才学校17—18学年高二(实验班)下学期第三次月考物理试题(附答案)

合集下载

[推荐学习]2017_2018学年高二物理下学期第二次月考试题实验班

[推荐学习]2017_2018学年高二物理下学期第二次月考试题实验班

上饶县中学2019届高二年级下学期第二次月考物 理 试 卷(实验班)时间:90分钟 总分:100分一、选择题(本题共10小题,每题4分,共40分,其中7-10题为多选题,全部选对的 4分,选不全的得2分,有选错的或不答的得0分)。

1.有关电磁场理论说法正确的是A.法拉第预言了电磁波的存在,并揭示了电、磁、光现象在本质上的统一性B.变化的磁场一定产生变化的电场C.均匀电荷的电场产生均匀变化的磁场D.赫兹通过一系列实验,证明了麦克斯韦关于光的电磁理论2.如图所示,两束单色光a 、b 从水面下射向A 点,光线经折射后合成一束光,则正确的是A.在水中a 光的波速比b 光的波速小B.用同一双缝干涉实验装置分别以a 、b 光做实验时,a 光的干涉条纹间距大于b 光的干 涉条纹间距C.用同一单缝衍射实验装置分别以a 、b 光做实验时,b 光的衍射现象更加明显D.从水射向空气时a 光的临界角小于b 光的临界角3.如图所示,质量为M 的物块A 上端与轻弹簧固定,弹簧劲度系数为k ,下端用轻绳系住质量为m (m M ≠)的木块B ,期初静止,突然剪断A 、B 间轻绳,此后A 将在竖直方向上做简写运动,则A.物块A 做简谐运动的振幅为MgkB.物块A 做简谐振动的振幅为mgkC.剪断A 、B 间轻绳瞬间,物块A 的加速度为零D.剪断A 、B 间轻绳瞬间,物块A 的加速度大小为Mg mgM+ 4.一弹簧振子的位移y 随时间t 变化的关系式为0.1sin(2.5)y t π=,时间t的单位为s。

则位移y的单位为m,A.弹簧振子的振幅为0.2mB.弹簧振子的周期为1.25sC.在t=0.2s时,振子的运动速度为零D.在任意0.2s时间内,振子的位移均为0.1m5. 一束光线穿过介质1、2、3时,光路如图所示,则A. 介质1的折射率最大B. 介质2是光密介质C. 光在介质2中的速度最大D. 当入射角由45°逐渐增大时,在2、3分界面上可能发生全反射6. 如图所示是一个柱体棱镜的横截面图,图中MN E、F、G、H将半径OM分成5等份,虚线EE1、FF1、GG1、HH1平行于半径ON,ON边可吸收到达其上的所有光线。

学校17—18学年下学期高二第二阶段考试物理试题(附答案)

学校17—18学年下学期高二第二阶段考试物理试题(附答案)

2017—2018学年度下学期第二次阶段考试高二物理试卷答题时间:90分钟命题校对:高二物理备课组一、选择题:(每小题4分,1-7题为单选题,8-12为多选题)1、酷热的夏天,在平坦的柏油公路上,你会看到在一定距离之外,地面显得格外明亮,仿佛是一片水面,似乎还能看到远处车、人的倒影,但当你靠近“水面”时,它也随你的靠近而后退,对此现象正确的解释是()A.同海市蜃楼具有相同的原理,是由于光的全反射造成的B.“水面”不存在,是由于酷热难耐,人产生的幻觉C.太阳辐射到地面,使地表空气温度升高,折射率大,发生全反射D.太阳辐射到地面,使地表空气温度升高,折射率小,发生全反射2、以下电场中能产生电磁波的是()A.E=10 N/C B.E=5sin(4t+1) N/C C.E=(3t+2) N/C D.E=(4t2-2t) N/C3、若一列火车以接近光速的速度在高速行驶,车上的人用望远镜来观察地面上的一只排球,如果观察的很清晰,则观察结果是()A.像一只乒乓球(球体变小) B.像一只篮球(球体变大)C.像一只橄榄球(竖直放置) D.像一只橄榄球(水平放置)4、1995年科学家“制成”了反氢原子,它是由一个反质子和一个围绕它运动的正电子组成的,反质子和质子有相同的质量,带有等量异种电荷。

反氢原子和氢原子有相同的能级分布,氢原子能级如图所示,则下列说法中正确的是()A.反氢原子光谱与氢原子光谱不相同B.基态反氢原子的电离能为13.6 eVC.基态反氢原子能吸收11 eV的光子而发生跃迁D.大量处于n=4能级的反氢原子向低能级跃迁时,从n=2能级跃迁到基态辐射的光子的波长最短5、如图所示,光滑斜面AE被分成四个相等的部分,一物体由A点从静止释放,下列结论不正确的是()A.物体到达各点的速率之比v B:v C:v D:v E=12B.物体到达各点经历的时间t E=2tCt DABCDEC .物体从A 到E 的平均速度v=v BD .物体通过每一部分时,其速度增量v B -v A =v C -v B =v D -v C =vE -v D6、2008年北京奥运会上何雯娜夺得中国首枚奥运会女子蹦床金牌。

高二物理下期期末试题(附答案)

高二物理下期期末试题(附答案)

