高二数学下学期第三次月考试题 理 (2)

合集下载

重庆市巴蜀中学2019_2020学年高二数学下学期月考试题含解析

重庆市巴蜀中学2019_2020学年高二数学下学期月考试题含解析

重庆市巴蜀中学2019-2020学年高二数学下学期月考试题(含解析)一、选择题.(共12题,每题5分,共60分.每题只有一个正确选项) 1.甲、乙两人比赛下中国象棋,若甲获胜的概率是13,下成和棋的概率是12,则乙获胜的概率是( ) A.56B.23C. 13D.16【答案】D 【解析】 【分析】根据概率性质可知所有可能的概率和为1,即可得解.【详解】甲、乙两人比赛下中国象棋,结果有三种:甲胜,和局,乙胜. 由概率性质可知,三种情况的概率和为1, 所以乙获胜的概率为1111236--=, 故选:D.【点睛】本题考查了概率性质的简单应用,属于基础题.2.设随机变量X 服从两点分布,若()()100.2P X P X =-==,则成功概率()1P X ==( ) A. 0.2 B. 0.4C. 0.6D. 0.8【答案】C 【解析】 【分析】根据两点分布概率性质可得解.【详解】随机变量X 服从两点分布,()()100.2P X P X =-==,根据两点分布概率性质可知:()()()()100.2101P X P X P X P X ⎧=-==⎪⎨=+==⎪⎩,解得()10.6P X ==, 故选:C.【点睛】本题考查了两点分布概率性质的简单应用,属于基础题.3.甲、乙两位同学将最近10次物理考试的成绩(满分100分)绘制成如图所示的茎叶图进行比较,下列说法正确的是( )①甲同学平均成绩低于乙同学 ②甲同学平均成绩高于乙同学 ③甲同学成绩更稳定 ④乙同学成绩更稳定 A. ①③ B. ①④ C. ②③ D. ②④【答案】A 【解析】 【分析】根据茎叶图中数据分布特征,即可做出判断.【详解】由茎叶图可知,甲组数据整体值偏小,乙组的数据整体值偏大,因而甲同学平均成绩低于乙同学,所以①正确;而甲组数据分布更为集中,乙组数据分布较为分散,因而甲同学成绩更稳定,所以③正确; 综上可知,正确的为①③; 故选:A.【点睛】本题考查了茎叶图的性质及简单应用,数据分析处理能力,属于基础题.4.记5250125(1)x a a x a x a x +=+++⋅⋅⋅+,则12345a a a a a ++++=( )A. 64B. 63C. 32D. 31【答案】D 【解析】 【分析】利用赋值法即可得解.【详解】5250125(1)x a a x a x a x +=+++⋅⋅⋅+, 令0x =,代入可得01a =,令1x =,代入可得5012345232a a a a a a +++++==,所以5123450231a a a a a a ++++=-=, 故选:D.【点睛】本题考查了二项展开式中项的系数和求法,赋值法的应用,属于基础题. 5.某校高一、高二、高三年级人数比为7:8:10,现按分层抽样的方法从三个年级一共抽取150人来进行某项问卷调查,若每人被抽取的概率是0.04,则该校高二年级人数为( ) A. 1050 B. 1200C. 1350D. 1500【答案】B 【解析】 【分析】根据分层抽样的抽样比,可得高二年级抽取的人数,即可由没人被抽到的概率得高二年级人数.【详解】高一、高二、高三年级人数比为7:8:10,现按分层抽样的方法从三个年级一共抽取150人来进行某项问卷调查, 则高二年级抽取的人数为8150=487+8+10⨯ 人,设高二年级人数为x , 则480.04x= ,解得1200x = , 所以高二年级人数1200 人,故选:B.【点睛】本题考查了分层抽样的简单应用,属于基础题.6.演讲社团里现有水平相当的4名男生和5名女生,从中随机选出3名同学作为代表队到市里参加“最美逆行者”的演讲比赛,代表队中既有男生又有女生的不同选法共有( ) A. 140种 B. 80种C. 70种D. 35种【答案】C 【解析】 【分析】分类讨论,选出3名同学分别为1男2女,2男1女两种情况,即可得解. 【详解】选出3名同学既有男生又有女生有2种情况: 1男2女,则1245544402C C ⨯=⨯=;2男1女,则214543530 2C C⨯=⨯=;所以共有403070+=种不同选法.