给定值上,这时给定值应与副反馈值相同。待流量稳定后,通过变频器快速改变流量,加入扰动(即,使干扰落入串级控制系统的副回路)。若控制器的各参数设置比较理想,且扰动量较小,经过副回路的及时控制校正,基本不会影响下水箱的液位。如果扰动量较大或控制器的各参数设置不理想,虽然经过副回路的校正,还将会影响主回路的液位,此时再由主回路进一步调节,从而完全克服上述扰动的影响,使液位调回到给定值上。当用第一动力支路把扰动加在下水箱时(即,干扰落入串级控制系统的主回路),扰动使液位发生变化,主回路产生校正作用,克服扰动对液位的影响。由于副回路的存在加快了校正作用,使扰动对主回路的液位影响较小。该串级控制系统框图如图2-2所示。 图2-2 液位-流量串级控制系统原理方框图 2、液位流量串级控制系统组态 表2-1 液位流量串级控制系统连接示意 测量或控制量测量或控制量标号使用控制器端口 电磁流量计FT102 AI0 下水箱液位LT103 AI1 调节阀FV101 AO0 3、液位流量串级控制系统实验内容与步骤

最新换热器温度控制系统简单控制系统

目录 目录 (1) 1、题目....................................................... 错误!未定义书签。 2、换热器概述................................................. 错误!未定义书签。 2.1换热器的用途........................................... 错误!未定义书签。 2.2换热器的工作原理及工艺流程图........................... 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (9) 5.3 调节器 (10) 5.4、仪表型号清单列表 (11) 6、系统方块图 (11) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (12) 7.1调节控制参数 (12) 7.2 PID参数整定及系统仿真 (13) 7.3 系统性能分析 (15) 8、参考文献 (16)

1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。 图2 换热器温度控制系统工艺流程图

反应器串级控制系统整定

西华大学课程设计说明书 目录 1 前言 (1) 2 总体方案设计 (2) 2.1 方案比较 (2) 2.2 方案选择 (5) 3 反应器串级控制系统分析 (6) 3.1 被控变量和控制变量的选择 (6) 3.2 主、副回路的设计 (6) 3.3 主、副控制器正、反作用的选择 (8) 3.4 控制系统方框图 (8) 3.5 分析被控对象特性及控制算法的选择 (9) 4 串级控制系统的参数整定 (10) 4.1 参数整定方法 (10) 4.2 参数整定 (11) 4.3 两步法的整定步骤 (12) 5 MATLAB仿真 (14)

5.1 控制系统的MATLAB仿真 (14) 5.2 串级控制系统PID参数整定: (16) 5 结论 (20) 6 总结与体会 (21) 7 参考文献 (22) 1 前言 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比较复杂,夹套反应器的自动控制就尤为重要,他直接关系到产品的质量、产量和安全生产。 化工生产过程通常可划分为前处理、化学反应及后处理三个工序。前处理工序为化学反应做准备,后处理工序用于分离和精制反应产物,而化学反应工序通常是整个生产过程的关键,因此在化学反应工序中设计一套比较完善的控制系统是很重要的。 设计夹套式反应器的控制方案应从质量指标,物料平衡和能量平衡,约束条件三个方面考虑(假设在本反应器中反应物为一般性的,无腐蚀,无爆炸的液液反应物)。

