最新人教版初二下册数学16.1二次根式.优秀PPT课件
合集下载
人教版数学八年级下册 16.1 二次根式(共20张PPT)

拓展探究
04
总结与反思
总结与反思
谢谢!
第十六章 二次根式
16.1章前引言及二次根式
1. 理解二次根式的定义,并会用此定义判断 一个根式是否为二次根式; 2. 会运用二次根式中被开方数的非负性,求 被开方数中字母的取值范围; 3. 会运用二次根式的非负性解决简单的问题。
电视塔越高,从塔顶发射的电磁波传得越远,从 而能收看到电视节目的区域越广,电视塔高h(单位: km)与电视节目信号的传播半径 r(单位:km)之间 存在近似关系 r = 2 Rh ,其中地球半径R≈6 400 km. 如果两个电视塔的高分别是h1 km、h2 km,那么它们 的传播半径之比是 观察 2 Rh 、r =
1
2 Rh 1 2 Rh2
2 Rh2
2 Rh
的特点?
02
知识建构
二次根式概念
二次根式概念
二次根式概念
二次根式概念
二次根式概念双重非负性
二次根式概念双重非负性
03
题组练习,深化提高
题组一 二次根式的判定
题组一 二次根式的判定
题组二 二次根式有意义
题组二 二次根式有意义
题组三 二次根式的双重非负性
人教版八年级数学下册 16.1 二次根式 课件(共21张ppt)

x -1 6、 x -2
二次根式的性质(1)
非 负 数 的 算 术 平 方 根 仍 然 是 非 负 数 。 性 质 1: a ≥ 0 (a ≥ 0 ) ( 双 重 非 负 性 )
a = b =
引 例 : |a - 1 |+ ( b + 2 ) 2 = 0 , 则
例 4:已知 a+2 +|3b-9|+(4-c)2=0, 求 2a-b+c 的值。 解 : ∵ a + 2 ≥ 0 、 |3 b -9 | ≥ 0 、 (4 -c ) 2 ≥ 0 ,
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。
第十六章 二次根式 单元解读 课件(共14张PPT)2024-2025学年人教版八年级数学下册

了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 的加、减、乘、除运算法则,会用它们进行有关的简单四则运算.
教材分析
本章主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、 减、乘、除运算.通过本章学习,学生将建立起比较完善的代数式及其运算的知 识结构,并为勾股定理、一元二次方程、二次函数等内容的学习作好准备.
本章教学建议
02 加强归纳法,使学生经历从特殊到一般的认识过程
前已指出,教材对本章内容的处理,一以贯之地用“从具体数字的算术平方根的运算 中观察规律,归纳得出二次根式的性质、运算法则”的方式展开.因此,教学时一定要根据 教材的这一编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳 得出有关结论.例如,对于二次根式的乘法法则和除法法则,都应该先让学生利用二次根式 的概念和性质进行一些具体数字的计算,并观察所得结果,发现二次根式相乘(除)与积(商) 的算术平方根之间的关系;然后让学生自己举例,利用发现的规律进行验证性计算;最后 归纳出二次根式的乘法、除法法则.
单元解读
第十六章 二次根式
R·八年级下册
课标分析
“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数 式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论 具有一般性.
数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发 展几何直观和运算能力.
课标要求
加强符号意识、运算能 力的培养
教材分析
设计思路 概念
性质
运算
介绍二次根式的性质,包括一 通过观察、操作、归纳、
个非负数的平方的算术平方根 类比等方法,给出二次
根式的概念
的性质、积的算术平方根和商
教材分析
本章主要讨论如何对数和字母开平方而得到的特殊式子——二次根式的加、 减、乘、除运算.通过本章学习,学生将建立起比较完善的代数式及其运算的知 识结构,并为勾股定理、一元二次方程、二次函数等内容的学习作好准备.
本章教学建议
02 加强归纳法,使学生经历从特殊到一般的认识过程
前已指出,教材对本章内容的处理,一以贯之地用“从具体数字的算术平方根的运算 中观察规律,归纳得出二次根式的性质、运算法则”的方式展开.因此,教学时一定要根据 教材的这一编写意图,让学生通过观察、思考、讨论等,经历从特殊到一般的过程,归纳 得出有关结论.例如,对于二次根式的乘法法则和除法法则,都应该先让学生利用二次根式 的概念和性质进行一些具体数字的计算,并观察所得结果,发现二次根式相乘(除)与积(商) 的算术平方根之间的关系;然后让学生自己举例,利用发现的规律进行验证性计算;最后 归纳出二次根式的乘法、除法法则.