故选:C.【点睛】本题考查了组合问题的简单应用,属于基础题.7.同时抛掷4枚质地均匀的硬币400次,记4枚硬币中恰好2枚正面向上的次数为X,则X 的数学期望是()A. 25B. 100C. 150D. 200【答案】C【解析】【分析】根据独立重复试验,先求得4枚硬币中恰好2枚正面向上的概率,即可求得抛掷硬币400次恰好2枚正面向上的数学期望.【详解】由独立重复试验可知,同时抛掷4枚质地均匀的硬币,4枚硬币中恰好2枚正面向上的概率为222411113622448 C⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭,由二项分布的期望求法可知抛掷硬币400次恰好2枚正面向上的数学期望为3 4001508⨯=,故选:C.【点睛】本题考查了独立重复试验概率求法,二项分布数学期望的求法,属于基础题.8.某高校需安排5位应届毕业生到3家企业实习,每家企业至少有1位实习生,并且实习生甲和乙必须去同一家企业实习,则不同实习安排方式共有()A. 12种B. 18种C. 24种D. 36种【答案】D【解析】【分析】根据题意将甲乙捆绑看作一个整体,再与剩余3人一起分成三组,即可由排列组合的应用求解.【详解】因为甲和乙必须去同一家企业实习,则将甲乙捆绑作为一个整体,则共有4组人需要安排到3家企业实习,将四组人分为3组,则为1,1,2,因为出现重复的一组,所以总的安排方法数为1134332243321362C C A A ⨯⨯⨯⨯== 种,故选:D.【点睛】本题考查了排列组合问题在实际问题中的应用,注意分组时出现重复的情况,属于中档题. 9.设(5nx 的展开式中各项系数之和为a ,二项式系数之和为b ,且3132a b -=,则展开式中有理项共有( ) A. 2项 B. 3项C. 4项D. 5项【答案】B 【解析】 【分析】利用赋值法可求得各项系数之和a ,由二项定理展开式性质可得二项式系数之和b ,结合3132a b -=即可求得n 的值,进而由二项定理展开式的通项求得有理项个数.【详解】二项式为(5nx ,展开式中各项系数之和为a ,令1x =,代入可得4n a =, 二项式系数之和为b ,则2n b =, 因为3132a b -=, 所以431232nn-⨯=,即()22312320n n -⨯-=,所以()()232210n n-+=,解得5n =,所以(55x ,由二项定理展开式的通项为()(5155r r r r T C x -+= ()()1552515r r r r C x--=-⋅⋅, 当0,2,4r =时为有理项,所以共有3项有理项, 故选:B.【点睛】本题考查了二项定理展开式的系数与二项式系数的概念,二项展开通项式的应用,有理项的求法,属于中档题.10.6支钢笔中有4支为正品,2支为次品,现需要通过检测将其进行区分,每次随机抽出一支钢笔进行检测,检测后不放回,直到完全将正品和次品区分开,用X表示直到检测结束时检测进行的次数,则()4P X==()A.415B.715C.2881D.1027【答案】A【解析】【分析】完全将正品和次品区分开且4x=,有2种情况:前四次检测均为正品;前三次检测有1次次品,第四次检测为次品,即可根据概率求解.【详解】为将正品和次品区分开且4x=,有2种情况:前四次检测均为正品;前三次检测有1次次品,第四次检测为次品,概率分别为:前四次检测均为正品:43211 654315⨯⨯⨯=;第一次检测为次品,第四次检测为次品,则24311 654315⨯⨯⨯=;第二次检测为次品,第四次检测为次品,则42311 654315⨯⨯⨯=;第三次检测为次品,第四次检测为次品,则43211 654315⨯⨯⨯=;所以用X表示直到检测结束时检测进行的次数,则()14441515P X==⨯=,故选:A.【点睛】本题考查了分类、分步计数原理的应用,概率的求法,属于基础题.11.