高考大题---解三角形中有关最值问题的题型汇总

高考大题---解三角形中有关最值问题的题型汇总
高考大题---解三角形中有关最值问题的题型汇总

解三角形中有关最值问题的题型汇总

1.(2010年浙江高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,设S 为ABC ?的面积,满足)(4

3222c b a S -+=。 (1)求角C 的大小;

(2)求B A sin sin +的最大值。

2(2011年湖南高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,且满足C a A c sin sin =

(1) 求角C 的大小;

(2) 求)4cos(sin 3π

+-B A 的最大值,并求取得最大值时角A ,B 的大小。

3.(2011年全国新课标2)在ABC ?中,?=60B ,AC=3,求AB+2BC 的最大值。

4.(2012太原模拟)ABC ?中,c b a ,,C B A 所对的边分别为,,角,设向量),(a b a c m --=→,),(c b a n +=→,若→m 平行于→n 。

(1)求角B 的大小;

(2)求C A sin sin +的最大值。

5(2012年浙江宁波模拟)已知函数θθπ2cos )4(

sin 32)(2-+=x f ,A 为ABC ?中的最小内角,且满足32)(=A f 。

(1)求角A 的大小;

(2)若BC 边上的中线长为3,求ABC S ?的最大值。

6. (2013年全国新课标2)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,已知B c C b a sin cos +=

(1)求B ;

(2)若b=2, 求ABC S ?的最大值。

7(2014年陕西高考)在ABC ?中,c b a ,,C B A 所对的边分别为,,角。

(1)若c b a ,,成等差数列,证明sinA+sinC=2sin(A+C);

(2)若c b a ,,成等比数列,求cosB 的最小值。

8.(2015年山东高考)设)4(cos cos sin )(2π+

-=x x x x f (1)求)(x f 的单调区间;

(2)在锐角ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)2(A f =0,a=1,求ABC S ?的最大值。

9.(2016年北京高考)在ABC ?中,ac b c a 2222+=+

(1)求角B 的大小;

(2)C A cos cos 2+求的最大值。

10(2016高考山东理数)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A

+=+ (Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC 的最小值.

11.(2016河南中原名校一联,理10)在ABC ?中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()cos ,cos m A B =u r ,(),2n a c b =-r ,且//m n u r r .

(1)求角A 的大小;

(2)若4=a ,求ABC S ?的最大值。

12.(2016绥化模拟)在ABC ?中,232cos 2

--x x C 是方程的一个根。

(1)求角C ;

(2)当a+b=10时,求ABC ?周长的最小值。

13.已知圆O 的半径为R ,它的内接三角形中,

B b a

C A R sin )2()sin (sin 222-=-成立,求ABC S ?的最大值。

14.已知函数)sin 3(cos sin )3sin(cos 2)(x x x x x x f -++=π

(1)求函数)(x f 的最小正周期和单调递减区间;

(2)在ABC ?中,c b a ,,C B A 所对的边分别为,,角,若)(C f =1,2=c ,求ABC

S ?的最大值。

15.在ABC ?中,c=4,?=60C ,求b a +的最大值。

解三角形题型总结

解三角形题型分类解析 类型一:正弦定理 1、计算问题: 例1、(2013?北京)在△ ABC 中,a=3, b=5 , sinA=2,贝U sinB= ________ 3 a + b + c = sin A sin B sin C 例2、已知.'ABC中,.A =60 , 例3、在锐角△ ABC中,内角A, B, C的对边分别为a, b, c,且2asinB= 7b. 求角A的大小; 2、三角形形状问题 例3、在ABC中,已知a,b,c分别为角A, B, C的对边, a cos A 1)试确定-ABC形状。 b cosB 2)若—=c°s B,试确定=ABC形状。b cos A 4 )在.ABC中,已知a2 ta nB=b2ta nA,试判断三角形的形状。 5)已知在-ABC中,bsinB=csinC,且sin2 A =sin2 B sin2 C ,试判断三角形的形状。 例4、(2016年上海)已知MBC的三边长分别为3,5,7,则该三角形的外接圆半径等于 __________ 类型二:余弦定理 1、判断三角形形状:锐角、直角、钝角 在厶ABC中, 若a2b2c2,则角C是直角; 若a2b2 ::: c2,则角C是钝角; 若a2b2c2,则角C是锐角. 例1、在厶ABC中,若a=9,bT0,c=12,则厶ABC的形状是______________ , 2、求角或者边 例2、(2016 年天津高考)在△ABC 中,若AB= 13 ,BC=3, Z C =120’ 则AC=. 例3、在△ ABC中,已知三边长a=3 , b=4 , c=—37 ,求三角形的最大内角.