单元解读
第十六章 二次根式
R·八年级下册
课标分析
“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数 式的运算,字母可以像数一样进行运算和推理,通过字母运算和推理得到的结论 具有一般性.
数与代数领域的学习,有助于学生形成抽象能力、推理能力和模型观念,发 展几何直观和运算能力.
课标要求
加强符号意识、运算能 力的培养
教材分析
设计思路 概念
性质
运算
介绍二次根式的性质,包括一 通过观察、操作、归纳、
个非负数的平方的算术平方根 类比等方法,给出二次
根式的概念
的性质、积的算术平方根和商
人教版八年级数学下册课件:16.1.1二次根式(共21张PPT)

∴y= 0 + 0 +3=3 ∴x y=23=8
例 1 x是怎样的实数时,式子 x 3在实数
范围内有意义?
解 由 x 3 ,0 得 x 。3 当 x 3时,式子 x 3在实数范围内有意义。
试一试(2) x是怎样的实数时,下列各式在 实数范围内有意义?
(1) 2x ; (2) 2x 5; (3) 3 。x
16.1 二次根式
知识回顾
1、16的平方根是什么?16的算术平方根是什么? 2、0的平方根是什么?0的算术平方根是什么? 3、-7有没有平方根?有没有算术平方根? 正数和0都有算术平方根;负数没有算术平方根。 4、 7 表示什么? 表示7的算术平方根
5、 a 表示什么?a 需要满足什么条件? 为什么?
2n2 1,
2n2 1, ×
2n 1 ×
在实数范围内,负数没有平方根
下列式子 2x 6 1 中字母x的 2x
取值范围是__3___x___0
2x+6≥0 ∵
-2x>0
x≥-3 ∴
x<0
已知 有a1 意义,那么A(a,
) a
在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
12 n为一个整数 , 求自然数 n的值.
课堂小结
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2.a可以是数,也可以是式. 3.形式上含有二次根号
4.a≥0, a ≥0 (双重非负性)
5.既可表示开方运算,也可表示运算的结果. 6.求二次根式中字母的取值范围的基本依据:
①被开方数不小于零; ②分母中有字母时,要保证分母不为零.
例 1:要使 x-1 有意义,字母 x 的取值必须满足
最新人教版八年级数学下16.1二次根式的概念ppt公开课优质课件

(2) 2 a 3 2 (4) 5a
3 (1) a-1 0, a 1. (2) 2a 3 0, a . 2
(3) a
(3) a 0, a 0.
(4) 5 a>0, a<5.
5.要画一个面积为24cm2的长方形,使它的长与宽之比为3:2,
想一想:
当x是怎样的实数时, x2 在实数范围内有意义? x3 呢?
前者x为全体实数;后者x为正数和0.
二 二次根式的双重非负性
思考: 二次根式的实质是表示一个非负数(或式)的算术平
方根.对于任意一个二次根式 a ,我们知道: (1)a为被开方数,为保证其有意义,可知a≥0;
(2) a 表示一个数或式的算术平方根,可知 a ≥0.
问题1 上面问题的结果分别是
3, s, 65, h ,它们表示一些 5
正数的算术平方根.那么什么样的数有算术平方根呢? 我们知道,负数没有平方根.因此,在实数范围内开平 方时,被开方数只能是正数或0. 问题2 上面问题的结果分别是
3, s, 65, h ,分别从形式上 5
和被开方数上看有什么共同特点? ①含有“ ” ②被开方数a ≥0
a C D
2 2.式子 3x 6 有意义的条件是
( A ) D.x≤2
A.x>2
3.若
B.x≥2
C.x<2
95 n 是整数,则自然数n的值有 ( D )
B.8个 C.9个 D.10个
A.7个
4.当a是怎样的实数时,下列各式在实数范围内有意义?
(1)
a 1
是
不是
当m>0时被开 方数是负数
不是
xy<0
(4) -m
人教版数学八年级下册:第十六章-二次根式--课件(共88张)

3 2 3 1.5 5 木板够宽
情境引入
现有一块长为7.5 dm、宽为5 dm的木板, 能否采用如教教材图16.3-1的方式,在这块 木板上截出两个面积分别是8 dm2和18 dm2 的正方形木板?