已知A学校有15位数学老师,其中9位男老师,6位女老师,B学校有10位数学老师,其中3位男老师,7位女老师,为了实现师资均衡,现从A学校任意抽取一位数学老师到B学校,然后从B学校随机抽取一位数学老师到市里上公开课,则在A学校抽到B学校的老师是男老师的情况下,从B学校抽取到市里上公开课的也是男老师的概率是()A. 23B.47C.411D.311【答案】A 【解析】【分析】当在A 学校抽到B 学校的老师是男老师时,B 学校男老师和总老师的数量可知,进而可求得从B 学校抽取到市里上公开课的也是男老师的概率【详解】设A 学校抽到B 学校的老师是男老师事件为M ,B 学校抽取到市里上公开课的是男老师事件为N ,A 学校有15位数学老师,其中9位男老师,6位女老师,因而A 学校抽到B 学校的老师是男老师的概率为()93155P M ==; 从B 学校抽取到市里上公开课的也是男老师的概率为()31410111P N +==+, 因而由条件概率公式可得()()()411P M N P N M P M ⋅==, 故选:C.【点睛】本题考查了条件概率的简单应用,条件概率的求法,属于基础题.12.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下: 数字 1 2 3 4 5 6 7 8 9 形式 ⅠⅡⅢⅣⅤⅥⅦⅧⅨ其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示. (如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为( )A. 87B. 95C. 100D. 103【答案】D 【解析】 【分析】将6根火柴能表示数字的搭配列举出来,再根据数的排列特征即可得解. 【详解】用6根火柴表示数字,所有搭配情况如下:1根火柴和5根火柴:1根火柴可表示的数为1;5根火柴可表示的数为8,和0一起,能表示的数共有4个(108,180,801,810).2根火柴和4根火柴:2根火柴可表示的数为2、5;4根火柴可表示的数为7,和0一起,能表示的数有1248C ⨯= 个.3根火柴和3根火柴:3根火柴可表示的数为3、4、6、9,和0一起,能表示的数分为2类:除0外的两个数字相同,可表示的数有1248C ⨯=个;除0外的两个数字不同,则有24424C ⨯=个,所以共有82432+= 个.1根火柴、1根火柴和4根火柴:即有1、1、7组成的数,共有3个(117,171,711). 1根火柴、2根火柴和3根火柴:即由1,2或5中的一个,3、4、6、9中的一个数字组成的三位数,共有113243243248C C A =⨯⨯⨯= 个.2根火柴、2根火柴、2根火柴:即由2或5组成的三位数,分为两类:三个数字都相同,共有2个(222,555);三个数字中的两个数字相同,则有1236C ⨯=个,共有268+= 个. 综上可知,可组成的三位数共有48323488103+++++= 个. 故选:D.【点睛】本题考查了排列组合问题的综合应用,分类、分步计数原理的应用,注意分类时要做到“不重不漏”,属于难题.二、填空题.(共4题,每题5分,共20分) 13.已知()1D X =,21Y X =-,则()D Y =______. 【答案】4 【解析】 【分析】根据随机变量方差性质及公式即可得解. 【详解】()1D X =,21Y X =-, 则()21D X -,所以()()22124D X D X -==,故答案为:4.【点睛】本题考查了随机变量方差性质及公式的简单应用,属于基础题. 14.()()5121x x ++的展开式中3x 的系数为______.【答案】30 【解析】 【分析】将多项式展开,结合二项定理展开式的通项即可求解. 【详解】()()()()555121121x x x x x ++=+++,则()51x +展开式中3x 的系数为2554102C ⨯==, ()521x x +展开式中3x 的系数即为()51x +展开式中2x 的系数乘以2,所以355422202C ⨯⨯=⨯=, 所以()()5121x x ++的展开式中3x 的系数为102030+=, 故答案为:30.【点睛】本题考查了多项式乘积系数的求法,二项定理展开式通项的应用,属于基础题. 15.有7人站成一排照相,要求A ,B 两人相邻,C ,D ,E 三人互不相邻,则不同的排法种数为______. 【答案】288 【解析】 【分析】将A 、B 捆绑作为一个整体排列,再与剩余2人全排列,C 、D 、E 三人插空排列即可. 