一、选择题〔每题6分〕1 .在物理学开展史上,有许多科学家通过坚持不懈的努力,取得了辉煌的研究成果,以下表述符合物理学史实的是〔〕A.伽利略通过理想斜面实验提出了力不是维持物体运动的原因B.牛顿发现了行星运动的规律,并通过实验测出了万有引力常量C.安培发现电流的磁效应,这和他坚信电和磁之间一定存在着联系的哲学思想是分不开的D.楞次引入电场线和磁感线的概念来描述电场和磁场,极大地促进了他对电磁现象的研究2 .在以点电荷为球心,「为半径的球面上各点相同的物理量是〔〕A.电场强度B.同一电荷所受的电场力C.电势D.电荷量相等的正负两点电荷具有的电势能3.如下图,MN和PQ是两根互相平行竖直放置的光滑金属导轨, 导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场, 磁感应强度为B,宽度为L, ab是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S断开,让ab由静止开始自由下落,过段时间后,再将S闭合,假设从S闭合开始计时,那么金属杆ab的速度v随时间t变化的图象不可能是〔〕A. B. C. D.4 .如图,导体棒ab两个端点分别搭接在两个竖直放置、电阻不计、半径相等的金属圆环上,圆环通过电刷与导线c、d相接.c、d两个端点接在匝数比n1: n2=10: 1的理想变压器原线圈两端,变压器副线圈接一滑动变阻器R0,匀强磁场的磁感应强度为B,方向竖直向下,导体棒ab 长为L 〔电阻不计〕,绕与ab平行的水平轴〔也是两圆环的中央轴〕00'以角速度⑴匀速转动如果变阻器的阻值为R时, 通过电流表的电流为I,那么〔〕A.变阻器上消耗的功率为P=10I2RB. ab沿环转动过程中受到的最大安培力C.取ab在环的最低端时t=0 ,那么棒ab中感应电流的表达式是D.变压器原线圈两端的电压U1 = 10IR5.如图是滑雪场的一条雪道.质量为70kg的某滑雪运发动由A点沿圆弧轨道滑下,在B点以5 m/s的速度水平飞出,落到了倾斜轨道上的C点〔图中未画出〕.不计空气阻力,0 =30° ,g=10m/s2 ,那么以下判断正确的选项是〔〕A.该滑雪运发动腾空的时间为2sB. BC两点间的落差为5 mC.落到C点时重力的瞬时功率为3500 WD.假设该滑雪运发动从更高处滑下,落到C点时速度与竖直方向的夹角不变6 .质量为m的物体,在距地面h高处以的加速度由静止竖直下落到地面,以下说法中正确的选项是〔〕A.物体重力势能减少B.物体的机械能减少C.重力对物体做功mgh D .物体的动能增加7 .如下图的匀强电场场强为1X103N/C, ab=dc=4cm , bc=ad=3cm ,那么下述计算结果正确的选项是〔〕A. ab之间的电势差为40VB. ac之间的电势差为50VC.将q=5M0 3C的点电荷沿矩形路径abcd移动一周,电场力做功为零D.将q= 5X10 3C的点电荷沿abc或adc从a移动到c,电场力做功都是6.25J8.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭发动机的航天飞机A在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接.空间站绕月圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R.下列说法正确的选项是〔〕A.航天飞机到达B处由椭圆轨道进入空间站轨道时必须减速8 .图中的航天飞机正在加速飞向B处C.月球的质量为M=D.月球的第一宇宙速度为v=二、非选择题:包括必考题和选考题两局部.第9题~ 12题为必考题,每个试题考生都必须作答.第13题〜14题为选考题,考生根据要求作答.(一)必考题9 .某同学采用如图甲所示的电路测定电源电动势和内电阻,干电池的电动势约为1.5V,内阻约2Q,电压表(0〜3V 约3kQ), 电流表(0〜0.6A 约1.0Q),滑动变阻器有R1 (10Q 2A)和R2 各一只.(1)实验中滑动变阻器应选用(选填R1〞或R2〞).(2)在图乙中用笔画线代替导线连接实验电路.(3)在实验中测得多组电压和电流值,得到如图丙所示的U卜图象, 由图可较准确地求出电源电动势E= V;内阻r=Q .10 .为测出量程为3V,内阻约为2k Q电压表内阻的精确值.实验室中可提供的器材有:电阻箱R,最大电阻为9999.9 Q,定值电阻r1=5k Q ,定值电阻r2=10k Q电动势约为12V,内阻不计的电源E开关、导线假设干.实验的电路图如下图,先正确连好电路,再调节电阻箱R的电阻值,使得电压表的指针半偏,记下此时电阻箱R有电阻值R1;然后调节电阻箱R的值,使电压表的指针满偏,记下此时电阻箱R的电阻值R2.(1)实验中选用的定值电阻是;(2)此实验计算电压表内阻RV的表达式为RV= .(3)假设电源的内阻不能忽略,那么电压表内阻RV的测量值将A.偏大B.不变C.偏小D.不能确定,要视电压表内阻的大小而定.11 .如图甲所示,有一足够长的粗糙斜面,倾角8 =37 , 一质量为m 的滑块以初速度v0=16m/s从底端A点滑上斜面,滑至B点后又返回到A点.滑块运动的图象如图乙所示,求:(:sin 37 =0.6 , cos 37 =0.8,重力加速度g=10m/s2 )(1) AB之间的距离;(2)上滑过程滑块受到斜面摩擦阻力的大小(2)滑块再次回到A点时的速度的大小.12.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向, 磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x=0, y=h)点以一定的速度平行于x轴正向入射.这时假设只有磁场,粒子将做半径为R0的圆周运动:假设同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点.不计重力.求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2) M点的横坐标xM.(二)选考题【物理选修3-5】13.以下说法正确的选项是( )A. (3衰变现象说明电子是原子核的组成局部B.在中子轰击下生成和的过程中,原子核中的平均核子质量变小C.太阳辐射能量主要来自太阳内部的聚变反响D.卢瑟福依据极少数0c粒子发生大角度散射提出了原子核式结构模型E.根据玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量减小14.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b, 用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳忽然自动断开,断开后两球仍沿原直线运动.经过时间t=5,0s后,测得两球相品巨s=4.5m ,求:〔i〕刚别离时a、b两小球的速度大小v1、v2;〔ii〕两球分开过程中释放的弹性势能Ep .2021-2021学年广东省茂名市高州中学高二〔下〕期末物理试卷参考答案与试题解析一、选择题〔每题6分〕1.在物理学开展史上,有许多科学家通过坚持不懈的努力,取得了辉煌的研究成果,以下表述符合物理学史实的是〔〕A.伽利略通过理想斜面实验提出了力不是维持物体运动的原因B.牛顿发现了行星运动的规律,并通过实验测出了万有引力常量C.安培发现电流的磁效应,这和他坚信电和磁之间一定存在着联系的哲学思想是分不开的D.楞次引入电场线和磁感线的概念来描述电场和磁场,极大地促进了他对电磁现象的研究【考点】物理学史.【分析】根据物理学史和常识解答,记住著名物理学家的主要奉献即可.【解答】解:A、伽利略通过理想斜面实验提出了力不是维持物体运动的原因,故A正确;B、开普勒发现了行星运动的规律,卡文迪许通过实验测出了万有引力常量,故B错误;C、奥斯特发现电流的磁效应,这和他坚信电和磁之间一定存在着联系的哲学思想是分不开的,故C错误;D、法拉第引入电场线和磁感线的概念来描述电场和磁场,极大地促进了他对电磁现象的研究,故D错误;应选:A2.在以点电荷为球心,「为半径的球面上各点相同的物理量是〔〕A.电场强度B.同一电荷所受的电场力C.电势D.电荷量相等的正负两点电荷具有的电势能【考点】点电荷的场强;电势.【分析】只有大小和方向都相同时,矢量才相同;标量只有大小,没有方向,只要大小相等,标量就相同.以点电荷为球心的球面是一个等势面,其上各点的电势相等,电场强度大小相等,方向不同.【解答】解:A、以点电荷为球心的球面各点的电场强度大小相等, 方向不同,故电场强度不同.故A错误.B、由F=qE可知,同一电荷受到的电场力大小相等,方向不同,故电场力不同,故B错误.C、以点电荷为球心的球面是一个等势面,即各点的电势相等.故C 正确.D、由电势能与电势的关系可知,电势相同,电荷量相等的正负两点电荷具有的电势能不相同.故D错误.应选:C.3.如下图,MN和PQ是两根互相平行竖直放置的光滑金属导轨, 导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场, 磁感应强度为B,宽度为L, ab是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S断开,让ab由静止开始自由下落,过段时间后,再将S闭合,假设从S闭合开始计时,那么金属杆ab的速度v随时间t变化的图象不可能是〔〕A. B. C. D.【考点】导体切割磁感线时的感应电动势.【分析】S闭合后,金属杆在下滑过程中,受到重力和安培力作用, 分析安培力与重力大小关系,根据安培力大小与速度大小成正比,分析金属杆的加速度变化,确定金属杆的运动情况.【解答】解:A、闭合开关时,金属杆在下滑过程中,受到重力和安培力作用,假设重力与安培力相等,金属杆做匀速直线运动.这个图象是可能的,故A正确;BC、假设安培力小于重力,那么金属杆的合力向下,加速度向下,做加速运动,在加速运动的过程中,产生的感应电流增大,安培力增大, 那么合力减小,加速度减小,做加速度逐渐减小的加速运动,当重力与安培力相等时,做匀速直线运动.故B错误,C正确;D、假设安培力大于重力,那么加速度的方向向上,做减速运动,减速运动的过程中,安培力减小,做加速度逐渐减小的减速运动,当重力与安培力相等时,做匀速直线运动.故D正确.此题选不可能的,应选:B.4 .如图,导体棒ab两个端点分别搭接在两个竖直放置、电阻不计、半径相等的金属圆环上,圆环通过电刷与导线c、d相接.c、d两个端点接在匝数比n1: n2=10: 1的理想变压器原线圈两端,变压器副线圈接一滑动变阻器R0,匀强磁场的磁感应强度为B,方向竖直向下,导体棒ab长为L 〔电阻不计〕,绕与ab平行的水平轴〔也是两圆环的中央轴〕00'以角速度⑴匀速转动如果变阻器的阻值为R时, 通过电流表的电流为I,那么〔〕A.变阻器上消耗的功率为P=10I2RB. ab沿环转动过程中受到的最大安培力C.取ab在环的最低端时t=0 ,那么棒ab中感应电流的表达式是D.变压器原线圈两端的电压U1 = 10IR【考点】法拉第电磁感应定律;电功、电功率;变压器的构造和原理. 【分析】掌握住理想变压器的电压、电流之间的关系,最大值和有效值之间的关系即可解决此题.【解答】解:A、理想变压器的电流与匝数成反比,所以由得,12=101,变阻器上消耗的功率为P=I22R= 〔10I〕 2R=100I2R ,故A错误.B、ab在最低点时,ab棒与磁场垂直,此时的感应电动势最大,感应电流最大,最大值为I,此时的安培力也是最大的,最大安培力为F= BIL ,故B正确.C、ab在最低点时,ab棒与磁场垂直,此时的感应电动势最大,感应电流最大,所以棒ab中感应电流的表达式应为i= Icos故,故C错误.D、副线圈的电压为U=I2R=10IR ,根据理想变压器的电压与匝数成正比可知,变压器原线圈两端的电压U1=100IR ,故D错误.应选:B.5.如图是滑雪场的一条雪道.质量为70kg的某滑雪运发动由A点沿圆弧轨道滑下,在B点以5 m/s的速度水平飞出,落到了倾斜轨道上的C点〔图中未画出〕.不计空气阻力,0 =30° ,g=10m/s2 ,那么以下判断正确的选项是〔〕A.该滑雪运发动腾空的时间为2sB. BC两点间的落差为5 mC.落到C点时重力的瞬时功率为3500 WD.假设该滑雪运发动从更高处滑下,落到C点时速度与竖直方向的夹角不变【考点】功率、平均功率和瞬时功率;平抛运动.【分析】平抛运动在水平方向上做匀速直线运动, 在竖直方向上做自由落体运动,根据水平位移与竖直位移之间的关系求的时间和距离【解答】解:A、B、运发动平抛的过程中,水平位移为x=v0t竖直位移为y= gt2落地时:tan 8=联立解得t=1s, y=5m .故A、B错误;C、落地时的速度:vy=gt=10 X1=10m/s所以:落到C点时重力的瞬时功率为:P=mg?/y=70 X10X10=7000 W.故C错误;D、根据落地时速度方向与水平方向之间的夹角的表达式:tan芹=, 可知到C点时速度与竖直方向的夹角与平抛运动的初速度无关. 故D 正确.应选:D6 .质量为m的物体,在距地面h高处以的加速度由静止竖直下落到地面,以下说法中正确的选项是〔〕A.物体重力势能减少B.物体的机械能减少C.重力对物体做功mgh D .物体的动能增加【考点】重力势能的变化与重力做功的关系;动能定理.【分析】知道重力做功量度重力势能的变化.知道合力做功量度动能的变化.知道除了重力和弹簧弹力之外的力做功量度机械能的变化.【解答】解:A、根据重力做功与重力势能变化的关系得:wG= -Ep由静止竖直下落到地面,在这个过程中,wG=mgh ,所以重力势能减小了mgH .故A错误.B、由除了重力和弹簧弹力之外的力做功量度机械能的变化得出:w外二在由静止竖直下落到地面,在这个过程中,根据牛顿第二定律得:F =mg f=ma= mgf= mg物体除了重力之外就受竖直向上的阻力,w 外=亚£= -mgh所以物体的机械能减小了mgh ,故B正确.C、重力对物体做功wG=mgh ,故C正确.D、根据动能定理知道:w合=/!Ek由静止竖直下落到地面,在这个过程中,w =F 合h= mgh ,所以物体的动能增加了mgh ,故D错误.应选BC.7 .如下图的匀强电场场强为1X103N/C, ab=dc=4cm , bc=ad=3cm ,那么下述计算结果正确的选项是〔〕A. ab之间的电势差为40VB. ac之间的电势差为50VC.将q=5M0 3C的点电荷沿矩形路径abcd移动一周,电场力做功为零D.将q= 5X10 3C的点电荷沿abc或adc从a移动到c,电场力做功都是6.25J【考点】匀强电场中电势差和电场强度的关系.【分析】根据匀强电场中电势差与场强的关系式U=Ed, d是电场线方向两点间的距离,求解两点间的电势差.根据公式W=qU求解电场力做功. 【解答】解:A、ab之间的电势差Uab=E?ab=103 X0.04V=40V .故A 正确.B、由图看出,b、c在同一等势面上,电势相等,那么ac之间的电势差等于ab之间的电势差,为40V.故B错误.C、将q=5X10 3C的点电荷沿矩形路径abcd移动一周,电场力不做功.故C正确.D、将q= 5X10 3C的点电荷沿abc或adc从a移动到c,电场力做功相等,电场力做功为W=qU= 5X10 3C >40V= 0.2J .故D错误.应选:AC.8.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图所示,关闭发动机的航天飞机A在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆轨道的近月点B处与空间站C对接.空间站绕月圆轨道的半径为r,周期为T,引力常量为G,月球的半径为R.下列说法正确的选项是〔〕A.航天飞机到达B处由椭圆轨道进入空间站轨道时必须减速8 .图中的航天飞机正在加速飞向B处C.月球的质量为M=D.月球的第一宇宙速度为v=【考点】万有引力定律及其应用;第一宇宙速度、第二宇宙速度和第三宇宙速度.【分析】要使航天飞机在椭圆轨道的近月点B处与空间站C对接, 必须在接近B点时减速.根据开普勒定律可知,航天飞机向近月点运动时速度越来越大.月球对航天飞机的万有引力提供其向心力, 由牛顿第二定律求出月球的质量M.月球的第一宇宙速度大于 .【解答】解:A、要使航天飞机在椭圆轨道的近月点B处与空间站C 对接,必须在接近B点时减速.否那么航天飞机将继续做椭圆运动. 故A正确.B、根据开普勒定律可知,航天飞机向近月点B运动时速度越来越大.故B正确.C、设空间站的质量为m,由得,.故C正确.D、空间站绕月圆轨道的半径为r,周期为T,其运行速度为,其速度小于月球的第一宇宙速度,所以月球的第一宇宙速度大于 .故D错误.应选:ABC二、非选择题:包括必考题和选考题两局部.第9题〜12题为必考题,每个试题考生都必须作答.第13题〜14题为选考题,考生根据要求作答.〔一〕必考题9 .某同学采用如图甲所示的电路测定电源电动势和内电阻,干电池的电动势约为1.5V,内阻约2Q,电压表〔0〜3V 约3kQ〕, 电流表〔0〜0.6A 约1.0Q〕,滑动变阻器有R1 〔10Q 2A〕和R2 各一只.〔1〕实验中滑动变阻器应选用R1 〔选填R1〞或R2〞〕.〔2〕在图乙中用笔画线代替导线连接实验电路.〔3〕在实验中测得多组电压和电流值,得到如图丙所示的U卜图象, 由图可较准确地求出电源电动势E= 1.48 V;内阻r= 1.88 Q.【考点】测定电源的电动势和内阻.【分析】〔1〕估算出电路中最大电流:当变阻器的电阻为零时,由闭合电路欧姆定律可求电路中最大电流, 根据额定电流与最大电流的关系,分析并选择变阻器.(2)对照电路图,按顺序连接电路.(3)由闭合电路欧姆定律分析UI■图象的纵轴截距和斜率的意义, 可求出电动势和内阻.【解答】解:(1)电路中最大电流I= = =0.75A , R2的额定电流小于0.75A,同时R2阻值远大于电源内阻r,不便于调节,所以变阻器选用R1 .(2)对照电路图,按电流方向连接电路,如下图.(3)由闭合电路欧姆定律U=EIf得知,当1=0时,U=E, U卜图象斜率的绝对值等于电源的内阻,那么将图线延长,交于纵轴,纵截距即为电动势E=1.48Vr= = =1.88 Q .故答案为:(1) R1; (2)连线如图;(3) 1.48, 1.8810.为测出量程为3V,内阻约为2k Q电压表内阻的精确值.实验室中可提供的器材有:电阻箱R,最大电阻为9999.9 Q,定值电阻r1=5k Q ,定值电阻r2=10k Q电动势约为12V,内阻不计的电源E开关、导线假设干.实验的电路图如下图,先正确连好电路,再调节电阻箱R的电阻值,使得电压表的指针半偏,记下此时电阻箱R有电阻值R1;然后调节电阻箱R 的值,使电压表的指针满偏,记下此时电阻箱R的电阻值R2.(1)实验中选用的定值电阻是;(2)此实验计算电压表内阻RV的表达式为RV= .(3)假设电源的内阻不能忽略,那么电压表内阻RV的测量值将A .A.偏大B.不变C.偏小D.不能确定,要视电压表内阻的大小而定.【考点】伏安法测电阻.【分析】此题(1)的关键是明确定值电阻的作用是为保护电压表, 所以在电阻箱电阻为零时根据欧姆定律求出保护电阻的阻值即可;题(2)根据闭合电路欧姆定律列出两种情况下的表达式即可求出电压表内阻;题(3)的关键是根据闭合电路欧姆定律可知,假设电源内阻不能忽略,那么电路中电流增大,内压降变大,路端电压变小,然后再根据欧姆定律即可得出电压表的内阻比忽略电源内阻时小, 从而得出结论.【解答】解:(1)设保护电阻的电阻为r,由欧姆定律应有=3,代入数据解得r=6kQ,所以定值电阻应选(2)根据欧姆定律应有:E= +及E=U+联立解得=(3)假设电源的内阻不能忽略,由闭合电路欧姆定律可知,电流增大电源的路端电压减小,那么(2)式中应满足U+ < + , 解得 < ,即测量值偏大,所以A正确.故答案为:(1)⑵(3) A11.如图甲所示,有一足够长的粗糙斜面,倾角8 =37 , 一质量为m 的滑块以初速度v0=16m/s从底端A点滑上斜面,滑至B点后又返回到A点.滑块运动的图象如图乙所示,求:(:sin 37 =0.6 , cos 37 =0.8,重力加速度g=10m/s2 )(1) AB之间的距离;(2)上滑过程滑块受到斜面摩擦阻力的大小(2)滑块再次回到A点时的速度的大小.【考点】牛顿第二定律;物体的弹性和弹力.【分析】(1)速度图象与坐标轴所围“面积〞等于位移,由数学知识求出位移;(2)根据运动学公式求解出上滑过程的加速度,然后受力分析并根据牛顿第二定律列式即可求出摩擦力的大小;(3)下滑时同样受力分析并根据牛顿第二定律列式求解加速度,然后根据运动学公式列式求解.【解答】解(1)由v+图象知AB之间的距离为:SAB= m=16 m . (2)设滑块从A滑到B过程的加速度大小为al,滑块与斜面之间的滑动摩擦力为f,上滑过程有:mgsin37 +f=ma1代入数据解得:f=2m (N)(3)设从B返回到A过程的加速度大小为a2,下滑过程有:mgsin37f=ma2得:那么滑块返回到A点时的速度为vt,有:代入数据解得:vt=8 m/s .答:(1) AB之间的距离是16m;(2)上滑过程滑块受到斜面摩擦阻力的大小是2m (N).(2)滑块再次回到A点时的速度的大小是8 m/s .12.如图,空间存在匀强电场和匀强磁场,电场方向为y轴正方向, 磁场方向垂直于xy平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (x=0, y=h)点以一定的速度平行于x轴正向入射.这时假设只有磁场,粒子将做半径为R0的圆周运动:假设同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P点运动到x=R0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x轴交于M点.不计重力.求:(1)粒子到达x=R0平面时速度方向与x轴的夹角以及粒子到x轴的距离;(2) M点的横坐标xM.【考点】带电粒子在混合场中的运动.【分析】(1)做直线运动时电场力等于洛伦兹力,做圆周运动洛伦兹力提供向心力,只有电场时,粒子做类平抛运动,联立方程组即可求解;(2)撤电场加上磁场后做圆周运动洛伦兹力提供向心力,求得R, 再根据几何关系即可求解.【解答】解:(1)做直线运动有:qE=qBv0做圆周运动有:只有电场时,粒子做类平抛,有:qE=maR0=v0tvy=at解得:vy=v0粒子速度大小为:速度方向与x轴夹角为:粒子与x轴的距离为:〔2〕撤电场加上磁场后,有:解得:粒子运动轨迹如下图,圆心C位于与速度v方向垂直的直线上,该直线与x轴和y轴的夹角均为,有几何关系得C点坐标为:xC=2R0过C作x轴的垂线,在4CDM中:解得:M点横坐标为:答:〔1〕粒子到达x=R0平面时速度方向与x轴的夹角为,粒子到x轴的距离为;〔2〕 M点的横坐标xM为.〔二〕选考题【物理选修3-5】13.以下说法正确的选项是〔〕A. 〔3衰变现象说明电子是原子核的组成局部B.在中子轰击下生成和的过程中,原子核中的平均核子质量变小C.太阳辐射能量主要来自太阳内部的聚变反响D.卢瑟福依据极少数0c粒子发生大角度散射提出了原子核式结构模型E.根据玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,原子总能量减小【考点】原子核衰变及半衰期、衰变速度;氢原子的能级公式和跃迁. 【分析】〔3衰变是中子转变成质子而放出的电子;太阳辐射能量来自于轻核的聚变;口粒子散射实验提出原子核式结构模型;裂变后,有质量亏损,释放能量,那么平均核子质量变化;玻尔理论,电子半径变大时,动能减小,电势能增大,而原子总能量增大.【解答】解:A、B衰变放出的电子是由中子转变成质子而产生的, 不是原子核内的,故A错误;B、是裂变反响,原子核中的平均核子质量变小,有质量亏损,以能量的形式释放出来,故B正确;C、太阳辐射能量主要来自太阳内部的轻核的聚变反响,故C正确;D、卢瑟福依据极少数%粒子发生大角度散射,绝大多数不偏转,从而提出了原子核式结构模型,故D正确;E、玻尔理论,氢原子核外电子从半径较小的轨道跃迁到半径较大的轨道时,电子的动能减小,电势能增大,且原子总能量增大,故 E 错误;应选:BCD.14.如图,质量分别为m1=1.0kg和m2=2.0kg的弹性小球a、b,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v0=0.10m/s沿光滑水平面向右做直线运动.某时刻轻绳忽然自动断开,断开后两球仍沿原直线运动.经过时间t=5,0s后,测得两球相品巨s=4.5m ,求:(i)刚别离时a、b两小球的速度大小v1、v2;(ii)两球分开过程中释放的弹性势能Ep .【考点】动量守恒定律;机械能守恒定律.【分析】(1)系统动量守恒,应用动量守恒定律可以求出速度.(2)应用能量守恒定律可以求出弹性势能.。