串级控制系统的原理及设计

串级控制系统的原理及设计中应注意的问题 摘要:介绍了串级控制系统的基本原理,性能和设计中应注意的几个问题。 关键词:内环;外环;增益;时间常数;对象;共振现象;积分饱和现象。 1、概述 1.1串级控制系统介绍 单回路控制系统只用一个调节器,调节器只有一个输入信号,即只有一个闭环,在大多数情况下,这种简单系统能够满足工艺生产的要求。但是也有一些另外的情况,譬如调节对象的动态特性决定了它很难控制,而工艺对调节质量的要求又很高;或者对调节对象的控制任务要求特殊,则单回路控制系统就无能为力了。另外,随着生产过程向着大型、连续和强化方向发展,对操作条件要求更加严格,参数间相互关系更加复杂,对控制系统的精度和功能提出许多新的要求,为此,需要在单回路的基础上,采取其他措施,组成复杂控制系统。串级控制是改善调节过程的一种极为有效的方法,并且在实际中得到了广泛的应用。我厂的生产过程自动控制系统中,串级控制系统是应用最为广泛的复杂控制系统。 1.2 (简单控制系统) 图1.1是精馏塔底部示意图,在再沸器中,用蒸汽加热塔釜液产生蒸汽,然后在塔釜中与下降物料流进行传质传热。为了保证生产过程顺利进行,需要把提馏段温度t保持恒定。为此,在蒸汽管路上装一个调节阀,用它来控制加热蒸汽流量。从调节阀动作到温度t发生变化,需要相继通过很多热容积。实践证明,加热蒸汽压力的波动对温度t的影响很大。此外,还有来自液相加料方面的各种扰动,包括他的流量、温度和组分等,它们通过提馏段的传质传热过程,以及再沸器中的传热条件(塔釜温度、再沸器液面等),最后也影响到温度t。当加热蒸汽压力较大时,如果采用图1.1所示的简单控制系统,调节质量一般都不能满足生产要求。如果采用一个附加的蒸汽压力控制系统,把蒸汽压力的干扰克服在入塔前,这样也提高了温度调节的品质,但这样就需要增加一只调节阀并增加了蒸汽管路的压力损失,在经济上很不合理。 比较好的方法是采用串级控制,如图1.2所示。

换热器温度控制系统简单控制系统

目录 目录?1 1、题目?2 2、换热器概述 (2) 2、1换热器得用途 (2) 2、2换热器得工作原理及工艺流程图........................................ 23、控制系统?3 3、1控制系统得选择?3 3、2工艺流程图与系统方框图 (3) 4、被控对象特性研究 (4) 4、1被控变量得选择?4 4、2 操纵变量得选择?4 4、3 被控对象特性 (5) 4、4 调节器得调节规律得选择?6 5、过程检测控制仪表得选用 (7) 5、1测温元件及变送器?7 5、2 执行器 (9) 5、3 调节器 (10) 1 5、4、仪表型号清单列表?1 6、系统方块图 (11) 1 7、调节控制参数,进行参数整定及系统仿真,分析系统性能?2 1 7、1调节控制参数?2 7、2 PID参数整定及系统仿真........................................... 13 7、3 系统性能分析 (15) 1 8、参考文献?6 1、题目 热交换器出口温度得控制。

2、换热器概述 2、1 换热器得用途 换热器又叫做热交换器(heat exchanger),就是化工、石油、动力、食品及其它许多工业部门得通用设备,在生产中占有重要地位。进行换热得目得主要有下列四种: ①、使工艺介质达到规定得温度,以使化学反应或其她工艺过程很好得进行;②、生产过程中加入吸收得热量或除去放出得热量,使工艺过程能在规定得温度范围内进行;③、某些工艺过程需要改变无聊得相态;④、回收热量。 由于换热目得得不同,其被控变量也不完全一样。在大多数情况下,被控变量就是温度,为了使被加热得工艺介质达到规定得温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。对于不同得工艺要求,被控变量也可以就是流量、压力、液位等。 2、2 换热器得工作原理及工艺流程图 换热器得温度控制系统换热器工作原理工艺流程如下:冷流体与热流体分别通过换热器得管程与壳程,通过热传导,从而使热流体得出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器得管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器得壳程。在换热器得冷热流体进口处均设置一个调节阀,可以调节冷热流体得大小。 图2 换热器温度控制系统工艺流程图 从传热过程得基本方程式可知,为了保证出口得温度平稳,满足工艺生产得要求,必须对传热量进行调节,调节传热量有以下几条途径: ①、调节载热体得流量。调节载热体流量大小,其实只就是改变传热速率方程中得传热系数K与平均温差△Tm,对于载热体在加热过程中不发生相变得情况,主要就是改变传热速率