例4、在厶ABC中,已知a=7,b=3,c=5,求最大的角和sinC? 3、余弦公式直接应用 例5、:在也ABC中,若a2=b2+c2+bc ,求角A 例6、:(2013重庆理20)在厶ABC中,内角A B, C的对边分别是a,b,c, 且a2+ b2+、、2 ab= c2. (1)求C 例7、设厶ABC的内角A , B , C所对的边分别为 a , b , c .若(a- c)(a ? b ? c) =ab , 则角C二例8 (2016年北京高考) 在ABC中,a2c^b^ . 2ac (1)求/ B的大小; (2 )求、、.2 cosA - cosC 的最大值. 类型三:正弦、余弦定理基本应用 例1.【2015高考广东,理11】设ABC的内角A , B , C的对边分别为a , b , c ,若a = <::'3 , 1 n sin B = —,C = 一,则b =. 2 6 例 2. (a c) J=1,贝q B等于。 ac 例3.【2015高考天津,理13】在厶ABC中,内角A,B,C所对的边分别为a,b,c,已知 MBC 的面积为3、'15 , b—c =2,cos A =-1,则a 的值为. 4 1 例 4.在厶ABC中,sin(C-A)=1 , sinB= ,求sinA=。 3 例5.【2015高考北京,理12】在厶ABC 中, c=6,则sin2A = sin C

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形, 90ACB =∠,BD 交AC 于E ,2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ)因为9060150BCD =+=∠, CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠. ···················································· 6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =. 12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC=10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP ,设排污管道的总长为ykm 。 (1)按下列要求写出函数关系式: ①设∠BAO=θ(rad ),将y 表示成θ的函数关系式; ②设OP=x (km ),将y 表示成x 的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知PQ 垂直平分AB ,若∠BAO=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++-B A C D E B

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中解三角形题型大汇总

解三角形题型总结 题型一:正选定理的应用 1. ABC ?的三内角A 、B 、C 的对边边长分别为a b c 、、,若,2a A B ==, 则cos _____B = B. C. D. 2. 如果111A B C ?的三个内角的余弦值分别等于222A B C ?的三个内角的正弦值,则( ) A .111A B C ?和222A B C ?都是锐角三角形 B .111A B C ?和222A B C ?都是钝角三角形 C .111A B C ?是钝角三角形,222A B C ?是锐角三角形 D .111A B C ?是锐角三角形,222A B C ?是钝角三角形 3. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若 ( ) C a A c b cos cos 3=-,则 =A cos _________________。 4.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=a b A . B . C D 5.ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A . 33sin 34+??? ? ?+πB B . 36sin 34+??? ??+πB C .33sin 6+??? ??+πB D .36sin 6+??? ? ? +πB 6. 在ABC ?中,已知3,1,60===?ABC S b A o ,则=++++C B A c b a sin sin sin 7.设ABC ?的内角,,A B C 的对边分别为,,a b c ,且35 cos ,cos ,3,513 A B b = ==则c =______

解三角形常见题型

绝密★启用前 2014-2015学年度???学校8月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.在ABC ?中,若00120306===B A a ,,,则△ABC 的面积是= ( ). A .93 B.9 C.183 D.18 【答案】A 【解析】 试题分析:在ABC ?中,0 30180,120,30=--=∴==B A C B A Θ,ABC ?∴是等腰三角形, 6==a c ,由三角形的面积公式得 392 36621sin 21=???== ?B ac S ABC . 考点:解三角形. 2.[2014·广西模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ac =3,且a =3bsinA ,则△ABC 的面积等于( ) A. 12 B.32 C.1 D.34 【答案】A 【解析】∵a =3bsinA ,∴由正弦定理得sinA =3sinBsinA.∴sinB = 1 3 .∵ac =3,∴△ABC 的面积S =12acsinB =12×3×13=1 2 ,故选A.