【详解】将A 、B 捆绑作为一个整体排列为22A , 将A 、B 整体与剩余2人全排列则33A ,再将C 、D 、E 三人插入4个空位排列,则34A ,所以总的排列方法有233234232432288A A A =⨯⨯⨯⨯⨯= 种,故答案为:288.【点睛】本题考查了排列中相邻、不相邻问题的解法,属于中档题.16.对于数列{}n x ,若123n x x x x ≤≤≤⋅⋅⋅≤,则称数列{}n x 为“广义递增数列”,若123n x x x x ≥≥≥≥,则称数列{}n x 为“广义递减数列”,否则称数列{}n x 为“摆动数列”.已知数列{}n a 共4项,且{}()1,2,3,41,2,3,4i a i ==,则数列{}n a 是摆动数列的概率为______. 【答案】95128【解析】 【分析】根据数列的元素,先根据数列中数字的组成求得所有的数列,再将符合“广义递增数列”或“广义递减数列”的个数分类求得,即可求得“摆动数列”的个数,进而求得数列{}n a 是摆动数列的概率.【详解】根据题意可知,{}()1,2,3,41,2,3,4i a i ==,则四位数字组成的数列有以下四类: (1)由单个数字组成:共有4个数列;(2)由2个数字组成:则共有246C =种数字搭配,每种数字搭配又分为两种情况:由1个数字和3个相同数字组成4个数的数列(如1222,2111等),则有1248C ⨯=个数列;分别由2个相同数字组成的4个数的数列(如1122等)共有6个数列,因而此种情况共有()248684C +=种;(3)由3个数字组成:共有344C =种数字搭配(如1123等),相同数字有3种可能,则共有4312144⨯⨯=个数列;(4)由4个数字组成:共有44432124A =⨯⨯⨯=个数列. 因而组成数列的个数为48414424256+++=个数列.其中,符合“广义递增数列”或“广义递减数列”的个数分别为:(1)由单个数字组成:4个数列均符合“广义递增数列”或“广义递减数列”,因而有4个数列;(2)由2个数字组成:满足“广义递增数列”或“广义递减数列”的个数为()2422236C ⨯++= 个;(3)由3个数字组成:1143224C C ⨯=个;(4)由4个数字组成:则有2个数列符合“广义递增数列”或“广义递减数列”, 综上可知,符合“广义递增数列”或“广义递减数列”的个数为66个. 所以“摆动数列”的个数为25666190-=个,因而数列{}n a 是摆动数列的概率为19095256128=, 故答案为:95128. 【点睛】本题考查了数列新定义的综合应用,数字排列的综合应用,概率的求法,分类过程较为繁琐,属于难题.三、解答题.(共6小题,共70分,请在答题卡上写出必要的解答过程)17.小蔡参加高二1班“美淘街”举办的幸运抽奖活动,活动规则如下:盒子里装有六个大小相同的小球,分别标有数字1、2、3、4、5、6,小蔡需从盒子里随机不放回地抽取3次,每次抽取1个小球,按抽取顺序分别作为一个三位数的百位、十位与个位. (1)一共能组成多少个不同的三位数?(2)若组成的三位数是大于500的偶数,则可以获奖,求小蔡获奖的概率. 【答案】(1)120(2)16【解析】 【分析】(1)由抽取的三位数各不相同,可由排列数公式求得组成不同三位数的个数.(2)分别求得百位为5和百位为6的偶数个数,结合(1)即可求得可以获奖的概率. 【详解】(1)因为抽取的三位数各不同,因而组成三位数的总数为36654120A .(2)若百位为5,则个位可以为2、4、6中一个,十位可以是剩余4个数字中的一个,则有113412C C ⨯=个;若百位为6,则个位可以为2、4中的一个,十位可以是剩余4个数字中的一个,则有11248C C ⨯=个,∴大于500的偶数的概率为12811206P +==. 【点睛】本题考查了排列组合问题的简单应用,数字排列的特征及应用,属于基础题.18.某校高二年级共有1000 名学生,为了了解学生返校上课前口罩准备的情况,学校统计了所有学生口罩准备的数量,并绘制了如下频率分布直方图.(1)求x 的值;(2)现用分层抽样的方法,从口罩准备数量在[)10,20和[]50,60的学生中选10人参加视频会议,则两组各选多少人?