安徽省滁州市定远县育才学校18—19学年高二(普通班)上学期第三次月考物理试题(附答案)

安徽省滁州市定远县育才学校18—19学年高二(普通班)上学期第三次月考物理试题(附答案)

育才学校2017-2018学年度上学期第三次月考卷高二普通班物理一、单选题(共12小题,每小题3分,共36分)1.关于摩擦起电和感应起电的理解,下列说法正确的是()A.摩擦起电说明电荷能够被创造B.摩擦起电现象说明了机械能可以转化为电能,也说明通过做功可以创造电荷C.感应起电说明电荷从带电的物体转移到原来不带电的物体上去了D.感应起电说明电荷可以从物体的一个部分转移到物体另一个部分2.静电在各个行业和日常生活中有着重要的应用,如静电除尘、静电复印等,所依据的基本原理几乎都是带电的物质微粒在电荷间作用力的作用下奔向并吸附到电极上.现有三个粒子A,B,c从P点向下运动,它们的运动轨迹如图所示,则()A.a带负电,b带正电,c不带电B.a带正电,b不带电,c带负电C.a带负电,b不带电,c带正电D.a带正电,b带负电,c不带电3.保护知识产权,抵制盗版是我们每个公民的责任与义务.盗版书籍影响我们的学习效率甚至会给我们的学习带来隐患.小华有一次不小心购买了盗版的物理参考书,做练习时,他发现有一个关键数字看不清,拿来问老师,如果你是老师,你认为可能是下列几个数值中的哪一个()A. 6.2×10-19C B. 6.4×10-19C C. 6.6×10-19C D. 6.8×10-19C4.有两个完全相同的金属小球A、B(它们的大小可忽略不计),A带电荷量为7Q,B带电荷量为-Q,当A、B在真空中相距为r时,两球之间的相互作用的库仑力为F;现用绝缘工具使A、B球相互接触后再放回原处,则A、B间的相互作用的库仑力的大小是()5.如图,电荷量为q1和q2的两个点电荷分别位于P点和Q点.已知放在P、Q连线上某点R处的电荷q受力为零,且PR=2RQ.则()A.q1=2q2 B.q1=4q2 C.q1=-2q2 D.q1=-4q26.如图所示,质量为m、电荷量为q的带电小球A用绝缘细线悬挂于O点,带有电荷量也为q的小球B固定在O点正下方绝缘柱上.其中O点与小球A的间距为l,O点与小球B的间距为l.当小球A平衡时,悬线与竖直方向夹角θ=30°.带电小球A、B均可视为点电荷.静电力常量为k,则()A.A、B间库仑力大小F= B.A、B间库仑力大小F=C.细线拉力大小F T= D.细线拉力大小F T=mg7.如图所示,把一个带电小球A固定在光滑的水平绝缘桌面上,在桌面的另一处放置带电小球B.现给B一个沿垂直AB方向的水平速度v0,下列说法中正确的是()A.若A、B为异种电荷,B球一定做圆周运动B.若A、B为异种电荷,B球可能做匀变速曲线运动C.若A、B为同种电荷,B球一定做远离A的变加速曲线运动D.若A、B为同种电荷,B球的动能一定会减小8.在光滑绝缘桌面上,带电小球A固定,带电小球B在A、B间库仑力作用下以速率v0绕小球A做半径为r的匀速圆周运动,若使其绕小球A做匀速圆周运动的半径变为2r,则B 球的速率大小应变为()A.v0 B.v0 C. 2v0 D.9.如图所示,场源电荷置于O点,放置在P点的电荷量的电荷所受库仑力大小为,方向由P指向O,O、P间距离为30 cm,静电力常量k=9×109Nm2/C2.则()A.场源电荷形成的电场在P点的场强大小为1×103N/C,方向由P指向OB.若将置于P点的电荷移走,P点的场强将变为0C .置于O点的场源电荷带正电,电荷量为D.场源电荷与P点形成的电场中,O、P连线的中垂线上到O、P两点的距离均为30 cm 的点的场强大小为1×103N/C,方向与中垂线垂直10.均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB上均匀分布正电荷,总电荷量为q,球面半径为R,CD为通过半球顶点与球心O的轴线,在轴线上有M、N两点,OM=ON=4R.已知M点的场强大小为E,静电力常量为k,则N点的场强大小为()A.-E B.-E C. D.+E11.如图所示的四个电场的电场线,其中A和C图中小圆圈表示一个点电荷,A图中虚线是一个圆(M、N为圆上的不同点),B图中几条直线间距相等且互相平行,则在图中M、N处电场强度相等的是()A. B. C. D.12.如图所示,在竖直放置的半圆形光滑绝缘细管的圆心O处放一点电荷,将质量为m、电荷量为q的小球从管的水平直径的端点A由静止释放,小球沿细管滑到最低点B时,对管壁恰好无作用力.若小球所带电荷量很小,不影响O点处的点电荷的电场,则放于圆心O 处的点电荷在OB连线的中点处的电场强度大小()A.E= B.E= C.E= D.E=二、填空题(共5小题, ,共18分)13.A、B两个完全相同的金属球,A球带电量为﹣3q,B球带电量为7q,现将两球接触后分开,A、B带电量分别变为和.14.如图所示,真空中有三个点电荷,它们固定在边长50 cm的等边三角形的三个顶点上,每个电荷都是+2×10-6C,则q3所受的库仑力的大小为__________,方向为__________.15.如图所示,在边长为L的正方形的四个顶点上分别放置点电荷,其电荷量为q、Q、q、-Q,已知点电荷Q刚好静止,则=________,若点电荷-Q的质量为m,释放瞬间加速度为________.16.两个带电粒子分别在电场中的M、N处,其受力方向如图所示.则N处的粒子带电荷(填“正”或“负”);M、N两处的场强大小EM EN(填“>”、“<”或“=”).17.如图(a)所示,在x轴上有一个点电荷Q(图中未画出),A、B两点的坐标分别为0.2 m和0.5 m.放在A、B两点的检验电荷q1、q2受到的电场力跟检验电荷所带电量的关系如图(b)所示.则A点的电场强度大小为N/C,点电荷Q的位置坐标为= m.三、计算题(共4小题,共46分)18.(10分)如图所示,通过调节控制电子枪产生的电子束,使其每秒钟有104个电子到达收集电子的金属瓶,经过一段时间,金属瓶上带有-8×10-12C的电荷量,求:(1)金属瓶上收集到多少个电子;(2)实验的时间.19. (10分)库仑定律告诉我们:真空中两个静止点电荷之间的相互作用力,跟它们电荷量的乘积成正比,跟它们距离的二次方成反比,作用力的方向在它们的连线上.现假设在真空中有两个带正电的点电荷,电荷量均为Q=l C,它们之间的距离r=1 m.静电力常量k=9.0×109N•m2/C2.(1)问这两个点电荷之间的静电力是引力还是斥力?(2)求这两个点电荷之间的静电力大小F.20. (14分)有三根长度皆为l=0.3 m的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O点,另一端分别栓有质量皆为m=1.0×10﹣2kg的带电小球A和B,它们的电荷量分别为﹣q和+q,q=1.0×10﹣6C.A、B之间用第三根线连接起来,空间中存在大小为E=2.0×105N/C的匀强电场,电场强度的方向水平向右.平衡时A、B球的位置如图所示.已知静电力常量k=9×109N•m2/C2重力加速度g=10m/s2.求:(1)A、B间的库仑力的大小(2)连接A、B的轻线的拉力大小.21. (12分)如图所示,真空中xOy平面直角坐标系上的ABC三点构成等边三角形,边长L=2.0 m.若将电荷量均为q=+2.0×10-6C的两点电荷分别固定在A、B点,已知静电力常量k=9.0×109N・m2/C2,求:(1)两点电荷间的库仑力大小;(2)C点的电场强度的大小和方向.答案解析1.D【解析】摩擦起电和感应起电的实质是电荷的转移,即从物体的一个部分转移到物体另一个部分,电荷不能凭空创造而出,所以D对.2.B【解析】根据题图可知,a向左偏转,与负电极吸引,与正电极排斥,所以a带正电;c向右偏转,与负电极排斥,与正电极吸引,所以c带负电;b不偏转,应该不带电.选项B 正确.3.B【解析】任何带电体所带电量都是元电荷电量(1.6×10-19C)的整数倍,因 6.4×10-19C=4×1.6×10-19C,故选项B正确.4.B【解析】A带电荷量为7Q,B带电荷量为-Q,当它们接触之后,电荷量先中和再平分,所以接触之后每个球带的电荷量为3Q,根据库仑定律可得,原来没接触作用力为,F=,接触之后作用力为,,所以B正确,故选B. 5.B【解析】已知电荷在P、Q连线上某点R处受力为零,根据库仑定律得=,PR =2RQ解得:q1=4q2.6.B【解析】由题意知∠ABO=30°,分析A球受力,如图所示,将F T、F合成,由几何知识知F、F T及合力F合组成的平行四边形为菱形,则F=F T==mg.7.C【解析】如果A、B为异种电荷,当A对B的库仑引力恰好提供B做圆周运动所需要的向心力时,B绕A做匀速圆周运动;当A对B的库仑引力大于或者小于B做圆周运动所需要的向心力时,则B将做近心运动或者做离心运动.由于库仑力是变力,故不可能做匀变速曲线运动,A、B两项均错.如果A、B为同种电荷,则B受到A的库仑斥力将做远离A的变加速曲线运动,电场力做正功动能增大,所以C项正确,D项错.8.A【解析】半径为r时,对B球:k=mB半径为2r时,对B球k=mB解得v=v0,A正确.9.D【解析】P点的场强大小为E==N/C=1×103N/C,依据负电荷的电场力方向与电场强度方向相反,则其方向向右,即由O指向P,故A错误;因为电场强度是反映电场本身的性质的物理量,与试探电荷无关,所以若将电荷从P点移走,P点的场强大小和方向都不变,大小仍为1×103N/C,方向向右,故B错误;根据点电荷产生的场强公式E=k,那么置于O点的场源电荷带正电,电荷量为Q===1×10﹣8C,故C错误;根据点电荷产生的场强公式E=k,结合矢量合力法则,两电荷在该处的电场强度大小相等,方向夹角为120°,那么场源电荷与P点形成的电场中,O、P连线的中垂线上到O、P两点的距离均为30 cm的点的场强大小为E合=1×103N/C,方向与中垂线垂直,故D正确.10.A【解析】若将带电荷量为2q的球面放在O处,均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场,则在M、N点所产生的电场为:E==,由题知当半球面在M点产生的场强为E,则N点的场强为E′=-E,故选A.11.B【解析】A中M、N两点电场强度大小相等、方向不同;B中M、N两点电场强度大小、方向都相同;C中M、N两点电场强度大小不等、方向相同;D中M、N两点电场强度大小、方向都不同.12.D【解析】设细管的半径为R,小球到达B点时速度大小为v.小球从A滑到B的过程,由机械能守恒定律得:mgR=mv2故v=;小球经过B点时,由牛顿第二定律得:EBq-mg=m将v=代入得:EB=;根据点电荷的电场强度:E=;可知,放于圆心O处的点电荷在OB连线的中点处的电场强度大小E=,故D正确.13.2q2q【解析】完全相同的金属球,接触时先中和再平分,所以每个球带电.故答案为:2q;2q.14.0.25 N方向沿q1与q2连线的垂直平分线向外【解析】如图所示,每个点电荷都受到其他两个点电荷的斥力,只求出其中一个点电荷受的库仑力即可.以q3为研究对象,共受到F1和F2的作用力,q1=q2=q3=q,相互间的距离r都相同.F1=F2=k=0.144 N根据平行四边形定则,合力为F=2F1cos 30°≈0.25 N.合力的方向沿q1与q2连线的垂直平分线向外.15.【解析】点电荷Q受三个力作用,如图甲,其中F1=F2=k,F3=k.Q静止,三个力的合力为零,F3=F1,得=.点电荷-Q受三个力作用,如图乙所示,F4=F5=k,F′=k,三个力的合力F合=2F′=k,则-Q释放时的加速度a==.16.正>【解析】根据正电荷的电场力方向与该点的电场强度方向相同,负电荷与该点的电场强度方向相反,则知N处的粒子带正电荷.电场线的疏密表示场强的相对大小,电场线越密,场强越大,则EM>EN.17.2×1030.3【解析】(1)由图可知,A点的电场强度==2×103N/C,(2)同理B点的电场强度EB=-500 N/C,方向指向x负方向.所以A、B两点的电场强度大小之比为4︰1;设点电荷Q的坐标为x,由点电荷的电场得:,联立以上公式解得:x=0.3 m.18.(1)5×107个(2)5×103s【解析】(1)因每个电子带电荷量为-1.6×10-19C,金属瓶上带有-8×10-12C的电荷量,所以金属瓶上收集到的电子个数为n=个=5×107个.(2)实验的时间为t=s=5×103s.19.(1)斥力(2)9×109N【解析】解:(1)由于两个电荷都是正电荷,因此这两个点电荷之间的静电力是斥力.故这两个点电荷之间的静电力是斥力.(2)根据库仑定律有:,代人数据得:F=9×109N.故这两个点电荷之间的静电力大小F=9×109N.20.(1)0.1 N (2)0.042 N【解析】(1)根据库仑定律,则有:F2=k=9×109×=0.1 N;(2)对A受力分析,如图所示:竖直方向:F1cos30°=mg解得:F1=N水平方向:F1sin 30°+F2+F3=qE;解得:F3=0.042 N21.(1)9.0×10-3N (2)7.8×103N/C方向沿y轴正方向【解析】(1)根据库仑定律,A、B两点处的点电荷间的库仑力大小为F=k代入数据得F=9.0×10-3N.(2)A、B两点处的点电荷在C点产生的场强大小相等,均为E1=kA、B两点处的点电荷形成的电场在C点的合场强大小为E=2E1cos 30°联立并代入数据得E≈7.8×103N/C场强E的方向沿y轴正方向.。