问题3:从长方形木板上截取两个正方形木板, 长方形木板够长吗? 你是如何得出答案的?
8 18 2 2 3 2 (2 3) 2 5 2
七、布置作业
• 1.教材第3页练习1.2题. • 2.教材第5页习题16.1第1题.
第十六章 二次根式
16.1 二次根式
第2课时
一、提出问题
根据算术平方根的意义填空.
1. ( 4) 2 __4_;
1 ( 1 )2 _3__;
3
( 2 )2 _2__;
( 0)2 _0__ .
2. 22 __2_;
化
简
解:(2)( 12 20)+( 3- 5)
、
.
去
2 3 2 5+ 3- 5
括 号
、
3 3+ 5
合
并
巩固提高
练习1 计算:
(1) 2 7 6 7
仔细认 真哦!
-4 7
(2) 80- 20+ 5
.
(3) 18+( 98- 27)
35 10 2-3 3
(4)( 24+ 0.5)-( 1 - 6) 8
5 2 5 1.5 7.5
木板够长
情境引入
现有一块长为7.5 dm、宽为5 dm的木板, 能否采用如教材图16.3-1的方式,在这块木 板上截出两个面积分别是8 dm2和18 dm2 的正方形木板?
问题4:观察 8 18的计算过程,你能总结
情境引入
现有一块长为7.5 dm、宽为5 dm的木板, 能否采用如教教材图16.3-1的方式,在这块 木板上截出两个面积分别是8 dm2和18 dm2 的正方形木板?
问题3:从长方形木板上截取两个正方形木板, 长方形木板够长吗? 你是如何得出答案的?
8 18 2 2 3 2 (2 3) 2 5 2
七、布置作业
• 1.教材第3页练习1.2题. • 2.教材第5页习题16.1第1题.
第十六章 二次根式
16.1 二次根式
第2课时
一、提出问题
根据算术平方根的意义填空.
1. ( 4) 2 __4_;
1 ( 1 )2 _3__;
3
( 2 )2 _2__;
( 0)2 _0__ .
2. 22 __2_;
化
简
解:(2)( 12 20)+( 3- 5)
、
.
去
2 3 2 5+ 3- 5
括 号
、
3 3+ 5
合
并
巩固提高
练习1 计算:
(1) 2 7 6 7
仔细认 真哦!
-4 7
(2) 80- 20+ 5
.
(3) 18+( 98- 27)
35 10 2-3 3
(4)( 24+ 0.5)-( 1 - 6) 8
5 2 5 1.5 7.5
木板够长
情境引入
现有一块长为7.5 dm、宽为5 dm的木板, 能否采用如教材图16.3-1的方式,在这块木 板上截出两个面积分别是8 dm2和18 dm2 的正方形木板?
问题4:观察 8 18的计算过程,你能总结
人教版数学八年级下16.1二次根式课件(共72张PPT)

4. a≥0, a≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
如: a 1 这类代数式只能称为含有二次根
式的代数式,不能称之为二次根式;
而 2x22x 3
这类代数式,应把 2 , 3 这些二次根式看 做系数或常数项,整个代数式仍看做整式。
说一说:
下列各式是二次根式吗?
(1)32, (2)6,(3)12, (4)-m(m≤0), (5)xy(x,y 异号), (6)a2 1 , (7)3 5
p12 p
a 1 a
1
2a 1
化简
(13x)21x
1 3x 0 x 1
3
归纳 二次根式的非负性:
a 0
二次根式的双重非负性:
a
a0 a 0
1、当 x1 y3 0时,
x ( -1 )y,( 3 )
2、已 x5知 63yz220
求 xy的 z 值。
(-5)×2×(-2)=20
再议 a的双重非负性
2
a,(a0)
(2)
a2 a
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
再议 a的双重非负性
非负数的算术平方根仍然是非负数。
性质 1: a ≥0 (a≥0) (双重非负性)
思考:到现在为止,我们已学过哪些数非负数形式?
an (n为偶数) a
a(a 0)
非负数 1.几个非负数的和、积、商、乘方及 的性质: 算术平方根仍是非负数
求 x 、 y的值.