第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题(题型注释) 3.在ABC ?中,已知tan AB AC A ?=u u u r u u u r ,当6 A π =时,ABC ?的面积为________. 【答案】1 6 【解析】由tan AB AC A ?=u u u r u u u r 得,tan tan 26||||cos tan ,||||cos 3 cos 6 A AB AC A A AB AC A π π?=?== =u u u r u u u r u u u r u u u r , 所以,11221 ||||sin sin 223636 ABC S AB AC A π?=?=??==u u u r u u u r . 考点:平面向量的数量积、模,三角形的面积. 4.在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知a 、b 、c 成等比数列,且a 2 -c 2 =ac -bc ,则A =________,△ABC 的形状为________. 【答案】60° 正三角形 【解析】∵a 、b 、c 成等比数列,∴b 2 =ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2 =bc . 在△ABC 中,由余弦定理得cos A =2222b c a bc +-=2bc bc =1 2 ,∴A =60°. 由b 2 =ac ,即a =2b c ,代入a 2-c 2 =ac -bc , 整理得(b -c )(b 3+c 3+cb 2 )=0, ∴b =c ,∴△ABC 为正三角形. 三、解答题(题型注释) 5.在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,设S 为△ABC 的面积,且 22 2)S b c a = +-。 (Ⅰ)求角A 的大小; (Ⅱ)若6a =,求△ABC 周长的取值范围. 【答案】(1)3 π = A ;(2)周长的取值范围是(12,18]. 【解析】 试题分析:(1)在解决三角形的问题中,面积公式

解三角形题型总结原创

解三角形题型总结 ABC ?中的常见结论和定理: 一、 内角和定理及诱导公式: 1.因为A B C π++=, 所以sin()sin ,cos()cos , tan()tan A B C A B C A B C +=+=-+=-; sin()sin ,cos()cos ,tan()tan A C B A C B A C B +=+=-+=-; sin()sin ,cos()cos ,tan()tan B C A B C A B C A +=+=-+=- 因为,22A B C π++= 所以sin cos 22A B C +=,cos sin 22 A B C +=,………… 2.大边对大角 3.在△ABC 中,熟记并会证明tanA+tanB+tanC=tanA·tanB·tanC; (2)A 、B 、C 成等差数列的充要条件是B=60°; (3)△ABC 是正三角形的充要条件是A 、B 、C 成等差数列且a 、b 、c 成等比数列.

四、面积公式: (1)12a S ah = (2)1()2 S r a b c =++(其中r 为三角形内切圆半径) (3)111sin sin sin 222 S ab C bc A ac B === 五、 常见三角形的基本类型及解法: (1)已知两角和一边(如已知,,A B 边c ) 解法:根据内角和求出角)(B A C +-=π; 根据正弦定理 R C c B b A a 2sin sin sin ===求出其余两边,a b (2)已知两边和夹角(如已知C b a ,,) 解法:根据余弦定理2 2 2 2cos c a b ab C =+-求出边c ; 根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据内角和定理求角)(C A B +-=π. (3)已知三边(如:c b a ,,) 解法:根据余弦定理的变形bc a c b A 2cos 2 22-+=求A ; 根据余弦定理的变形ac b c a B 2cos 2 22-+=求角B ; 根据内角和定理求角)(B A C +-=π (4)已知两边和其中一边对角(如:A b a ,,)(注意讨论解的情况) 解法1:若只求第三边,用余弦定理:222 2cos c a b ab C =+-; 解法2:若不是只求第三边,先用正弦定理R C c B b A a 2sin sin sin ===求B (可能出现一解,两解或无解的情况,见题型一); 再根据内角和定理求角)(B A C +-=π;. 先看一道例题: 例:在ABC ?中,已知0 30,32,6===B c b ,求角C 。(答案:045=C 或0135)