(3)在(2)的条件下,从参加视频会议的10人中随机抽取3人,参与学校组织的复学演练.记X 为这3人中口罩准备数量在[)10,20的学生人数,求X 的分布列与数学期望. 【答案】(1)0.02x =(2)6人,4人(3)95【解析】 【分析】(1)由频率分布直方图的性质可知小矩形面积和为1,可求得x 的值; (2)根据分层抽样的特征,可分别求得两组各抽取的人数.(3)由题意可知,0,1,2,3X =;分别求得各自对应的概率,即可得频率分布列及数学期望. 【详解】(1)根据频率分布直方图中小矩形面积和为1,可得(0.0150.0350.012)101x +++⨯=,解得0.02x =.(2)口罩准备数量在[)10,20的人数为0.0151060.0150.01⨯=+人,在[]50,60的人数为0.011040.0150.01⨯=+人.(3)由题0,1,2,3X =.343104(0)120C P X C ===,126431036(1)120C C P X C ===,216431060(2)120C C P X C ===,3631020(3)120C P X C ===,故分布列为:期望3660202169()1231201201201205E X =⨯+⨯+⨯==. 【点睛】本题考查了频率分布直方图的性质及简单应用,分层抽样特征,离散型随机变量分布列及数学期望的求法,属于基础题.19.已知从境外回国的8位同胞中有1位被新冠肺炎病毒感染,需要通过核酸检测是否呈阳性来确定是否被感染.下面是两种检测方案: 方案一:逐个检测,直到能确定被感染者为止.方案二:将8位同胞平均分为2组,将每组成员的核酸混合在一起后随机抽取一组进行检测,若检测呈阳性,则表明被感染者在这4位当中,然后逐个检测,直到确定被感染者为止;若检测呈阴性,则在另外一组中逐个进行检测,直到确定被感染者为止. (1)根据方案一,求检测次数不多于两次的概率;(2)若每次核酸检测费用都是100元,设方案二所需检测费用为X ,求X 的分布列与数学期望()E X . 【答案】(1)14(2)见解析,325 【解析】 【分析】(1)检测次数不多于两次即检测次数为1次或2次,即可求得其对应的概率,进而得检测次数不多于两次的概率;(2)根据题意可知X 可以取200,300,400,分别求得各情况下的概率,即可求得其分布列及数学期望.【详解】(1)P (一次)18=, P (两次)711878=⨯=, ∴P (不多于两次)111884=+=.(2)由题意可知,X 可以取200,300,400,则11111(200)24244P X ==⨯+⨯=, 1311311(300)2432434P X ==⨯⨯+⨯⨯=,1(400)1(200)(300)2P X P X P X ==-=-==, 故分布列为:X 200 300 400P14 1412均值111()200300400325442E X =⨯+⨯+⨯=. 【点睛】本题考查了离散型随机变量概率、分布列及数学期望的求法,属于基础题. 20.如图,在四棱锥P ABCD -中,AB ⊥平面PAD ,PA PD ⊥,PA PD =,2AD =,AC CD =.(1)求证:PD ⊥平面PAB ;(2)若直线PA 与平面PDC 265CD 长. 【答案】(1)见解析(2)13CD =【解析】 【分析】(1)根据线面垂直性质可得PD AB ⊥,再根据题中PD PA ⊥,即可由线面垂直的判定定理证明PD ⊥平面PAB ;(2)先证明ACD 为等腰三角形,然后以AD 中点O 为原点,OC ,OA ,OP 为x ,y ,z 轴,建立空间直角坐标系,设OC m =,写出各个点的坐标,并求得平面PDC 的法向量,再根据直线PA 与平面PDC 所成的线面角的正弦值求得m 的值,即可求得CD 长. 【详解】(1)证明:∵AB ⊥平面PAD ,PD ⊆平面PAD , ∴PD AB ⊥,∵PD PA ⊥,,PA AB ⊆平面PAB ,PA AB A =,∴PD ⊥平面PAB .(2)∵PA PD ⊥,PA AD =, ∴PAD △为等腰直角三角形, ∵AC CD =,∴ACD 为等腰三角形.