17—18学年下学期高二第一次月考物理试题(附答案)(6)

17—18学年下学期高二第一次月考物理试题(附答案)(6)

崇仁二中高二年级下学期第一次月考物理试卷一、单选题(本大题共8小题,共32.0分)1.物理学中,把物体的质量m与速度v的乘积称为物体的动量,用字母p表示,即p=mv.关于动量的单位,下列各式正确的是()A. kg•m/s2B. N•sC. N•mD. N•m/s2.下列关于力的冲量和动量的说法中,正确的是()A. 物体所受的合力为零,它的动量一定为零B. 物体所受的合外力的做的功为零,它的动量变化一定为零C. 物体所受的合外力的冲量为零,它的动量变化不一定为零D. 物体所受的合外力不变,它的动量变化率不变3.人从高处跳到低处时,为了安全,一般都是让脚尖先着地,这样做是为了()A. 减小冲量B. 减小动量的变化量C. 增长与地面的冲击时间,从而减小冲力D. 增大人对地面的压强,起到安全作用4.如图所示,物块m、斜劈M和水平支持面都是光滑的,控制m、M使其静止,m位于斜劈的顶端.撤去控制,m在斜面上运动的过程中()5. A. M、m组成的系统动量守恒6. B. m、M组成的系统在水平方向动量守恒7. C. m对M的冲量等于M的动量变化8. D. M对m的支持力的冲量为零9.一个质量为0.2kg的弹性小球,在光滑水平面上以6m/s的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,碰撞前后小球速度变化量的大小为△v,碰撞过程中墙对小球做功的大小为W,则()A. △v=0,W=0B. △v=0,W=7.2 JC. △v=12 m/s,W=0D. △v=12 m/s,W=7.2 J10.质量为M的原子核,原来处于静止状态.当它以速度v放出质量为m的粒子时(设v的方向为正方向),剩余部分的速度为()A. B. C. D.11.在光电效应实验中,如果需要增大光电子的最大初速度,可采用的方法是()A. 增加光照时间B. 增大入射光的波长C. 增大入射光的强度D. 增大入射光频率12.光电效应实验中,下列表述正确的是()A. 光照时间越长光电流越大B. 发生光电效应时,遏止电压与入射光的频率有关C. 入射光足够强就可以有光电流D. 只要入射光频率小于极限频率就能产生光电子二、多选题(本大题共4小题,共16.0分)13.以某一初速度竖直向上抛出一物体,空气阻力不可忽略,关于物体受到的冲量,以下说法正确的是()A. 物体上升阶段和下落阶段受到的重力和冲量方向相反B. 物体上升阶段和下落阶段受到的空气阻力冲量的方向相反C. 物体在下落阶段受到的重力的冲量大于上升阶段受到重力的冲量D. 物体在下落阶段受到的重力的冲量小于上升阶段受到重力的冲量14.如图所示,足够长的固定光滑斜面倾角为θ,质量为m的物体以速度υ从斜面底端冲上斜面,达到最高点后又滑回原处,所用时间为t.对于这一过程,下列判断正确的是()A. 斜面对物体的弹力的冲量为零B. 物体受到的重力的冲量大小为mgtC. 物体受到的合力的冲量大小为零D. 物体动量的变化量大小为mg sinθ•t15.质量为40kg的走钢丝运动员,不慎从高空跌下,万幸有弹性安全绳的保护,使其被悬挂起来.已知弹性安全绳的原长为5m,安全绳缓冲的时间为2s,g=10m/s2.以上过程中,下列说法正确的是()A. 运动员重力的冲量为0B. 运动员重力的冲量为1200N•sC. 缓冲时安全绳的平均冲力为600ND. 缓冲时安全绳的平均冲力为1000N16.如图甲,在光滑水平面上的两小球发生正碰,小球的质量分别为m1和m2,图乙为它们碰撞前后的位移-时间图象.已知m1=0.1kg,由此可以判断()A. 碰后m2和m1都向右运动B. m2=0.3kgC. 碰撞过程中系统没有机械能的损失D. 碰撞过程中系统损失了0.4J的机械能三、实验题探究题(本大题共2小题,共15.0分)17.图为“碰撞中的动量守恒”实验装置示意图.(1)入射小球1与被碰小球2直径相同,均为d,它们的质量相比较,应是m1______m2.(2)为了保证小球做平抛运动,必须调整斜槽使_____18.用两个小车验证动量守恒定律,两车放在光滑的水平轨道上,B车静止,A车连接纸带(纸带穿过打点计时器)向右运动,如图所示.它和B车碰撞后连接在一起向右运动,两车碰撞时间较短可以忽略不计.已知A车的质量为0.60kg,B车质量为0.58kg,打点计时器所用交流电的频率是50Hz.根据纸带数据可得两车碰撞前的总动量为______ kg・m/s,碰后的总动量为______ kg・m/s.19.实验结论:_____ _ 。

2019-2020年高二下学期第三次月考 物理 含答案

2019-2020年高二下学期第三次月考 物理 含答案

2019-2020年高二下学期第三次月考 物理 含答案一、选择题(每小题4分,共48分。

1-8小题为单项选择题;9-12小题为不定项选择题,全部选对的得4分,选不全的得2分,有选错或不答的得0分。

)1.英国物理学家法拉第引入了“电场”和“磁场”的概念,并用画电场线和磁感线的方法来描述电场和磁场,为经典电磁学理论的建立奠定了基础.下列相关说法正确的是( )2.对做匀变速直线运动的物体,下列说法正确的是( ) A .在1 s 内、2 s 内、3 s 内物体通过的位移之比是1∶3∶5B .一质点的位置坐标函数是x=4t+2t 2,则它运动的初速度是4 m/s ,加速度是2 m/s 2C .做匀减速直线运动的物体,位移一定随时间均匀减小D .任意两个连续相等时间间隔内物体的位移之差都相等3.螺线管导线的两端与两平行金属板相接,一个带负电的小球用绝缘丝线悬挂在两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,小球的运动情况是 ( )A .向左摆动B .向右摆动C .保持静止D .无法判定4.如图所示,带正电的A 球固定,质量为m 、电荷量为+q 的粒子B 从a 处以速度v 0射向A,虚线abc 是B运动的一段轨迹,b点距离A 最近.粒子经过b 点时速度为v ,重力忽略不计.则:( )A .粒子从a 运动到b 的过程中动能不断增大B .粒子从b 运动到c 的过程中加速度不断增大C .可求出A 产生的电场中a 、b 两点间的电势差D .可求出A 产生的电场中b 点的电场强度5.电影《智取威虎山》中有精彩而又刺激的解放军战士滑雪的镜头。