切入点:从代数式的非负性入手。
3.已知 x( 4) 1,a 你能求出 a 的取值范围吗? 3 xa 1
切入点:分类讨论思想。
4.已知 1 0 a为一个非负整数,试求非负整数 的a 值
5.既可表示开方运算,也可表示运算的结果.
如: a 1 这类代数式只能称为含有二次根
式的代数式,不能称之为二次根式;
而 2x22x 3
这类代数式,应把 2 , 3 这些二次根式看 做系数或常数项,整个代数式仍看做整式。
说一说:
下列各式是二次根式吗?
(1)32, (2)6,(3)12, (4)-m(m≤0), (5)xy(x,y 异号), (6)a2 1 , (7)3 5
p12 p
a 1 a
1
2a 1
化简
(13x)21x
1 3x 0 x 1
3
归纳 二次根式的非负性:
a 0
二次根式的双重非负性:
a
a0 a 0
1、当 x1 y3 0时,
x ( -1 )y,( 3 )
2、已 x5知 63yz220
求 xy的 z 值。
(-5)×2×(-2)=20
再议 a的双重非负性
2
a,(a0)
(2)
a2 a
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
再议 a的双重非负性
非负数的算术平方根仍然是非负数。
性质 1: a ≥0 (a≥0) (双重非负性)
思考:到现在为止,我们已学过哪些数非负数形式?
an (n为偶数) a
a(a 0)
非负数 1.几个非负数的和、积、商、乘方及 的性质: 算术平方根仍是非负数
求 x 、 y的值.
切入点:从代数式的非负性入手。
3.已知 x( 4) 1,a 你能求出 a 的取值范围吗? 3 xa 1
切入点:分类讨论思想。
4.已知 1 0 a为一个非负整数,试求非负整数 的a 值
人教版八年级数学下册16.1《二次根式》课件(共23张PPT)

C. a>-2或a≠ 0
【解析】选D.要使式子
D. a≥-2且a≠ 0
a2 a
有意义,须同时
满足a+2≥0,a≠0两个条件,解两个不等式
可得a≥-2且a≠0 。
巩固提高:
1.分别求下列二次根式中的字母的取值范围 (1) (
3 2x )
2
(2) (1 x) 2
3 (1). 3 2 x 0 x (2).x为全体实数 2 (3).x 3 0且x 2 x 3且x 2
2
(5) xy (x,y 异号), (7)
3
5
在实数范围内,负数没有平方根
1、判断下列代数式中哪些是二次根式?
⑴
⑶
1 2
2
⑵
16
x ( x 0)
a9
a 2a 2 ⑷
2
⑸ m 3
⑹
a 1 (a 3)
2.下列式子一定是二次根式的是( A.
)
2
x 2
4. a≥0, a ≥0
( 双重非负性)
小结:
1.怎样的式子叫二次根式?
形如 a (a 0)的式子叫做二次根式 .
2.怎样判断一个式子是不是二次根式?
(1). 形式上含有二次根号
(2).被开方数a为非负数, 3.如何确定二次根式中字母的取值范围?
从左看到右;从上看到下
看到分数线,分母不为0 看到偶次根式,被开方数大于等于0
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
用带有根号的式子填空,看看结果有什么特点:
1.面积为3的正方形的边长为—— 3。 2.如图所示的值表示正方形的 面积,则正方形的边长是 b 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x x 1, 且x 2
2
x0
(8)
x2 x
x 0 (9) x 1 x为全体实数
?
一般地,二次根式有下面的性质:
a
快 速 判 断
2
a
2
(a 0)
2
1 15 a6 9 17 4
a
1
2 1 2 1 2 3 2 ______, 3 2 ________, 3 ______, 7 3 7 3
a 才有意义?
a 才有意义!
答:由于负数没有平方根,所以当a≥0时,
3. 代数式
a (a≥0)有如下特征:
a≥0, a ≥0 ( 双重非负性) a可以是数,也可以是式.
既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗? 答:代数式 a 只有在条件a≥0的情况下,才属于二次根式! 二次根式是属于有特殊条件的代数式. (2) 答:符合条件(1)被开方数 22 为非负数; (2) 含 有二次根号,所以 22 是二次根式. 1 ( x 0) 是二次根式 (3) 代数式 a 2(a 2), x 吗? 答:是的,二次根式的被开方数可以是整式或分式.