夹套式反应器温度串级控制课程设计

课程设计任务书

中北大学 课程设计说明书 学院:机械与动力工程学院 专业:过程装备与控制工程 题目:夹套式反应器温度串级控制系统设计指导教师:吕海峰职称: 副教授

中北大学课程设计说明书 目录 1、概述 (1) 1.1化学反应器基本介绍 (1) 1.2夹套式反应器控制要求 (2) 2、被控对象特性研究 (3) 2.1建立动态数学模型 (3) 2.2被控变量与控制变量的选择 (6) 2.3夹套式反应器扰动变量 (6) 3、控制系统方案确定 (7) 3.1主回路的设计 (8) 3.2副回路的设计 (8) 4、过程检测仪表的选型 (9) 4.1测温检测元件及变送器 (9) 4.2主、副控制器正、反作用的选择 (12) 4.3控制系统方框图 (13) 5、系统仿真,分析系统性能 (13) 5.1各个环节传函及参数确定 (13) 5.2控制系统的仿真及参数整定 (14) 5.3 系统性能分析 (17) 6、课程设计总结 (18) 7、参考文献 (19)

1 概述 1.1化学反应器的基本介绍 反应器(或称反应釜)是化工生产中常用的典型设备,种类很多。化学反应器在结构、物料流程、反应机理、传热、传质等方面存在差异,使自控的难易程度相差很大,自控方案差别也比较大。 化学反应器可以按进出物料状况、流程的进行方式、结构形式、传热情况四 个方面分类: 一、按反应器进出物料状况可分为间歇式和连续式反应器 通常将半连续和间歇生产方式称为间歇生产过程。间歇式反应器是将反应物 料分次获一次加入反应器中,经过一定反应时间后取出反应中所有的物料,然后重新加料在进行反应。间歇式反应器通常适用于小批量、多品种、多功能、高附加值、技术密集型产品的生产,这类生产反应时间长活对反应过程的反应温度有严格程序要求。 连续反应器则是物料连续加入,化学反应连续不断地进行,产品不断的取出,是工业生产最常用的一种。一些大型的、基本化工产品的反应器都采用连续的形式。 二、从物料流程的进行方式可分为单程与循环两类 物料在通过反应器后不再进行循环的流程称为单程,当反应的转化率和产率都较高时,可采用单程的排列。如果反应速度较慢,祸首化学平衡的限制,物料一次通过反应器转化不完全,则必须在产品进行分离后,把没有反应的物料与新鲜物料混合后,再送送入反应器进行反应。这种流程称为循环流程。 三、从反应器结构形式可分为釜式、管式、塔式、固定床、流化床、移动床反应器等。 四、从传热情况可分为绝热式反应器和非绝热式反应器[1]。 绝热式反应器与外界不进行热量交换,非绝热式反应器与外界进行热量交换。一般当反应过程的热效应大时,必须对反应器进行换热,其换热方式有夹套式、蛇管式、列管式等。如今用的最广泛的是夹套传热方式,且采用最普通的夹套结构居多。随着化学工业的发展,单套生产装置的产量越来越大,促使了反应设备的大型化。也大大促进了夹套反应器的反展。 夹套式反应器是一类重要的化工生产设备,由于化学反应过程伴有许多化学和物理现象以及能量、物料平衡和物料、动量、热量和物质传递等过程,因此夹套反应器操作一般都比