以AD 中点O 为原点,OC ,OA ,OP 为x ,y ,z 轴,建立空间直角坐标系,如下图所示:设OC m =,则()0,1,0A ,()0,0,1P ,(),0,0C m ,()0,1,0D -,∴()0,1,1PA =-.设平面PDC 的法向量为(),,n x y z =,∵(),1,0DC m =,()0,1,1DP =,∴0mx y y z +=⎧⎨+=⎩,令1x =,则y m =-,z m =,∴()1,,n m m =-.∴22sin cos ,65221PA n m θ===⨯+,解得23m =. ∴2213CD OC OD =+=.【点睛】本题考查了线面垂直的判定,由空间向量法依据线面夹角求参数值,属于中档题. 21.如图,在矩形ABCD 中,23AB =,12BC =,以A ,B 为焦点的椭圆Γ:()222210x y a b a b +=>>恰好过C ,D 两点.(1)求椭圆Γ的方程;(2)已知O 为原点,直线l :()0y kx m m =+≠与y 轴交于点P ,与椭圆Γ相交于E 、F 两点,且E 、F 在y 轴异侧,若4OEF POE S S =△△,求m 的取值范围.【答案】(1)2214x y +=(2)112m -<<-或112m <<.【解析】 【分析】(1)根据矩形的边长,结合椭圆的性质即可求得,a b 的值,进而求得椭圆的标准方程. (2)联立直线与椭圆方程,化简方程并由韦达定理可得12x x +,12x x ,由直线与圆相交可得>0∆,并由题意可设()11,E x y ,()22,F x y 及120x x <<,再由212244014m x x k -=<+求得m 的范围;由4OEF POE S S =△△,分别求得面积后代入,结合韦达定理即可求得2114m <<,综合即可得m 的取值范围.【详解】(1)∵AB =12BC =,∴2c =212b a =,222a bc =+,解得2a =,1b =,∴椭圆的方程为2214x y +=.(2)联立直线与椭圆方程,2244y kx mx y =+⎧⎨+=⎩, 化简可得()222148440k x kmx m +++-=,∵直线与椭圆相交,∴()()222264414440k m k m∆=-+->,化简变形可得22410k m -+>①,∵设()11,E x y ,()22,F x y ,不妨设120x x <<,122814km x x k -+=+②,21224414m x x k -=+③.由212244014m x x k-=<+,得21m <, ∵1212OEF S OP x x =-△,112OPE S OP x =△,且4OEF POE S S =△△, 则1214x x x -=,去掉绝对值,则213x x =-④ 联立②④,得12414km x k =+,221214kmx k -=+, 代入③得222212444141414km km m k k k --⋅=+++,化简可得2221164m k m -=-, 代入①式有22211041m m m --+>-,化简可得2114m <<, 所以m 的范围为112m -<<-或112m <<. 【点睛】本题考查了椭圆标准方程的求法,直线与椭圆位置关系的综合应用,椭圆中三角形面积的应用,根据直线与椭圆位置关系求参数的取值范围,计算量较大,属于中档题.22.已知()()321ln 12f x x x ax a x =-+-,()2312g x x x =-+. (1)当1a =时,求()f x 在()()1,1f 处的切线方程;(2)当0a <时,若对任意的[]11,2x ∈,都存在21,22x ⎡⎤∈⎢⎥⎣⎦,使得()()12120x x f x g x +=成立,求实数a 的取值范围. 【答案】(1)12y x =-(2)[)2,0a ∈- 【解析】 【分析】(1)将1a =代入,可得函数解析式,再代入1x =可得切点坐标;求得导函数,并由导数的几何意义求得切线斜率,进而得切线方程.(2)将所给方程变形可得()()1212f x x x g x =-;可得()g x x 在1,22⎡⎤⎢⎥⎣⎦内的单调性,进而求得值域,即可求得()x g x -的值域;构造函数2()1()ln (1)2f x h x x ax a x x ==-+-,求得()h x ',由定义域及0a <分类讨论()h x 的单调情况,并求得最值即可求得符合题意的a 的取值范围. 