复习 1、如果 x 4,那么 x ±2 ;
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
x
导入
1.如图所示的值表示正方形的 面积,则正方形的边长是 b 3
b-3
2.要修建一个面积为6.28m2的圆形喷水池, 取3.14); 它的半径为 2 m(
22 是二次根式吗?
注意
a 1 这类代数式只能称为含有二次 如: 根式的代数式,不能称之为二次根式;
而
2 x2 2 x 3
2, 3 这些二次根式看 这类代数式,应把 做系数或常数项,整个代数式仍看做整式。
说一说:
下列代数式中哪些是二次根式?
⑴
⑶
1 2
⑵
16
x ( x 0)
二次根式的性质及它们的应用:
(1)
a a,(a 0)
2
(2)
a a
2
a ( a >0 ) 0 ( a =0 ) -a ( a <0 )
(1)( 2 ) 2 2 (2)( 2 ) 2
2
(3) ( 2 ) -2
2
(4) (2) |-2|=2
2
(5) 2 |2|=2
3、关系式中h 5t ,用含有h的式子 h 表示t,则t为 。
2
5
新授:
你认为所得的各代数式有哪些共同特点?
b3
2
h 5
表示一些正数的算术平方根.
形如 a (a 0) 的式子叫做二次根式.
a
被开方数 二次根号
读作“根号
a”
归纳:
二次根式的定义
一般地,代数式形如 式子做叫二次根式。
a(a 0 ) 的
( a ) 与 a 有区别吗 ?
2
2
1.从读法来看:
2
2:从运算顺序来看:
2
a 根号a的平方 a 先开方,后平方
a 根号下a平方
2
a 先平方,后开方
2
4.从运算结果来看:
3.从取值范围看:
a
2
2
a≥0
a =a
2
a a取任何实数
a =∣a ∣
2
a ( a 0) 0 (a 0) a ( a 0)
2
2 2 4 5 ________, 5 5 3 ________. 3
2
2
2 22 ___,
5
2
2
5 ___,
2 | 2 | ___; 5 | 5 | ___;
0 0 ___, 当 a 0 时,
(2) 因为不论x是什么实数,都有 1 x >0.
2
∴当 是任何实数时, 1 x 2 有意义.
1 x 0 (3)由题意可知: 3 x 0
∴当 -1≤ x ≤3时, 1 x 3 x 有意义.
1 当x取何值时, 在实数范围内有意义。 x 5
解:由题意得
x 5 0 1 0 x 5
0 | 0 | ___.
a 2 ____ ; 当 a
a a
2
请比较左右两边的式子,议一议:
a
0 时,
a
2与
| a | 有什么关系?
a 2 ____ .
a
一般地,二次根式有下面的性质:
a ( a 0) 2 a a 0 (a 0) a ( a 0)
人教版数学教材八年级下
第16章 二次根式
16.1 二次根式
回忆
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根。
a的平方根是 a
⑵什么是一个数的算术平方根?如何表示? 正数的正的平方根叫做它的算术平方根。 0的算术平方根平方根是0 用
a
(a≥0)表示。
1 x 5
x-5 > 0
∴ 当x>5时,
在实数范围内有意义。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0 1 2 (3) 4 x x为全体实数 (4) x0 x
(5) x
3
x 0 (6) 12
x 1 0 ( x 2) (7) x3
本课学习目标:
• (1)二次根式的概念( 双重非负性) • (2)根号内字母的取值范围 • (3)二次根式的性质(1,2)
请你凭着自己已有的知识,说 说对二次根式 a 的认识!
?
1.
a 表示什么含义?
a 表示a的正平方根; a 表示a的平方根.
答:当a>0时, 当a=0时,
2. 当a满足什么条件时,代数式
2
(6) (2) -|-2|=-2
2
例2 求下列二次根式的值:
例
题
(1) (3 ) ;
2
(2) x 2 2 x 1 , 其中x 3.
a9
a 2a 2
2
2
⑷ ⑹
⑸ m 3
a 1 (a 3)
例题吧
例1 x为何值时,下列各式在实数范围内有意义。
1 x 5 x 5
(1)
(2) 1 x
2
(3) 1 x 3 x
解: (1) 由x-5 ≥ 0,得x ≥ 5 ∴当 x ≥ 5时, x 5有意义.