解三角形高考真题(一)

解三角形高考真题(一)

解三角形高考真题(一) 一.选择题(共9小题) 1.△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=() A.B.C.D. 2.在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB (1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是() A.a=2b B.b=2a C.A=2B D.B=2A 3.△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2 D.3 4.在△ABC中,若AB=,BC=3,∠C=120°,则AC=() A.1 B.2 C.3 D.4 5.△ABC中,角A,B,C的对边分别是a,b,c,已知b=c,a2=2b2(1﹣sinA),则A=()A. B.C.D. 6.在△ABC中,B=,BC边上的高等于BC,则

14.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b= .15.在△ABC中,∠A=,a=c,则= .16.在△ABC中,B=120°,AB=,A的角平分线AD=,则AC= . 17.在△ABC中,AB=,∠A=75°,∠B=45°,则AC= . 18.设△ABC的内角A,B,C的对边分别为a,b,c.若a=,sinB=,C=,则b= .19.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD= m. 20.若锐角△ABC的面积为,且AB=5,AC=8,则BC等于. 21.在△ABC中,a=3,b=,∠A=,则∠

必修五解三角形常考题型非常全面

必修五解三角形常考题型 1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1 在V ABC 中,已知A:B:C=1:2:3,求a :b :c. 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。 解:::1:2:3,A . ,,, 6 3 2 1::sin :sin :sin sin :sin :sin :1 2.6 3 2 2A B C B C A B C a b A B C ππ π π π π π =++=∴= = = ∴=== =Q 而 【解题策略】要牢记正弦定理极其变形形式,要做到灵活应用。 例2在ABC 中,已知 ,C=30°,求a+b 的取值范围。 【点拨】 此题可先运用正弦定理将a+b 表示为某个角的三角函数,然后再求解。 解:∵C=30°, ,∴由正弦定理得: sin sin sin a b c A B C === ∴ )sin (150°-A ). ∴ )[sinA+sin(150° )·2sin75°·cos(75° -A)= 2 cos(75°-A) ① 当75°-A=0°,即A=75°时,a+b 取得最大值 2 ; ② ∵A=180°-(C+B)=150°-B,∴A <150°,∴0°<A <150°, ∴-75°<75°-A <75°,∴cos75°<cos(75°-A)≤1, ∴> 2 cos75° = 2 × 4 . 综合①②可得a+b 的取值范围为 ,8+ 考察点2:利用正弦定理判断三角形形状 例3在△ABC 中,2 a ·tanB=2 b ·tanA ,判断三角形ABC 的形状。 【点拨】通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC 的形状。

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高考解三角形大题(30道)69052

专题精选习题----解三角形 1.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,已知b a c B C A -= -2cos cos 2cos . (1)求A C sin sin 的值; (2)若2,41 cos ==b B ,求ABC ?的面积S . 2.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 2sin 1cos sin C C C -=+. (1)求C sin 的值; (2)若8)(422-+=+b a b a ,求边c 的值. 3.在ABC ?中,角C B A ,,的对边分别是c b a ,,. (1)若A A cos 2)6sin(=+π ,求A 的值; (2)若c b A 3,31 cos ==,求C sin 的值.

4.ABC ?中,D 为边BC 上的一点,5 3cos ,135sin ,33=∠==ADC B BD ,求AD . 5.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知41 cos ,2,1===C b a . (1)求ABC ?的周长; (2)求)cos(C A -的值. 6.在ABC ?中,角C B A ,,的对边分别是c b a ,,.已知)(sin sin sin R p B p C A ∈=+,且241 b a c =. (1)当1,45 ==b p 时,求c a ,的值; (2)若角B 为锐角,求p 的取值范围.