【详解】(1)当1a =时,31()ln 2f x x x x =-, 1(1)2f =-;所以切点坐标为11,2⎛⎫- ⎪⎝⎭,而23()ln 12f x x x '=+-, 所以31(1)122f '=-=-;∴切线方程为11(1)22y x ⎛⎫--=-- ⎪⎝⎭. 化简可得12y x =-. (2)()()12120x x f x g x +=,所以()()1212f x xx g x =-,对于()312g x x x x =-+,在1,12x ⎛⎫∈ ⎪⎝⎭上单调递减,()1,2x ∈上单调递增, ∴1x =时,()12g x x =,12x =或2时,()1g x x=, ∴当1,22x ⎡∈⎤⎢⎥⎣⎦时,()[]2,1x g x -∈--. 令2()1()ln (1)2f x h x x ax a x x ==-+-, 对任意的[]11,2x ∈,都存在21,22x ⎡⎤∈⎢⎥⎣⎦,()()1212f x x x g x =-成立, 所以()h x 的值域是[2,1]--的子集,21(1)1()1ax a x h x ax a x x ---'=-+-=-1(1)a x x a x⎛⎫-+ ⎪⎝⎭=-, ①(],1a ∈-∞-时,()h x 在()1,2x ∈上单调递增, ∴(1)122ah =-≥-,(2)ln 221h =-≤-,解得[]2,1a ∈--. ②11,2a ⎛⎫∈-- ⎪⎝⎭时,()h x 在11,x a ⎛⎫∈- ⎪⎝⎭上单调递减,1,2x a ⎛⎫∈- ⎪⎝⎭上单调递增, ∵(1)112ah =-≤-,(2)ln 221h =-≤-恒成立, 下面证明11ln()122h a a a ⎛⎫-=--+-≥- ⎪⎝⎭恒成立. 令1()ln()12p a a a=--+-,211()02p a a a '=-->,解得12a <-.∴()p a 在11,2a ⎛⎫∈--⎪⎝⎭上单调递增, min 3()(1)22p a p =-=->-恒成立, ∴11,2a ⎛⎫∈--⎪⎝⎭.③1,02a ⎡⎫∈-⎪⎢⎣⎭时,()h x 在()1,2x ∈单调递减, ∴(1)112ah =-≤-,(2)ln 222h =-≥-, 解得1,02a ⎡⎫∈-⎪⎢⎣⎭. 综上所述[)2,0a ∈-.【点睛】本题考查了导数几何意义的简单应用,根据导函数判断函数的单调性与值域,构造函数法分析函数的单调性与值域,分类讨论思想的综合应用,是高考的常考点和重点,属于难题.。

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析

河北省邯郸市第二十四中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在棱长为a的正方体ABCD﹣A1B1C1D1中,M为AB的中点,则点C到平面A1DM的距离为()A. a B. a C. a D. a参考答案:A【考点】点、线、面间的距离计算.【专题】计算题.【分析】连接A1C、MC,三棱锥A1﹣DMC就是三棱锥C﹣A1MD,利用三棱锥的体积公式进行转换,即可求出点C到平面A1DM的距离.【解答】解:连接A1C、MC可得=△A1DM中,A1D=,A1M=MD=∴=三棱锥的体积:所以 d(设d是点C到平面A1DM的距离)∴=故选A.【点评】本题以正方体为载体,考查了立体几何中点、线、面的距离的计算,属于中档题.运用体积计算公式,进行等体积转换来求点到平面的距离,是解决本题的关键.2. 如果函数的导函数是偶函数,则曲线在原点处的切线方程是()A. B. C. D.参考答案:A试题分析:,因为函数的导数是偶函数,所以满足,即,,,所以在原点处的切线方程为,即,故选A.考点:导数的几何意义3. 若集合,,则是A.B.C.D.参考答案:B略4. 设,记,若则()A. B.- C. D.参考答案:B5. 下列命题正确的是( )A.若,则B.若,则C.若,则D.若,则参考答案:C6. 用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度 B.