假设某战士从弧形的雪坡上沿水平方向飞出后,又落回到倾斜的雪坡上,如图所示,若倾斜的雪坡倾角为θ,战士飞出时的水平速度大小为v 0,且他飞出后在空中的姿势保持不变,不计空气阻力,重力加速度为g ,则( )A .如果v 0不同,该战士落到雪坡时的位置不同,速度方向相同AB.如果v0不同,该战士落到雪坡时的位置不同,但空中运动时间相同C.该战士刚要落到雪坡上时的速度大小是D.该战士在空中经历的时间是6.如图所示为某住宅区的应急供电系统,由交流发电机和副线圈匝数可调的理想降压变压器组成.发电机中矩形线圈所围的面积为S,匝数为N,电阻不计,它可绕水平轴在磁感应强度为B的水平匀强磁场中以角速度匀速转动.矩形线圈通过滑环连接降压变压器,滑动触头P 上下移动时可改变输出电压,表示输电线的电阻.以线圈平面与磁场平行时为计时起点,下列判断正确的是()A.若发电机线圈某时刻处于图示位置,变压器原线圈的电流瞬时值为零B.发电机线圈感应电动势的瞬时值表达式为C.当滑动触头P向下移动时,变压器原线圈两端的电压将升高D.当用户数目增多时,为使用户电压保持不变,滑动触头P应向上滑动7.如图所示,半径为R的导线环对心、匀速穿过半径也为R的匀强磁场区域,关于导线环中的感应电流随时间的变化关系,下列图像中(以逆时针方向的电流为正)最符合实际的是()8.如图所示的电路中,电源电动势为E,内阻为r,R1、R2为定值电阻,R3为可变电阻,C 为电容器.在可变电阻R3由较小逐渐变大的过程中,下列说法中正确的是()A.流过R2的电流方向是由b到aB.电容器的带电量在逐渐减小C.电源内部消耗的功率变大D.电容器被放电以下为不定项选择题:9.A、B两质点的运动情况在v-t 图中由A、B表示,下述正确的是()A.t = 1s时,B质点运动方向发生改变B.t =2s时,A、B两质点间距离一定等于2mC.在t = 4s 时,A、B相遇D.A、B 同时从静止出发,朝相反的方向运动10.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y轴上的点a(0,L)。

17—18学年下学期高二第二次月考物理试题(附答案)(4)

2019届高二年级下学期第二次月考物理试卷满分100分,时间100分钟2018.05一、选择题(1-6单选,每题3分;7-12多选,每题4分,漏选得2分;共计42分)1.关于物体的内能,下列说法正确的是()A.一壶热水的内能一定比一湖冷水的内能大B.当温度等于0℃时,分子动能为零C.分子间距离为r0时,分子势能为零D.温度相等的氢气和氧气,它们的分子平均动能相等2.A、B两球在光滑水平面上沿同一直线向同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s,当A追上B并发生碰撞后,A、B两球速度的可能值是(取两球碰前的运动方向为正)()A.v A′=7m/s,v B′=1.5m/s B.v A′=2m/s,v B′=4m/sC.v A′=﹣4m/s,v B′=7m/s D.v A′=4m/s,v B′=4m/s3.在匀强磁场中有一个原来静止的碳14原子核,它放射出的粒子与反冲核的径迹是两个内切圆,圆直径比为7:1,如图,则碳14的衰变方程为()A.146C→01e+145B B.146C→42He+104BeC.146C→21H+145B D.146C →0-1e+147N4.1966年,在地球的上空完成了用动力学方法测质量的实验.实验时,用双子星号宇宙飞船m1去接触正在轨道上运行的火箭组m2(后者的发动机已熄火).接触以后,开动双子星号飞船的推进器,使飞船和火箭组共同加速.推进器的平均推力F=895 N,推进器开动时间Δt =7s测出飞船和火箭组的速度变化Δv=0.91 m/s.已知双子星号飞船的质量m1=3400 kg.由以上实验数据可得出火箭组的质量m2为()A.3 400 kg B.6 265 kg C.3 485 kg D.6 885 kg5.已知湖水深度为20m,湖底水温为4℃,水面温度为17℃,大气压强为1.0×105Pa。

当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g=10m/s2,ρ=1.0×103kg/m3)A.8.58倍B.12.倍C.2.1倍D.3.1倍6.图为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49eV的金属钠,下列说法正确的是()A .金属钠表面所发出的光电子的最大初动能为9.60 eVB .金属钠表面所发出的光电子的最大初动能为11.11 eVC .这群氢原子能发出3种频率不同的光,其中从n =3跃 迁到n =2所发出的光波长最小D .这群氢原子能发出3种频率不同的光,其中从n =3跃 迁到n =1所发出的光频率最小7.关于分子动理论的规律,下列说法正确的是( )A.扩散现象说明物质分子在做永不停息的无规则运动B.两个分子距离减小时,分子间引力和斥力都在增大C.压缩气体时气体会表现出抗拒压缩的力是由于气体分子间存在斥力的缘故D.如果两个系统分别于第三个系统达到热平衡,那么这两个系统彼此之间也必定处于热平衡,用来表征它们所具有的“共同热学性质”的物理量叫做内能8.实物粒子和光都具有波粒二象性,下列事实中突出体现波动性的是( )A .β射线在云室中穿过会留下清晰的径迹B .人们利用慢中子衍射来研究晶体的结构C .电子束通过双缝实验后可以形成干涉图样D .光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关9.带电粒子进入云室会使云室中的气体分子电离,从而显示其运动轨迹.如图是在有匀强磁场的云室中观察到的粒子的轨道,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电量不变,而动能逐渐减少,下列说法正确的是( )A .粒子先经过b 点,再经过a 点B .粒子先经过a 点,再经过b 点C .粒子带正电D .粒子带负电10.钚的一种同位素23994 Pu ,其衰变方程为23994 Pu 23592→U 42+He+γ, 则( ) A. 核反应中γ光子的能量就是23994 Pu 的结合能B. 核燃料总是利用比结合能小的核C. 23592 U 核比23994 Pu 核更稳定,说明23592 U 的结合能大D. 由于衰变时释放巨大能量,所以23994 Pu 比23592 U 的比结合能小11.下列说法中正确的是 ( )A.玻尔理论成功解释了所有原子的光谱B.已知氡的半衰期为3.8天,若取1g氡放在天平左盘上,砝码放于右盘,左右两边恰好平衡,则7.6天后,需取走0.75g砝码天平才能再次平衡C.147N+42He→178O+11H是原子核的人工转变D.光电效应实验中,遏止电压与入射光的频率有关12.如图所示,光滑水平面上有一小车,小车上有一物体,用一细线将物体系于小车的A端,物体与小车A端之间有一压缩的弹簧,某时刻线断了,物体沿车滑动到B端粘在B端的油泥上.则下述说法中正确的是()A.若物体滑动中不受摩擦力,则全过程机械能守恒B.若物体滑动中有摩擦力,则全过程系统动量守恒C.小车的最终速度与断线前不同D.全过程系统的机械能不守恒二、填空、实验题(9×2分=18分)13.某核反应方程为21H+31H―→42He+X.已知21H的质量为2.0136 u,31H的质量为3.0180 u,42He 的质量为4.0026 u,X的质量为1.0087 u.则X是________,该反应________(选填“吸收”或“释放”)能量MeV(取3位有效数字).(1 u相当于931. 5 MeV的能量)14.某同学做“用油膜法估测分子的大小”的实验。

18学年高二(重点班)下学期期末考试物理试题(附答案)

黄陵中学2017--2018学年度第二学期高二重点班物理期末考试题一、单项选择题36(每小题3分,共12小题)1.下列说法正确的是()A.速度大的物体,它的动量一定也大B.动量大的物体,它的速度一定也大C.只要物体的运动速度大小不变,物体的动量就保持不变D.物体的动量变化越大则该物体的速度变化一定越大2.如图7所示,在光滑水平面上质量分别为m A=2 kg、m B=4 kg,速率分别为v A=5 m/s、v B =2 m/s的A、B两小球沿同一直线相向运动,则下列叙述正确的是()图7A.它们碰撞前的总动量是18 kg·m/s,方向水平向右B.它们碰撞后的总动量是18 kg·m/s,方向水平向左C.它们碰撞前的总动量是2 kg·m/s,方向水平向右D.它们碰撞后的总动量是2 kg·m/s,方向水平向左3.在光电效应实验中,用单色光照射某种金属表面,有光电子逸出,则光电子的最大初动能取决于入射光的()A.频率B.强度C.照射时间D.光子数目4.有关光的本性,下列说法正确的是()A.光既具有波动性,又具有粒子性,两种性质是不相容的B.光的波动性类似于机械波,光的粒子性类似于质点C.大量光子才具有波动性,个别光子只具有粒子性D.由于光既具有波动性,又具有粒子性,无法只用其中一种性质去说明光的一切行为,只能认为光具有波粒二象性5.爱因斯坦因提出了光量子概念并成功地解释光电效应的规律而获得1921年诺贝尔物理学奖。

某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图1所示,其中ν0为极限频率。

从图中可以确定的是()A.逸出功与ν有关B.E km与入射光强度成正比C.当ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关6.下列核反应方程中,属于α衰变的是()A.147N+42He→178O+11HB.23892U→23490Th+42HeC.21H+31H→42He+10nD.23490Th→23491Pa+0-1e7.如图所示为氢原子的四个能级,其中E1为基态,若氢原子A处于激发态E2,氢原子B处于激发态E3,则下列说法正确的是()A.原子A可能辐射出3种频率的光子B.原子B可能辐射出3种频率的光子C.原子A能够吸收原子B发出的光子并跃迁到能级E4D.原子B能够吸收原子A发出的光子并跃迁到能级E48.放射性同位素钍232经α、β衰变会生成氡,其衰变方程为23290Th→22086Rn+xα+yβ,其中()A.x=1,y=3B.x=2,y=3C.x=3,y=1D.x=3,y=29.质子、中子和氘核的质量分别为m1、m2和m3,当一个质子和一个中子结合成氘核时,释放的能量是(c表示真空中的光速)()A.(m1+m2-m3)cB.(m1-m2-m3)cC.(m1+m2-m3)c2D.(m1-m2-m3)c210.一颗子弹水平射入置于光滑水平面上的木块A并留在其中,A、B用一根弹性良好的轻质弹簧连在一起,如图所示。

18学年上学期高二第三次月考(12月)物理试题(附答案) (1)

舒城中学2017—2018学年度第一学期第三次统考高二物理满分:100分时间:100分钟一、选择题:本大题共12小题,每小题4分,共48分。

1~8题单选,9~12题多选。

1.如图所示,有三个电阻,已知R l:R2:R3=1:3:6,则电路工作时,电压U l:U2为()A.1:6 B.1:9C.1:3 D.1:22.在如图所示电路中,电源电动势为12V,电源内阻为1.0Ω,电路中电阻R0为1.5Ω,小型直流电动机M的内阻为0.5Ω.闭合开关S后,电动机转动,电流表的示数为2.0A.则以下判断中正确的是()A.电动机的输出功率为14 W B.电动机两端的电压为7.0 VC.电动机的发热功率为4.0 W D.电源输出的电功率为24 W3.额定电压是220V,电阻是440Ω的灯泡,在正常工作时,3分钟内通过灯丝横截面的电量为()A.30C B.90C C.220C D.360C4.如图所示的电路,闭合开关S,当滑动变阻器滑片P向右移动时,下列说法正确的是()A.电流表读数变下,电压表读数变大B.电容器C上电荷量减小C.小电炮L变暗D.电源的总功率变小5.如图所示,甲、乙两个电路,都是由一个灵敏电流计G和一个变阻器R组成,它们之中一个是测电压的电压表,另一个是测电流的电流表,那么以下结论中正确的是()A.甲表是电流表,R增大时量程增大B.甲表是电流表,R增大时量程减小C .乙表是电压表,R 增大时量程减小D .上述说法都不对6.如图所示的电路中,已知电压表的内阻为R V =15k Ω,定值电阻R=10Ω,电压表的读数为6.0V ,电流表的读数为l50μA ,则微安表的内阻为 ( )A .16.7ΩB .100ΩC .150ΩD .200Ω7.一个用满偏电流3mA 的电流表改装成欧姆表,调零后用它测量500Ω的标准电阻时,指针恰好在刻度盘的正中间,如果用它测量一个未知电阻时,指针指在1mA 处。