7.在ABC ?中,角C B A ,,的对边分别是c b a ,,.且C b c B c b A a sin )2(sin )2(sin 2+++=. (1)求A 的值; (2)求C B sin sin +的最大值. 8.在ABC ?中,角C B A ,,的对边分别是c b a ,,,已知 412cos -=C . (1)求C sin 的值; (2)当C A a sin sin 2,2==时,求c b ,的长. 9.在ABC ?中,角C B A ,,的对边分别是c b a ,,,且满足 3,5522cos =?=A . (1)求ABC ?的面积; (2)若6=+c b ,求a 的值.

必修五解三角形常考题型

必修五解三角形常考题型1.1正弦定理和余弦定理 1.1.1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形 例1在ABC中,已知A:B:C=1:2:3,求a :b :c. 例2在ABC中,已知,C=30°,求a+b的取值范围。 考察点2:利用正弦定理判断三角形形状 例3在△ABC中,2a·tanB=2b·tanA,判断三角形ABC的形状。

例4在△ABC 中,如果lg lg lg sin a c B -==-,并且B 为锐角,试判断此三角形的形状。 考察点3:利用正弦定理证明三角恒等式 例5在△ABC 中,求证 222222 0cos cos cos cos cos cos a b b c c a A B B C C A ---++=+++.

例6在△ABC 中,a,b,c 分别是角A,B,C 的对边,C=2B ,求证2 2 c b ab -=. 考察点4:求三角形的面积 例7在△ABC 中,a,b,c 分别是三个内角A,B,C 的对边,若2,,cos 4 25 B a C π == =,求△ABC 的面积S.

例8已知△ABC 中a,b,c 分别是三个内角A,B,C 的对边,△ABC 的外接圆半径为12,且3 C π =, 求△ABC 的面积S 的最大值。 考察点5:与正弦定理有关的综合问题 例9已知△ABC 的内角A,B 极其对边a,b 满足cot cot ,a b a A b B +=+求内角C 例10在△ABC 中,A ,B ,C 所对的边分别为a,b,c,且c=10, cos 4 cos 3 A b B a ==,求a,b 及△ABC

高中数学解三角形题型完整归纳

高中数学解三角形题型目录一.正弦定理 1.角角边 2.边边角 3.与三角公式结合 4.正弦定理与三角形增解的应对措施 5.边化角 6.正弦角化边 二.余弦定理 1.边边边 2.边角边 3.边边角 4.与三角公式结合 5.比例问题 6.余弦角化边 7.边化余弦角 三.三角形的面积公式 1.面积公式的选用 2.面积的计算 3.正、余弦定理与三角形面积的综合应用 四.射影定理 五.正弦定理与余弦定理综合应用 1.边角互化与三角公式结合 2.与平面向量结合 3.利用正弦或余弦定理判断三角形形状 4.三角形中的最值问题 (1)最大(小)角 (2)最长(短)边 (3)边长或周长的最值

(4)面积的最值 (5)有关正弦或余弦或正切角等的最值 (6)基本不等式与余弦定理交汇 (7)与二次函数交汇 六.图形问题 1.三角形内角之和和外角问题 2.三角形角平分线问题 3.三角形中线问题 4.三角形中多次使用正、余弦定理 5.四边形对角互补与余弦定理的多次使用 6.四边形与正、余弦定理 六.解三角形的实际应用 1.利用正弦定理求解实际应用问题 2.利用余弦定理求解实际应用问题 3.利用正弦和余弦定理求解实际应用问题 一.正弦定理 1.角角边 ?=?=?= 例.在中,解三角形 ABC A B a 30,45,2,. ?=?=?== 练习1.在中则 ABC A B a c ,30,45, . 练习2.在中,已知45,,求 ?=?=?= 30. ABC C A a b 2.边边角 例中,解这个三角形?===? ABC a .45,. 练习1中,则 ?==+== . 1,2,sin ABC a b A C B C 练习2.中则 ?===?= ,3,60,_____ ABC c b C A

解三角形(历届高考题)