串级控制系统参数整定

实验三:串级控制系统参数整定 PID 控制器由于自身具有的相对容易理解和实现的特点而被广泛应用于过程控制工业中。 在实践中,它经常被融入一个复杂的控制结构中,以达到一个更好的控制效果。在这些复杂的控制结构中,通常利 用串级控制组合来减小干扰引起的最大偏差和积分误差。容易实现的优点和潜在的大控制性能的提高导致串级控制广泛应用达数十年。它已经成为一个由工业过程控制器提供的标准应用。 串级控制系统由两个控制回路构成:一个可以快速动态消除输入干扰的内部回路,和一个可以调节输出效果的外部 回路。通常,他们是通过一个连续的方式来整定的。首先,外部回路控制器设置为手动,对内部回路进行整定。随后, 启用内部回路的整定结果,接着整定外部回路。如果控制效果不理想,应该调换整定的顺序。所以,整定串级控制系统 是一项相当笨重耗时的任务,特别是具有大时间常数和时间延迟的系统。 PID 自整定解除了手动整定控制器的烦恼,并且已经成功的应用于很多工业领域中。但是,到目前为止,却很少有关于串 级系统自整定技术的发展的文学报道。其中,Li et al 利用模糊逻辑进行串级控制器的自整定。Hang et al. 应用一个重复的延迟自动整定方法来整定串级控制系统,延迟反馈测试被验证了两次,一次在内部回路,另一次在外部回路。虽然特 殊的控制器整定已经被自动化,但整定过程的自然顺序并没有改变。Tan 提出了一个在一个实验中实行整体整定过程的方法,但是这个实验需要过程的过去的信息。而且,外部回路设计时所用的极限频率是基于未考虑内部回路控制参数改 变的初始极限频率。这篇论文提供了串级控制系统自整定的一种新方法。通过利用串级控制系统的基本性能,在外部回 路中利用一个简单的延迟反馈测试来确定内部和外部回路过程模型参数。 一个基于Pade 系数和Markov 参数,匹配PID 控制器整定方法的模型,被提出来控制整体系统效果。两个例子来说明该方法的有效性。 2.串级控制系统的基本原理 图1 串级控制组合的结构如图1,内部回路嵌套于外部回路里,外部回路的输出变量是被控对象。控制系统由两个过程 和两个控制器组成。分别为外部回路传递函数1p G ,内部回路传递函数2p G ,外部回路控制器1c G 和内部回路控制器2c G 。 串级控制系统的两个控制器都是标准的反馈控制器。通常情况下,内部回路为一个比例控制器,当内部回路过程包 含基本时间延迟时需要用到积分作用,外部过程使内部回路增益是有限的。 为了在它影响到外部回路之前减小或消除内部回路干扰 d 2,内部回路比外部回路应该有一个更快的动态响应(工业经验法则里,至少应快5倍以上)。因此,内部闭环回路的相位滞后应该比外部回路小。这个特点就是应用串级控制的基本原理。内部回路的交叉频率比外部回路高,使内部回路控制器有更高的增益,能够在没有危及系统的稳定性的情况下

板式换热器安装施工方案

第一章板式换热器安装施工方案 第二章施工准备和施工方法 第一节施工方法 依据施工图的技术要求、设备说明书要求,确定设备、管道和风道的位置及标高,划线安装,特殊要求与设计、甲方(或监理方)协商解决。 施工流向:先核对基准线,先定位,划线后安装。 第二节施工准备 施工图的审核交底 由公司主管经理组织技术人员、施工人员及设计人员对施工图进行审核,达到熟悉图纸,便于施工的目的。施工图中不清楚的地方请设计人员解释交底,互相交流,达到设计、施工和使用的目的。 设备、材料准备 依据施工图提供的设备、材料明细表及施工进度计划订购设备、材料,并要求生产厂按期供货。工程所需材料及配件按施工进度分批运到施工现场。

第三章工程施工监督检查、验收的要点 第一节制冷设备安装 水泥基座找平,划线后安装。 在设备底座地脚螺栓附近垫铁,用水平仪检查其纵向(筒体轴向)与横向的水平度,每米长度上其不平度不超过0.5毫米。设备安装方向正确中心线位移不超过 5 毫米。 用水泥浆浇灌底座及地脚螺栓。 水泥干固后再按第二条复查。 第二节冷却塔安装 冷却塔安装平衡牢固。 冷却塔的出水管口及喷嘴的方向和位置正确、布水均匀。 第三节泵类安装 在基座上划线后安装。 在泵座地脚螺栓附近垫铁,将底座垫高约20—40毫米,检查离心泵泵体水平度,每米不超过0.1毫米,水平联轴器应保持同轴度;轴向倾斜每米不超过0.8毫米;径向位移不超过0.1毫米。 用水泥浆浇灌泵座及地脚螺栓。 3—4天水泥于固后,再按第2项复查。 第四节箱罐安装 箱罐标高允许偏差土5毫米,水平度每米长度不超过10毫米,垂直度每米高度不超过10毫米,中心线位移不超过5毫米。 箱罐的支、吊、托架安装应平直牢固,位置正确。