则被测电阻的阻值为:( ) A.1000ΩB.5000ΩC.1500ΩD.2000Ω8.如图所示,直线Ⅰ、Ⅱ分别是电源1与电源2的路端电压随输出电流的变化的特性图线,曲线Ⅲ是一个小灯泡的伏安特性曲线,如果把该小灯泡分别与电源1、电源2单独连接,则下列说法不正确的是( )A .电源1与电源2的内阻之比是11:7B .电源1与电源2的电动势之比是1:1C .在这两种连接状态下,小灯泡消耗的功率之比是1:2D .在这两种连接状态下,小灯泡的电阻之比是1:2 9.下列关于电功、电功率和焦耳定律的说法中正确的是 ( ) A .电功率越大,电流做功越快,电路中产生的焦耳热一定越多B .公式UIt W =适用于任何电路,而t RU Rt I W 22==只适用于纯电阻电路C .在非纯电阻电路中,UI >R I 2D .焦耳定律Rt I Q 2=适用于任何电路10.如图所示,直线A 为某电源的U -I 图线,曲线B 为某小灯泡D 1的U -I 图线的一部分,用该电源和小灯泡D 1组成闭合电路时,灯泡 D 1恰好能正常发光,则下列说法中正确的是( )A .此电源的内阻为0.5ΩB .灯泡D 1的额定电压为3V ,额定功率为6WC .把灯泡D 1换成“3V ,20W ”的灯泡D 2,电源的输出功率将变小D .把D 1和“3V ,20W ”的灯泡D 2并联后接在电源上,两灯泡仍能正常发光11.一根粗细均匀的导线,两端加上电压U 时,通过导线的电流为I ,导线中自由电子定向移动的平均速率为v .若将导线均匀拉长,使它的横截面半径变为原来的21,再给它两端加上电压U ,则( )A .通过导线的电流为4IB .通过导线的电流为16I C .导线中自由电子定向移动速率为4v D .导线中自由电子定向移动速率为2v 12.如图所示,图甲中M 为一电动机,当滑动变阻器R 的触头从一端滑到另一端的过程中,两电压表的读数随电流表读数的变化情况如图乙所示.已知电流表读数在0.2A 以下时,电动机没有发生转动.不考虑电表对电路的影响,以下判断正确的是( )A .电路中电源电动势为3.6VB .变阻器向右滑动时,V 2读数逐渐减小C .变阻器的最大阻值为30ΩD .此电路中,电动机的最大输出功率为0.9W 二.实验题:(每空2分,共22分)13. 某同学为测量﹣种新材料制成的均匀圆柱体的电阻率.(1)用螺旋测微器测量其直径,示数如图甲所示,则直径d= mm ;用游标为20分度的卡尺测最其长度,示数如图乙所示,其长度L= mm ;用多用电表测量此圆柱体轴线方向的电阻,选用电阻“×10”档,正确操作后表盘的示数如图丙所示,则欧姆表测得的电阻值R 1= Ω.(2)他改用如图丁所示的电路测量该圆柱体的电阻R ,所用器材代号和规格如下: ①电流表A (量程0~15mA ,内阻R A =20Ω) ②电压表V (量程0~3V ,内阻约2k Ω) ③直流电源E (电动势3V ,内阻不计) ④滑动变阻器R 0(阻值范围0~20Ω) 开关S 、导线若干.若实验中电流表示数为I 、电压表示数为U ,要更准确得到该圆柱体的电阻,计算电阻R 的表达式为: ,进而可得出该种材料的电阻率.14.小华.小刚共同设计了图甲所示的实验电路,电路中的各个器材元件的参数为: 电池组(电动势约6V ,内阻r 约3Ω) 电流表(量程2.0A ,内阻0.8A r =Ω) 电阻箱1R (099.9Ω) 滑动变阻器2R (10R)开关三个及导线若干他们认为该电路可以用来测电源的电动势.内阻和2R接入电路的阻值。