解三角形(历届高考题) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

历届高考中的“解三角形”试题精选(自我测试) 1.(A 等于( ) (A )135° (B)90° (C)45° (D)30° 2.(2007重庆理)在ABC ?中,,75,45,300===C A AB 则BC =( ) A.33- B.2 C.2 D.33+ 3.(2006山东文、理)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、 c ,A =3 π ,a =3,b =1,则c =( ) (A )1 (B )2 (C )3—1 (D )3 4.(2008福建文)在中,角A,B,C 的对应边分别为a,b,c,若222a c b +-=,则角B 的值为( ) A.6π B.3π C.6π或56π D.3 π 或23π 5.(2005春招上海)在△ABC 中,若 C c B b A a cos cos cos = =,则△ABC 是( ) (A )直角三角形. (B )等边三角形. (C )钝角三角形. (D )等腰直角三角形. 6.(2006全国Ⅰ卷文、理)ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,若 a 、 b 、 c 成等比数列,且2c a =,则cos B =( ) A . 14 B .3 4 C .4 D .3 7.(2005北京春招文、理)在ABC ?中,已知C B A sin cos sin 2=,那么ABC ?一定是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形 8.(2004全国Ⅳ卷文、理)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为2 3 ,那么b =( ) A .2 31+ B .31+ C .2 32+ D .32+ 二.填空题: (每小题5分,计30分) 9.(2007重庆文)在△ABC 中,AB =1, B C =2, B =60°,则AC = 。

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

【高中数学】解三角形的知识总结和题型归纳

解三角形的知识总结和题型归纳 一、知识必备: 1.直角三角形中各元素间的关系: 在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。(1)三边之间的关系:a 2+b 2=c 2。(勾股定理)(2)锐角之间的关系:A +B =90°;(3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =b a 。 2.斜三角形中各元素间的关系: 在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。(1)三角形内角和:A +B +C =π。 (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等 R C c B b A a 2sin sin sin ===(R 为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 。 3.三角形的面积公式: (1)?S = 21ah a =21bh b =21 ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)?S =21ab sin C =21bc sin A =2 1 ac sin B ; 4.解三角形:由三角形的六个元素(即三条边和三个内角)中的三个元素(其中至少有一个是边)求其他未知元素的问题叫做解三角形.广义地,这里所说的元素还可以包括三角形的高、中线、角平分线以及内切圆半径、外接圆半径、面 【高中数学】

解三角形常见题型

解三角形知识点、常见题型及解题方法 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3π= A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ?? +πB B .36sin 34+??? ? ?+πB C .33sin 6+??? ?? +πB D .36sin 6+??? ? ?+πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知66cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且36221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 22?-+=, x x 6 636223852??++=,解得1=x ,37-=x (舍去)

《解三角形》常见题型总结

《解三角形》常见题型总结 1、1正弦定理和余弦定理 1、1、1正弦定理 【典型题剖析】 考察点1:利用正弦定理解三角形例1 在ABC中,已知 A:B:C=1:2:3,求a :b :c、 【点拨】 本题考查利用正弦定理实现三角形中边与角的互化,利用三角形内角和定理及正弦定理的变形形式 a :b :c=sinA: sinB: sinC 求解。解: 【解题策略】 要牢记正弦定理极其变形形式,要做到灵活应用。例2在ABC 中,已知c=+,C=30,求a+b的取值范围。 【点拨】 此题可先运用正弦定理将a+b表示为某个角的三角函数,然后再求解。解:∵C=30,c=+,∴由正弦定理得:∴ a=2(+)sinA,b=2(+)sinB=2(+)sin(150-A)、 ∴a+b=2(+)[sinA+sin(150-A)]=2(+)2sin75cos(75-A)= cos(75-A)① 当75-A=0,即A=75时,a+b取得最大值=8+4;② ∵A=180-(C+B)=150-B,∴A<150,∴0<A<150,∴-75<75-A<75, ∴cos75<cos(75-A)≤1,∴> cos75==+、综合①②可得a+b的