串级调节系统

实验三串级调节系统 一、实验目的 1、熟悉串级调节系统的组成,结构。 2、通过选定的控制对象,来组成相应的串级调节系统。 3、学习串级调节系统的投运方法和主副调节器的参数整定。 二、实验原理 串级调节系统是复杂调节的一种形式,是在简单调节系统的基础上发展起来的。在对象的滞后较大,干扰比较剧烈、频繁的工作环境下,采用简单调节系统往往调节质量较差,满足不了工艺要求,从而采用串级控制系统。由于串级控制系统是改善控制质量的有效方法之一,因而它在过程控制中得到了广泛应用。 1、串级控制系统的结构 如图3-1所示,串级控制系统是指不止采用一个调节器,而是将两个或几个 调节器相串联,并将一个调节器的输出作为下一个调节器设定值的控制系统。2、串级控制系统的名词术语: (1)、主被控参数:在串级控制系统中起主导作用的那个被控参数。 (2)、副被控参数:在串级控制系统中为了稳定主被控参数而引入的中间辅 助变量。 (3)、主被控过程:由主参数表征其特性的生产过程,主回路所包含的过程, 是整个过程的一部分,其输入为副被控参数,输出为主控参数。 (4)、副被控过程:是指副被控参数为输出的过程,是整个过程的一部分, 其输出控制主控参数。 (5)、主调节器:按主参数的测量值与给定值的偏差进行工作的调节器,其 输出作为副调节器的给定值。

(6)、副调节器:按副参数的测量值与主调节器输出值的偏差进行工作的调节器,其输出直接控制执行机构。 (7)、副回路:由副调节器、副被控过程、副测量变送器等组成的闭合回路。 (8)、主回路:由主调节器、副回路、主被控过程及主测量变送器等组成的闭合回路。 (9)、一次扰动:作用在主被控过程上的,而不包括在副回路范围内的扰动。 (10)、二次扰动:作用在副被控过程上,即包括在副回路范围内的扰动。 3、串级调节系统相对与单回路简单调节系统的优点: 串级控制系统是改善和提高控制品质的一种极为有效的控制方案。它与单回路反馈控制系统比较,由于在系统的结构上多了一个副回路,所以具有以下一些特点: (1)、改善了过程的动态特性 串级控制系统比单回路控制系统在结构上多了一个副回路,减小了该回路中环节的时间常数,增加了它的带宽,从而使系统的响应加快,控制更为及时。 (2)、具有较强的抗扰动能力 在串级控制系统中,主、副调节器放大系数的乘积愈大,则系统的抗扰动能力愈强,控制质量愈好。串级控制系统由于存在副回路,只要扰动进入副回路,不等它影响到主参数的变化,通过副回路的及时调节,该扰动对主参数的影响就会大大地削弱或完全消除,从而提高了主参数的控制质量。 (3)、具有一定的自适应能力 串级控制系统,就其主回路来看是一个定值控制系统,而副回路则是一个随动系统。主调节器的输出能按照负荷和操作条件的变化而变化,从而不断改变副调节器的给定值,使副回路调节器的给定值适应负荷并随操作条件而变化,即具有一定的自适应能力。 4、主、副回路的设计 串级控制系统的主回路是一个定值控制系统。串级控制系统的设计主要是副参数的选择和副回路的设计以及主、副回路关系的调整,其设计原则为:(1)、主参数的选择和主回路的设计 串级控制系统是由主回路和副回路组成。主回路是一个定值控制系统,副回路是随动调节系统。对于主参数的选择和主回路的设计,基本上可以按照单回路控制系统的设计原则进行。凡直接或间接与生产过程运行性能密切相关并可直接测量的工艺参数均可选择作主参数。若条件许可,可以选用质量指标作为主参数,因为它最直接也最有效。否则应选用一个与产品质量有单值函数关系的参数作为主参数。另外,对于选用的主参数必须具有足够的灵敏度,并符合工艺过程的合理性。 (2)、副参数的选择和副回路的设计 1)、副参数的选择 副参数的选择应使副回路的时间常数小,时延小,控制通道短,这样可使等