2021年高二下学期第三次月考物理试卷(6月份) 含解析

2021年高二下学期第三次月考物理试卷(6月份)含解析一、单项选择题:本题共10小题,每小题3分,共30分,每小题只有一个选项符合题意.1.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是()A.B.C.D.2.下列关于布朗运动的说法,正确的是()A.布朗运动是指在显微镜中看到的液体分子的无规则运动B.花粉颗粒的布朗运动反映了花粉分子在永不停息地做无规则运动C.悬浮颗粒越大,同一时刻与它碰撞的液体分子越多,布朗运动越不明显D.当物体温度达到0℃时,布朗运动就会停止3.爱因斯坦提出了光量子概念并成功地解释光电效应的规律而获得与1921年的诺贝尔物理学奖.某种金属逸出光电子的最大初动能Ek m入射光频率ν的关系如图所示,其中ν为极限频率.从图中可以确定的是()A.逸出功与ν有关与入射光强度成正比B.Ek m时,会逸出光电子C.ν<νD.图中直线的斜率与普朗克常量有关4.重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小5.冰壶运动深受观众喜爱,图1为xx年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图中的哪幅图()A.B.C.D.6.如图所示,固定在水平面上的气缸内封闭一定质量的气体,气缸壁和活塞绝热性能良好,汽缸内气体分子间相互作用的势能忽略不计,则以下说法正确的是()A.使活塞向左移动,气缸内气体对外界做功,内能减少B.使活塞向左移动,气缸内气体内能增大,温度升高C.使活塞向左移动,气缸内气体压强减小D.使活塞向左移动,气缸内气体分子无规则运动的平均动能减小7.已知氦原子的质量为M He u,电子的质量为m e u,质子的质量为m p u,中子的质量为m n u,u为原子的质量单位,且由爱因斯坦质能方程E=mc2可知:1u对应于931.5MeV的能量,若取光速c=3×108m/s,则两个质子和两个中子聚变成一个氦核,释放的能量为()A.[2×(m p+m n)﹣M He]×931.5MeV B.[2×(m p+m n+m e)﹣M He]×931.5MeV C.[2×(m p+m n+m e)﹣M He]×c2J D.[2×(m p+m n)﹣M He]×c2J8.如图所示,用F表示两分子间的作用力,用E p表示分子间的分子势能,在两个分子之间的距离由10r0变为r0的过程中()A.F不断增大,E p不断减小B.F先增大后减小,E p不断减小C.F不断增大,E p先增大后减小D.F、E p都是先增大后减小9.如图甲是氢原子的能级图,对于一群处于n=4的氢原子,下列说法中正确的是()A.这群氢原子能够吸收任意能量的光子后向更高能级跃迁B.这群氢原子能够发出6种不同频率的光C.这群氢原子发出的光子中,能量最大为10.2eVD.从n=4能级跃迁到n=3能级发出的光的波长最长10.钻石是首饰和高强度钻头、刻刀等工具中的主要材料,设钻石的密度为ρ(单位为kg/m3),摩尔质量为M(单位为g/mol),阿伏加德罗常数为N A.已知1克拉=0.2克,则()A.a克拉钻石所含有的分子数为B.a克拉钻石所含有的分子数为C.每个钻石分子直径的表达式为(单位为m)D.每个钻石分子直径的表达式为(单位为m)二、多项选择题:本题共6小题,每小题4分,共24分,每小题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答的得0分.11.下列说法正确的是()A.卢瑟福通过对α粒子散射实验现象的分析,发现了原子是可以再分的B.β射线与γ射线一样都是电磁波,但穿透本领远比γ射线弱C.原子核的结合能等于使其完全分解成自由核子所需的最小能量D.裂变时释放能量是因为发生了亏损质量12.关于固体和液体,下列说法中正确的是()A.金刚石、食盐、玻璃和水晶都是晶体B.单晶体和多晶体的物理性质没有区别,都有固定的熔点和沸点C.液体的浸润与不浸润均是分子力作用的表现D.液晶显示器是利用了液晶对光具有各向异性的特点13.质量都为m的小球a、b、c以相同的速度分别与另外三个质量都为M的静止小球相碰后,a球被反向弹回,b球与被碰球粘合在一起仍沿原方向运动,c球碰后静止,则下列说法正确的是()A.m一定小于MB.m可能等于MC.b球与质量为M的球组成的系统损失的动能最大D.c球与质量为M的球组成的系统损失的动能最大14.Th(钍)经过一系列α衰变和β衰变,变成Pb(铅).以下说法正确的是()A.铅核比钍核少8个质子B.铅核比钍核少16个中子C.共经过4次α衰变和6次β衰变D.共经过6次α衰变和4次β衰变15.一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为()A.气体分子每次碰撞器壁的平均作用力增大B.单位时间内单位面积器壁上受到气体分子碰撞的次数增多C.气体分子的总数增加D.气体分子的密度增大16.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出()A.甲光的频率等于乙光的频率B.乙光的波长大于丙光的波长C.乙光对应的截止频率大于丙光的截止频率D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能三、简答题:本题共1小题,共12分.请将解答填写在答题卡相应的位置.17.使用多用电表测量电阻时,多用电表内部的电路可以等效为一个直流电源(一般为电池)、一个电阻和一表头相串联,两个表笔分别位于此串联电路的两端.现需要测量多用电表内电池的电动势,给定的器材有:待测多用电表,量程为60mA的电流表,电阻箱,导线若干.实验时,将多用电表调至×1Ω挡,调好零点;电阻箱置于适当数值.完成下列填空:(1)仪器连线如图1所示(a和b是多用电表的两个表笔).若两电表均正常工作,则表笔a为(填“红”或“黑”)色;(2)若适当调节电阻箱后,图1中多用电表、电流表与电阻箱的示数分别如图2(a),(b),(c)所示,则多用电表的读数为Ω.电流表的读数为mA,电阻箱的读数为Ω:(3)将图l中多用电表的两表笔短接,此时流过多用电表的电流为mA;(保留3位有效数字)(4)计算得到多用电表内电池的电动势为V.(保留3位有效数字)四、计算题:本题共5小题,共计54分.解答时请写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.18.如图所示,用销钉固定的活塞把导热气缸分隔成两部分,A部分气体压强P A=6.0×105Pa,体积V A=1L;B部分气体压强P B=2.0×105Pa,体积V B=3L.现拔去销钉,外界温度保持不变,活塞与气缸间摩擦可忽略不计,整个过程无漏气,A、B两部分气体均为理想气体.求活塞稳定后A部分气体的压强.19.质量为2kg的物体B静止在光滑水平面上,一质量为1kg的物体A以2.0m/s的水平速度和B发生正碰,碰撞后A以0.2m/s的速度反弹,求碰撞过程中系统损失的机械能.20.如图所示,边长为L的正方形线框abcd的匝数为n,ad边的中点和bc 边的中点的连线OO′恰好位于匀强磁场的边界上,磁感应强度为B,线圈与外电阻R构成闭合电路,整个线圈的电阻为r.现在让线框以OO′连线为轴,以角速度ω匀速转动,从图示时刻开始计时,求:(1)闭合电路中电流瞬时值的表达式;(2)当t=时,电阻R两端的电压值.21.如图所示,以MN为下边界的匀强磁场,磁感应强度大小为B,方向垂直于纸面向外,MN上方有一单匝矩形导线框abcd,其质量为m,电阻为R,ab边长为l1,bc边长为l2,cd边离MN的高度为h.现将线框由静止释放,线框下落过程中ab边始终保持水平,且ab边离开磁场前已做匀速直线运动,求线框从静止释放到完全离开磁场的过程中(1)ab边离开磁场时的速度v;(2)通过导线横截面的电荷量q;(3)导线框中产生的热量Q.22.如图所示,有一对平行金属板,板间加有恒定电压;两板间有匀强磁场,磁感应强度大小为B0,方向垂直于纸面向里.金属板右下方以MN、PQ为上下边界,MP为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d,MN与下极板等高,MP与金属板右端在同一竖直线.一电荷量为q、质量为m的正离子,以初速度v0沿平行于金属板面、垂直于板间磁场的方向从A点射入金属板间,不计离子的重力.(1)已知离子恰好做匀速直线运动,求金属板间电场强度的大小和方向;(2)若撤去板间磁场B0,已知离子恰好从下极板的右侧边缘射出电场,方向与水平方向成30°角,求A点离下极板的高度;(3)在(2)的情形中,为了使离子进入磁场运动后从边界MP的P点射出,磁场的磁感应强度B应为多大?xx学年江苏省连云港市赣榆一中高二(下)第三次月考物理试卷(6月份)参考答案与试题解析一、单项选择题:本题共10小题,每小题3分,共30分,每小题只有一个选项符合题意.1.在卢瑟福α粒子散射实验中,金箔中的原子核可以看作静止不动,下列各图画出的是其中两个α粒子经历金箔散射过程的径迹,其中正确的是()A.B.C.D.【考点】粒子散射实验.【分析】在卢瑟福α粒子散射实验中,大多数粒子沿直线前进,少数粒子辐射较大角度偏转,极少数粒子甚至被弹回.【解答】解:α粒子受到原子核的斥力作用而发生散射,离原子核越近的粒子,受到的斥力越大,散射角度越大,选项C正确.故选:C.2.下列关于布朗运动的说法,正确的是()A.布朗运动是指在显微镜中看到的液体分子的无规则运动B.花粉颗粒的布朗运动反映了花粉分子在永不停息地做无规则运动C.悬浮颗粒越大,同一时刻与它碰撞的液体分子越多,布朗运动越不明显D.当物体温度达到0℃时,布朗运动就会停止【考点】布朗运动.【分析】布朗运动是悬浮在液体中微粒的无规则运动,不是分子的无规则运动,形成的原因是由于液体分子对悬浮微粒无规则的撞击引起的.小颗粒并不是分子,小颗粒无规则运动的轨迹不是分子无规则运动的轨迹.分子运动永不停息.【解答】解:A、布朗运动是悬浮在液体中微粒的无规则运动,不是液体分子的无规则运动,而是液体分子无规则运动的反映.故A错误.B、由于花粉颗粒是由大量分子组成,所以布朗运动不能反映了花粉分子在永不停息地做无规则运动,故B错误.C、悬浮颗粒越大,同一时刻与它碰撞的液体分子越多,液体分子对悬浮微粒撞击的冲力平衡,所以大颗粒的布朗运动不明显.故C正确.D、液体分子永不停息地做无规则运动,所以布朗运动也永不停息.故D错误故选:C.3.爱因斯坦提出了光量子概念并成功地解释光电效应的规律而获得1921年的诺贝尔物理学奖.某种金属逸出光电子的最大初动能E km与入射光频率ν的关系如图所示,其中ν0为极限频率.从图中可以确定的是()A.逸出功与ν有关B.E km与入射光强度成正比C.ν<ν0时,会逸出光电子D.图中直线的斜率与普朗克常量有关【考点】爱因斯坦光电效应方程.【分析】本题考查光电效应的特点:①金属的逸出功是由金属自身决定的,与入射光频率无关;②光电子的最大初动能E km与入射光的强度无关;③光电子的最大初动能满足光电效应方程.【解答】解:A、金属的逸出功是由金属自身决定的,与入射光频率无关,其大小W=hγ,故A错误.B、根据爱因斯坦光电效应方程E km=hν﹣W,可知光电子的最大初动能E km 与入射光的强度无关,但入射光越强,光电流越大,只要入射光的频率不变,则光电子的最大初动能不变.故B错误.C、要有光电子逸出,则光电子的最大初动能E km>0,即只有入射光的频率大于金属的极限频率即γ>γ0时才会有光电子逸出.故C错误.D根据爱因斯坦光电效应方程E km=hν﹣W,可知=h,故D正确.故选D.4.重庆出租车常以天然气作为燃料,加气站储气罐中天然气的温度随气温升高的过程中,若储气罐内气体体积及质量均不变,则罐内气体(可视为理想气体)()A.压强增大,内能减小B.吸收热量,内能增大C.压强减小,分子平均动能增大D.对外做功,分子平均动能减小【考点】热力学第一定律.【分析】质量一定的气体,体积不变,当温度升高时,是一个等容变化,据压强的微观解释:(1)温度升高:气体的平均动能增加;(2)单位时间内撞击单位面积的器壁的分子数增多,可知压强增大;据热力学第一定律判断即可.【解答】解:质量一定的气体,体积不变,当温度升高时,是一个等容变化,据压强的微观解释:(1)温度升高:气体的平均动能增加;(2)单位时间内撞击单位面积的器壁的分子数增多,可知压强增大.由于温度升高,所以分子平均动能增大,物体的内能变大;体积不变,对内外都不做功,内能增大,所以只有吸收热量,故ACD错误;B正确.故选:B.5.冰壶运动深受观众喜爱,图1为xx年2月第22届索契冬奥会上中国队员投掷冰壶的镜头.在某次投掷中,冰壶甲运动一段时间后与对方静止的冰壶乙发生正碰,如图2.若两冰壶质量相等,则碰后两冰壶最终停止的位置,可能是图中的哪幅图()A.B.C.D.【考点】动量守恒定律.【分析】两冰壶碰撞过程动量守恒,碰撞过程中机械能不会增加,碰撞后甲的速度不会大于乙的速度,据此分析答题.【解答】解:A、两球碰撞过程动量守恒,两球发生正碰,由动量守恒定律可知,碰撞前后系统动量不变,两冰壶的动量方向即速度方向不会偏离甲原来的方向,由图示可知,A图示情况是不可能的,故A错误;B、如果两冰壶发生弹性碰撞,碰撞过程动量守恒、机械能守恒,两冰壶质量相等,碰撞后两冰壶交换速度,甲静止,乙的速度等于甲的速度,碰后乙做减速运动,最后停止,最终两冰壶的位置如图所示,故B正确;C、两冰壶碰撞后,甲的速度不可能大于乙的速度,碰后乙在前,甲在后,如图C所示是不可能的,故C错误;D、碰撞过程机械能不可能增大,两冰壶质量相等,碰撞后甲的速度不可能大于乙的速度,碰撞后甲的位移不可能大于乙的位移,故D错误;故选:B.6.如图所示,固定在水平面上的气缸内封闭一定质量的气体,气缸壁和活塞绝热性能良好,汽缸内气体分子间相互作用的势能忽略不计,则以下说法正确的是()A.使活塞向左移动,气缸内气体对外界做功,内能减少B.使活塞向左移动,气缸内气体内能增大,温度升高C.使活塞向左移动,气缸内气体压强减小D.使活塞向左移动,气缸内气体分子无规则运动的平均动能减小【考点】理想气体的状态方程;热力学第一定律.【分析】气缸壁的绝热性能良好,做功放热问题可由热力学第一定律讨论,温度是气体分子的平均动能变化的标志.压强的变化可由压强产生的微观解释分析.【解答】解:A、使活塞向左移动,故W>0,气缸壁的绝热性能良好,由热力学第一定律:△U=W+Q得:气缸内气体的内能增大,所以缸内气体温度增大,所以气缸内气体分子的平均动能增大,压强增大,故B正确,ACD 错误故选:B.7.已知氦原子的质量为M He u,电子的质量为m e u,质子的质量为m p u,中子的质量为m n u,u为原子的质量单位,且由爱因斯坦质能方程E=mc2可知:1u对应于931.5MeV的能量,若取光速c=3×108m/s,则两个质子和两个中子聚变成一个氦核,释放的能量为()A.[2×(m p+m n)﹣M He]×931.5MeV B.[2×(m p+m n+m e)﹣M He]×931.5MeV C.[2×(m p+m n+m e)﹣M He]×c2J D.[2×(m p+m n)﹣M He]×c2J【考点】爱因斯坦质能方程.【分析】先求出核反应过程中的质量亏损,然后由爱因斯坦的质能方程求出释放的能量.【解答】解:两个质子和两个中子聚变成一个氦核的质量亏损△m=(2m p+2m n ﹣M He+m e)u=[2×(m p+m n)﹣M He]u,核反应释放的能量E=△m×931.5MeV=[2×(m p+m n+m e+)﹣M He]×931.5MeV,故B正确;故选:B.8.如图所示,用F表示两分子间的作用力,用E p表示分子间的分子势能,在两个分子之间的距离由10r0变为r0的过程中()A.F不断增大,E p不断减小B.F先增大后减小,E p不断减小C.F不断增大,E p先增大后减小D.F、E p都是先增大后减小【考点】分子间的相互作用力.【分析】根据图象可以看出分子力的大小变化,在横轴下方的为引力,上方的为斥力,分子力做正功分子势能减小,分子力做负功分子势能增大.【解答】解:当r=r0时,分子的引力与斥力大小相等,分子力为F=0.在两个分子之间的距离由10r0变为r0的过程中,由图看出,分子力F先增大后减小.此过程分子力表现为引力,分子力做正功,分子势能E p减小.故B正确.故选B9.如图甲是氢原子的能级图,对于一群处于n=4的氢原子,下列说法中正确的是()A.这群氢原子能够吸收任意能量的光子后向更高能级跃迁B.这群氢原子能够发出6种不同频率的光C.这群氢原子发出的光子中,能量最大为10.2eVD.从n=4能级跃迁到n=3能级发出的光的波长最长【考点】氢原子的能级公式和跃迁.【分析】能级间跃迁辐射或吸收的光子能量必须等于两能级间的能级差,能级差越大,辐射的光子能量越大,频率越大,波长越小.【解答】解:A、氢原子发生跃迁,吸收的能量必须等于两能级的能级差.故A错误;B、根据=6知,这群氢原子能够发出6种不同频率的光子.故B正确;C、一群处于n=4的氢原子,由n=4跃迁到n=1,辐射的光子能量最大,△E=13.6﹣0.85eV=12.75eV.故C错误;D、发出光的能量越小,频率越低,波长越长,处于n=4的氢原子发出不同频率的6种光子中,由n=4跃迁到n=3的光的能量最小,所以其波长最长,故D正确.故选:BD.10.钻石是首饰和高强度钻头、刻刀等工具中的主要材料,设钻石的密度为ρ(单位为kg/m3),摩尔质量为M(单位为g/mol),阿伏加德罗常数为N A.已知1克拉=0.2克,则()A.a克拉钻石所含有的分子数为B.a克拉钻石所含有的分子数为C.每个钻石分子直径的表达式为(单位为m)D.每个钻石分子直径的表达式为(单位为m)【考点】阿伏加德罗常数.【分析】根据钻石的质量和摩尔质量,求出摩尔数,结合阿伏伽德罗常数求出分子数的大小.根据摩尔质量和阿伏伽德罗常数求出摩尔体积,每个钻石分子可以看成球体,结合球体的体积公式求出直径的表达式.【解答】解:A、a克拉钻石的摩尔数为,则分子数n=.故A、B错误.C、每个钻石分子的体积V=,又,联立解得d=.故C正确,D错误.故选:C.二、多项选择题:本题共6小题,每小题4分,共24分,每小题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答的得0分.11.下列说法正确的是()A.卢瑟福通过对α粒子散射实验现象的分析,发现了原子是可以再分的B.β射线与γ射线一样都是电磁波,但穿透本领远比γ射线弱C.原子核的结合能等于使其完全分解成自由核子所需的最小能量D.裂变时释放能量是因为发生了亏损质量【考点】重核的裂变;原子核的结合能.【分析】卢瑟福通过对α粒子散射实验现象的分析,提出了原子的核式结构模型.比结合能:原子核结合能对其中所有核子的平均值,亦即若把原子核全部拆成自由核子,平均对每个核子所要添加的能量.用于表示原子核结合松紧程度.结合能:两个或几个自由状态的粒子结合在一起时释放的能量.自由原子结合为分子时放出的能量叫做化学结合能,分散的核子组成原子核时放出的能量叫做原子核结合能.【解答】解:A、卢瑟福通过对α粒子散射实验现象的分析,提出了原子的核式结构模型;故A错误;B、β射线的本质的电子流,γ射线是电磁波,故B错误;C、根据分散的核子组成原子核时放出的能量叫做原子核结合能,所以原子核的结合能等于使其完全分解成自由核子所需的最小能量.故C正确;D、根据爱因斯坦质能方程可知,裂变时释放能量是因为发生了亏损质量,故D正确;故选:CD12.关于固体和液体,下列说法中正确的是()A.金刚石、食盐、玻璃和水晶都是晶体B.单晶体和多晶体的物理性质没有区别,都有固定的熔点和沸点C.液体的浸润与不浸润均是分子力作用的表现D.液晶显示器是利用了液晶对光具有各向异性的特点【考点】* 液体的表面张力现象和毛细现象;* 晶体和非晶体.【分析】晶体有固定的熔点,非晶体没有固定的熔点,单晶体的物理性质是各向异性的,而多晶体和非晶体是各向同性的,晶体的分子排列是有规则的,而非晶体的分子排列是无规则的;液体的浸润与不浸润均是分子力作用的表现.【解答】解:A、金刚石、食盐、水晶是晶体,而玻璃是非晶体,故A错误B、单晶体具有各向异性,多晶体具有各向同性,故物理性质是不同的,故B 错误.C、浸润和不浸润现象均是因为分子力作用的表现,故C正确D、液晶显示器是利用了液晶对光具有各向异性的特点,故D正确,故选:CD13.质量都为m的小球a、b、c以相同的速度分别与另外三个质量都为M的静止小球相碰后,a球被反向弹回,b球与被碰球粘合在一起仍沿原方向运动,c球碰后静止,则下列说法正确的是()A.m一定小于MB.m可能等于MC.b球与质量为M的球组成的系统损失的动能最大D.c球与质量为M的球组成的系统损失的动能最大【考点】动量守恒定律;机械能守恒定律.【分析】根据动量守恒定律以及能量守恒定律判断m与M的关系,当两球发生完全非弹性碰撞时,系统损失的动能最大.【解答】解:A、若小球a与M小球发生弹性碰撞,根据动量守恒、能量守恒,碰撞后m的速度,M的速度,因为碰后m的速度反向,则m<M.故A 正确,B错误.C、b球与被碰球粘合在一起运动,发生完全非弹性碰撞,损失的机械能最大.故C正确,D错误.故选AC.14.Th(钍)经过一系列α衰变和β衰变,变成Pb(铅).以下说法正确的是()A.铅核比钍核少8个质子B.铅核比钍核少16个中子C.共经过4次α衰变和6次β衰变D.共经过6次α衰变和4次β衰变【考点】原子核衰变及半衰期、衰变速度.【分析】正确解答本题的关键是:理解α、β衰变的实质,正确根据衰变过程中质量数和电荷数守恒进行解题.【解答】解:AB、根据质量数和电荷数守恒可知,铅核比钍核少8个质子,少16个中子,故AB正确;e,设发生了x次αCD、发生α衰变是放出42He,发生β衰变是放出电子0﹣1衰变和y次β衰变,则根据质量数和电荷数守恒有:2x﹣y+82=90,4x+208=232,解得x=6,y=4,故衰变过程中共有6次α衰变和4次β衰变,故C错误,D正确.故选:ABD.15.一定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为()A.气体分子每次碰撞器壁的平均作用力增大B.单位时间内单位面积器壁上受到气体分子碰撞的次数增多C.气体分子的总数增加D.气体分子的密度增大【考点】封闭气体压强.【分析】气体压强与大气压强不同,指的是封闭气体对容器壁的压强,气体压强产生的原因是大量气体分子对容器壁的持续的、无规则撞击产生的.气体压强由气体分子的数密度和平均动能决定.【解答】解:A、气体经历等温压缩,温度是分子热运动平均动能的标志,温度不变,分子热运动平均动能不变;故气体分子每次碰撞器壁的冲力不变;故A错误;B、由玻意耳定律可知气体的体积减小,分子数密度增加,故单位时间内单位面积器壁上受到气体分子碰撞的次数增多.故B正确;C、D、气体的体积减小,分子数密度增加,但分子总数是一定的,故C错误,D正确;故选:BD.16.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出()A.甲光的频率等于乙光的频率B.乙光的波长大于丙光的波长C.乙光对应的截止频率大于丙光的截止频率D.甲光对应的光电子最大初动能大于丙光的光电子最大初动能【考点】爱因斯坦光电效应方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