取值范围为(+,8+4>考察点2:利用正弦定理判断三角形形状例3在△ABC中,tanB=tanA,判断三角形ABC的形状。 【点拨】 通过正弦定理把边的关系转化为角的关系,利用角的关系判断△ABC的形状。解:由正弦定理变式a=2RsinA,b=2RsinB得:,即,,、∴为等腰三角形或直角三角形。 【解题策略】 “在△ABC中,由得∠A=∠B”是常犯的错误,应认真体会上述解答过程中“∠A=∠B或∠A+∠B=”的导出过程。例4在△ABC 中,如果,并且B为锐角,试判断此三角形的形状。 【点拨】 通过正弦定理把边的形式转化为角的形式,利用两角差的正弦公式来判断△ABC的形状。解:、又∵B为锐角,∴B= 45、由由正弦定理,得,∵代入上式得:考察点3:利用正弦定理证明三角恒等式例5在△ABC中,求证、 【点拨】 观察等式的特点,有边有角要把边角统一,为此利用正弦定理将转化为、证明:由正弦定理的变式得:同理 【解题策略】 在三角形中,解决含边角关系的问题时,常运用正弦定理进行边角互化,然后利用三角知识去解决,要注意体会其中的转化

解三角形常见题型归纳

解三角形常见题型归纳 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。 题型之一:求解斜三角形中的基本元素 指已知两边一角(或二角一边或三边),求其它三个元素问题,进而求出三角形的三线(高线、角平分线、中线)及周长等基本问题. 1. 在ABC ?中,AB=3,AC=2,BC=10,则AB AC ?= ( ) A .23- B .3 2- C .32 D .23 【答案】D 2.(1)在?ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形; (2)在?ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。 3.(1)在?ABC 中,已知=a c 060=B ,求b 及A ; (2)在?ABC 中,已知134.6=a cm ,87.8=b cm ,161.7=c cm ,解三角形 4(2005年全国高考江苏卷) ABC ?中,3 π = A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ? ? + πB B .36sin 34+??? ? ? +πB C .33sin 6+??? ? ? + πB D .36sin 6+??? ? ? +πB 分析:由正弦定理,求出b 及c ,或整体求出b +c ,则周长为3+b +c 而得到结果.选(D). 5 (2005年全国高考湖北卷) 在ΔABC 中,已知6 6 cos ,364== B AB ,A C 边上的中线B D =5,求sin A 的值. 分析:本题关键是利用余弦定理,求出AC 及BC ,再由正弦定理,即得sin A . 解:设E 为BC 的中点,连接DE ,则DE //AB ,且3 6221== AB DE ,设BE =x 在ΔBDE 中利用余弦定理可得:BED ED BE ED BE BD cos 22 2 2 ?-+=,

解三角形高考大题-带答案

解三角形高考大题,带答案 1. (宁夏17)(本小题满分12分) 如图,ACD △是等边三角形,ABC △是等腰直角三角形,90ACB =∠,BD 交AC 于E , 2AB =. (Ⅰ)求cos CAE ∠的值; (Ⅱ)求AE . 解:(Ⅰ) 因为 9060150BCD =+=∠,CB AC CD ==, 所以15CBE =∠. 所以6cos cos(4530)4 CBE =-=∠.?6分 (Ⅱ)在ABE △中,2AB =, 由正弦定理 2 sin(4515)sin(9015) AE =-+. 故2sin 30 cos15 AE = 12 4 ? = =.?12分 2. (江苏17)(14分) 某地有三家工厂,分别位于矩形ABCD 的顶点A 、B 及CD 的中点P 处,已知AB=20km ,BC =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A 、B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO 、BO 、OP,设排污管道的总长为y km 。 (1)按下列要求写出函数关系式: ①设∠B AO=θ(rad ),将y 表示成θ的函数关系式; ②设O P=x (k m),将y 表示成x的函数关系式; (2)请你选用(1)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。 【解析】:本小题考查函数的概念、 解三角形、导数等基本知识,考查数学建模能力、 抽象概括能力和解决实际问题的能力。 (1)①由条件知P Q垂直平分A B,若∠BA O=θ(rad ),则 cos cos OA BAO θ = =∠, 故10 cos OB θ = 又1010OP tan θ=-,所以1010 1010cos cos y OA OB OP tan θθθ =++= ++- B A C D E B

相关文档
最新文档