换热器温度控制系统范本

换热器温度控制系 统

1.E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K 的工艺介质。为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。 1.1换热器概述 换热器工作状态如何,可用几项工作指标加以衡量。常见的工作指标主要有漏损率、换热效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO (一氧化碳)加热到出口温度为473K,因此我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。 1.3换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的

液体流量串级控制系统设计方案

前言 过程控制是指在生产过程中,运用合适的控制策略,采用自动化仪表及系统来代替操作人员的部分或全部直接劳动,使生产过程在不同程度上自动地运行,所以过程控制又被称为生产过程自动化,广泛应用于石油、化工、冶金、机械、电力、轻工、纺织、建材、原子能等领域。过程控制系统是指自动控制系统的被控量是温度、压力、流量、液位、成分、粘度、湿度以及PH值等这样一些过程变量的控制系统。过程控制是提高社会生产力的有力工具之一。它在确保生产正常运行,提高产品质量,降低能耗,降低生产成本,改善劳动条件,减轻劳动强度等方面具有巨大的作用。 单回路控制系统是过程控制中结构最简单、最基本、应用最广泛的一种形式,它解决了工业生产过程中大量的参数定值控制问题。但是,随着现代工业生产过程向着大型、连续、和强化方向发展,对操作条件、控制精度、经济效益、安全运行、环境保护等提出了更高的要求。此时,单回路控制系统往往难以满足这些要求。为了提高控制品质,需要在单回路的基础上,采取其它措施,组成复杂控制系统。而串级控制就是其中一种提高控制品质的有效方案。 本毕业设计课题针对液位对象浅述了串级控制系统的主要设计方法和步骤,虽然只是串级控制系统的一个简单的应用例子,但也初步综合了自动控制原理、过程控制、检测与转换技术、组态软件等自动控制专业的知识,对于提高对专业知识的认识水平、培养实践动手能力有重要意义。 本论文共分为五章:第一章为概述;第二章为总体方案的设计;第三章叙述了控制系统的控制规律的确定;第四章介绍了实际控制系统的运行与调试;第五章为论文的结论、讨论和建议。 本课题的设计和论文的编写得到了尹绍清老师的指导,在此表示衷心的感谢。

加热炉串级控制(参数整定)

目录 1 前言 (1) 2总体方案设计 (2) 2.1 方案比较 (2) 2.2 方案论证 (4) 2.3 任务与设计要求 (5) 3串级控制系统的参数整定 (6) 3.1 参数整定方法 (6) 3.2 参数整定 (6) 3.3 两步法的整定步骤 (7) 4 MATLAB仿真 (8) 4.1 副回路的整定 (8) 4.2.2 主回路的整定 (9) 4.2.3 整体参数整定 (9) 5 结论 (13) 6总结与体会 (14) 7参考文献 (15)

1 前言 随着我国国民经济的快速发展,加热炉的使用范围越来越广泛。而加热炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量和产量。现代加热炉的生产过程可以实现高度的机械化,这就为加热炉的自动化提供了有利条件。加热炉自动化是提高锅炉安全性和经济性的重要措施。目前,加热炉的自动化主要包括自动检测、自动调节、程序控制、自动保护和控制计算五个方面。实现加热炉自动化能够提高加热炉运行的安全性、经济性和劳动生产率,改善劳动条件,减少运行人员。 加热炉是将物料或工件加热的设备。按热源划分有燃料加热炉、电阻加热炉、感应加热炉、微波加热炉等。应用遍及石油、化工、冶金、机械、热处理、表面处理、建材、电子、材料、轻工、日化、制药等诸多行业领域。 在生产过程控制中,一些复杂环节,往往需要进行串级控制。即把两个控制器串联起来,第一个控制器的设定值是控制目标,它的输出传给第二个控制器,作为它的设定值,第二个控制器的输出作为串级控制系统的输出,送到被控系统,作为它的控制“动作”。控制系统的这种串级形式对于复杂对象的控制往往比单回路控制的效果更好。串级控制对克服被控系统的时滞之所以能收到好的效果,是因为当用两个控制器进行串级控制时,每个控制器克服时滞的负担相对减小,这就使得整个控制系统克服时滞的能力得到加强。

相关文档
最新文档