育才学校2017-2018学年第二学期(实验班)第三次月考高二物理全卷满分100分,考试用时90分钟第I卷(选择题 45分)一、选择题(本大题共15小题,每小题3分,共45分)1.关于天然放射性,下列说法正确的是()A.德国物理学家伦琴首次发现了天然放射现象B.发射性元素的半衰期与外界的温度有关C.α、β和γ三种射线中,α射线的穿透能力最强D.一个原子核在一次衰变中不可能同时放出α、β和γ三种射线2.关于黑体辐射的强度与波长的关系,如图正确的是()A. B. C. D.3.下列说法正确的是()A.在光电效应实验中,用同种频率的光照射不同的金属表面,从金属表面逸出的光电子最大初动能E k越大,则这种金属的逸出功W0越小B.由玻尔理论可知,氢原子的核外电子由较高能级跃迁到较低能级时,要辐射一定频率的光子,同时电子的动能减小,电势能增大C.氡原子核的半衰期为3.8天,4个氡原子核经过7.6天一定只剩下1个未发生衰变D. U+ n→ Kr+ Ba+3 n是聚变反应4.下列说法正确的是()A. 不受外力作用的系统,其动量和机械能必然同时守恒B. 只要系统受到摩擦力,动量不可能守恒C. 物体受到的冲量越大,它的动量变化一定越快D. 某物体做直线运动,受到一个-6N˙s的冲量作用后其动量不一定减小5.一个物体从某高处由静止下落,设其所受的空气阻力恒定,当它下落h时的动量大小为P1,下落2h时的动量大小为P2,那么P1: P2为()A. 1:2B. 1::3 D. 1:46.原来静止的物体受合力作用时间为2t0,作用力随时间的变化情况如图所示,则()A. 0~t 0时间内物体的动量变化与t 0~2t 0时间内动量变化相同B. 0~t 0时间内物体的平均速率与t 0~2t 0时间内平均速率不等C. t =2t 0时物体的速度为零,外力在2t 0时间内对物体的冲量为零D. 0~t 0时间内物体的动量变化率与t 0~2t 0时间内动量变化率相同7.如图所示,A 、B 两物体质量分别为m A 、m B , 且m A >m B , 置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经过相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( )A.停止运动B.向左运动C.向右运动D.运动方向不能确定8.如图甲所示,在光滑水平面上的两小球发生正碰.小球的质量分别为m 1和m 2 . 图乙为它们碰撞前后的x ﹣t (位移﹣时间)图象.已知m 1=0.1kg .由此可以判断( )A.碰前m 2和m 1都向右运动B.碰后m 2和m 1都向右运动C.m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能9.有一条捕鱼小船停靠在湖边码头,一位同学想用一个卷尺粗略测出它的质量。

他轻轻从船尾走向船头,而后轻轻下船。

用卷尺测出船后退的距离d 和船长L,又知他的质量为m ,则小船的质量为(不计湖水的阻力)( )A. ()m L d d + B. ()m L d d - C. mL d D. ()m L d L+ 10.质量为m 的小球A ,沿光滑水平面以v 0的速度与质量为2m 的静止小球B 发生正碰,碰撞后,小球A 的速度可能是( ) A. 013v - B. 0 C. 013v D. 023v 11.如图所示为氢原子的能级图.现有大量处于n=3激发态的氢原子向低能级跃迁.下列说法正确的是( )A.这些氢原子总共可辐射出6种不同频率的光B.氢原子由n=3跃迁到n=1产生的光照射逸出功为6.34 eV的金属铂能发生光电效应C.氢原子由n=3跃迁到n=2产生的光波长最长D.这些氢原子跃迁时辐射出光子能量的最大值为10.2 eV12.下列说法中正确的是()A. 光的波粒二象性学说就是牛顿的微粒说加上惠更斯的波动的规律来描述B. 光的波粒二象性彻底推翻了麦克斯韦的电磁理论C. 光子说并没有否定电磁说,光子的能量E=hv,v表示波的特性,E表示粒子的特性D. 个别光子的行为表现为粒子性,大量光子的行为表现为波动性13.如图所示, 在光滑的水平面上静止着一带有光滑圆弧曲面的小车, 其质量为M. 现有一质量为m可视为质点的小球(可视为质点), 以某一初速度从圆弧曲面的最低点冲上小车,且恰好能到达曲面的最高点, 在此过程中, 小球增加的重力势能为5.0 J, 若M > m, 则小车增加的动能可能为()A. 4.0 JB. 3.0 JC. 2.0 JD. 1.0 J14.质量为1 kg的物体,从静止开始下落,经过3 s的时间落地,落地时速度大小为10 m/s,若取g=10 m/s2,那么下列判断正确的是()A. 重力对物体做功为150 JB. 物体的机械能减少了100 JC. 物体克服阻力做功为50 JD. 阻力对物体的冲量大小为20 N·s15.如图所示;“∪”型刚性容器质量M=2kg,静止在光滑水平地面上,将一质量m=0.5kg,初速度v0=5m/s,且方向水平向右的钢块放在容器中间,让二者发生相对滑动.已知钢块与容器底部接触面粗糙,取μ=0.1,重力加速度g=10m/s2,容器内壁间距L=2m,钢块与容器壁多次弹性碰撞后恰好回到容器正中间,并与容器相对静止,则()A. 整个过程中系统损失的机械能为5J;B. 整个过程中系统损失的机械能为6JC. 整个过程中钢块与容器碰撞次数为10次D. 整个过程中钢块与容器碰撞次数为5次二、实验题(本大题共2小题,每小空2分,共16分)16.用如图甲所示装置验证动量守恒定律.实验中甲(1)为了尽量减小实验误差,在安装斜槽轨道时,应让斜槽末端保持水平,这样做的目的是________.A.使入射球与被碰小球碰后均能从同一高度飞出B.使入射球与被碰小球碰后能同时飞出C.使入射球与被碰小球离开斜槽末端时的速度为水平方向D.使入射球与被碰小球碰撞时的动能不损失(2)若A球质量为m1=50 g,两小球发生正碰前后的位移—时间(x-t)图象如图乙所示,则小球B的质量为m2=________.乙(3)调节A球自由下落高度,让A球以一定速度v与静止的B球发生正碰,碰后两球动量正好相等,则A、B两球的质量之比应满足________.17.某同学设计了一个用打点计时器“探究碰撞中的不变量”的实验:在小车A的前端粘有橡皮泥,推动小车A使之做匀速直线运动,然后与原来静止在前方的小车B相碰,并粘合成一体继续做匀速直线运动,他设计的装置如图1所示.在小车A后面连着纸带,电磁打点计时器的电源频率为50Hz,长木板的一端下垫着小木片用以平衡摩擦力.(1)若已得到打点纸带如图1所示,测得各计数点间距离并标在图上,A为运动起始的第一点.则应选 ______ 段来计算小车A碰撞前的速度,应选 ______ 段来计算A和B碰撞后的共同速度.(2)已测得小车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上的测量结果可得:碰撞前两车质量与速度乘积之和为 ______ kg•m/s;碰撞后两车质量与速度乘积之和为______ kg•m/s.(3)结论: ____ __三、解答题(本大题共3小题,每小题3分,共39分)18. (本小题满分12分)一个原来静止的锂核(Li)俘获一个速度为7.7×104m/s的中子后,生成一个氚核和一个氦核,已知氚核的速度大小为 1.0×103m/s,方向与中子的运动方向相反.计算结果保留两位有效数字。

(1)试写出核反应方程;(2)求出氦核的速度大小;(3)若让一个氘核和一个氚核发生聚变时可产生一个氦核,同时放出一个中子,写出该核反应方程,并求这个核反应释放出的能量.(已知氘核质量为m D=2.014102u,氚核质量为m T =3.016050u,氦核质量m He=4.002603u,中子质量m n=1.008665u,1u=1.6606×10-27kg)19. (本小题满分15分)如图,长为l的不可伸长的轻绳,一端固定在O点,另一端系一质量为m的小球A.质量为3m的小球B放在光滑水平面上,位于O点正下方距离也为l 处.将球A拉至轻绳(伸直)与水平方向的夹角θ=30o处,由静止释放.球A到达最低点时与球B发生正碰,两小球均视为质点,重力加速度为g.求碰撞后小球A能上摆的最大高度.20. (本小题满分12分)质量为M=2kg的小平板车静止在光滑的水平面上,车的一端静止着质量为m=2kg的物体A(可视为质点),如图一颗质量为m1=20g的子弹以v0=600m/s的水平速度射穿A后速度变为v1=100m/s(穿过时间极短).最后A未离开平板车.求:(1)A给子弹的冲量大小;(2)平板车最后的速度;(3)物体A与平板车因摩擦而产生的热量.参考答案解析1.D【答案解析】A、贝克勒尔发现了天然放射现象,A不符合题意;B、半衰期是由放射性元素本身决定的,与环境温度无关.B不符合题意;C、α、β、γ射线的电离能力和穿透物质的能力不同,α射线的电离能力最强、穿透能力最弱;γ射线的电离能力最弱、穿透力最强,C不符合题意;D、一个原子核在一次衰变中只能放出α、β两种射线中的一种,γ射线可以伴随α射线或β射线放出,所以不能同时放出α、β和γ三种射线,D符合题意.故答案为:D2.B【答案解析】根据黑体辐射的实验规律:随温度升高,各种波长的辐射强度都有增加,故图线不会有交点,选项C、D错误。

另一方面,辐射强度的极大值会向波长较短方向移动,选项A 错误,选项B正确。

故选B.3.A【答案解析】A、根据光电效应方程:E km=hγ﹣W,可知用同种频率的光照射不同的金属表面,从金属表面逸出的光电子最大初动能E k越大,则这种金属的逸出功W0越小.A符合题意;B、由玻尔理论可知,氢原子的核外电子由较高能级跃迁到较低能级时,轨道半径减小,该过程中电场力做正功,所以电势能减小;同时要辐射一定频率的光子,同时电子的动能增大,B不符合题意;C、半衰期具有统计规律对大量的原子核适用,对少量的原子核不适用,C不符合题意.D、 U+ n→ Kr+ Ba+3 n是裂变反应.D不符合题意.故答案为:A4.D【答案解析】不受外力作用的系统,其动量守恒,但机械能不一定守恒,可能有内力对系统做功,机械能不守恒,故A错误.系统受到摩擦力,合外力可能为零,动量可能守恒,如长木板放在光滑水平面上,物块水平冲上长木板后,物块和长木板间有摩擦力,但系统的合外力为零,系统的动量守恒,故B错误.根据动量定理公式I=△P,知物体受到的冲量越大,它的动量变化量一定越大,但动量变化不一定快,故C错误.物体做直线运动,受到一个-6N•s的冲量作用后,若该冲量方向与物体速度方向相同,其动量增大.若该冲量方向与物体速度方向相反,其动量减小,故D正确;故选D.5.B【答案解析】由题,物体受到重力和空气阻力,物体做匀加速直线运动,根据运动学公式v2−v02=2ax,得, 物体下落h和2h时速度分别为v12=2ah;v22=2a•2h,则得v1:v2而动量P=mv,则得动量之比为p1:p2 B.6.C【答案解析】A、合外力的冲量等于物体动量的改变量,故F-t图象与时间轴围成的面积等于物体动量的改变量。

相关文档
最新文档