假设三内角都大于60度C.假设三内角至少有一个大于60度D.假设三内角至多有二个大于60度参考答案:B略7. 椭圆上的点到直线的最大距离是()A.3 B.C.D.参考答案:D8. 用反证法证明命题“三角形的内角中至少有一个大于60°,反证假设正确的是( )A. 假设三内角都大于60°B. 假设三内角都不大于60°C. 假设三内角至多有一个大于60°D. 假设三内角至多有两个大于60°参考答案:B【分析】反证法的第一步是假设命题的结论不成立,根据这个原则,选出正确的答案.【详解】假设命题的结论不成立,即假设三角形的内角中至少有一个大于60°不成立,即假设三内角都不大于60°,故本题选B.【点睛】本题考查了反证法的第一步的假设过程,理解至少有一个大于的否定是都不大于是解题的关键.9. 对于幂函数,若,则,大小关系是()A. B.C. D.无法确定参考答案:A10. 若f(x)是偶函数且在(0,+∞)上减函数,又,则不等式的解集为()A. 或B. 或C. 或D. 或参考答案:C∵是偶函数,,∴,∵,∴∵在上减函数,∴,∴或∴不等式的解集为或,故选C.二、填空题:本大题共7小题,每小题4分,共28分11. 设两个独立事件和都不发生的概率为,发生不发生的概率与发生不发生的概率相同,则事件发生的概率为____.参考答案:12. 若x 2dx=9,则常数T的值为 .参考答案:3【考点】定积分.【分析】利用微积分基本定理即可求得.【解答】解: ==9,解得T=3,故答案为:3.13. 给出下列3个命题:①若,则;②若,则;③若且,则,其中真命题的序号为 ▲ .参考答案:14. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).参考答案: 336 略15. 设变量满足约束条件则的最大值为________参考答案:4 16. 若在展开式中x 3的系数为-80,则a = .参考答案:-2;17. 已知,且是第二象限角,则____________参考答案:三、 解答题:本大题共5小题,共72分。

【ks5u发布】河北省唐山一中2020-2021学年高二下学期第三次月考理科数学试题Word版含答案

【ks5u发布】河北省唐山一中2020-2021学年高二下学期第三次月考理科数学试题Word版含答案

唐山一中2022-2021学年度其次学期高二班级第一次月考数学试卷(理科) 命题人:李鹏涛 审核人:乔家焕试卷Ⅰ(共60分)一、选择题(本题共12个小题,每题只有一个正确答案,每题5分,共60分。

请把答案涂在答题卡上)1.设1z i =+(i 是虚数单位),则22z z+= ( ) A .1i -- B .1i -+ C .1i - D . 1i +2、用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是 ( ) A .假设三内角都不大于60° B .假设三内角都大于60°C .假设三内角至多有一个大于60°D .假设三内角至多有两个大于60°3.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC ( )A.内心B.外心C.重心D.垂心4. 设函数()f x ,()g x 在[,]a b 上均可导,且'()'()f x g x <,则当a x b <<时,有 ( )A. ()()f x g x >B. ()()f x g x <C. ()()()()f x g a g x f a +<+D. ()()()()f x g b g x f b +<+5.函数1,(10)()cos ,(0)2x x f x x x π+-≤<⎧⎪=⎨≤≤⎪⎩的图象与x 轴所围成的封闭图形的面积为 ( ) A.32 B. 1 C. 2 D.126. 6把椅子摆成一排,3人随机就座,任何两人不相邻的做法种数为 ( )A .144B .120C .72D .24 7.在同一坐标系中,方程)0(0122222>>=+=+b a by ax b y a x 与的曲线大致是 ( )8、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 ( )A. ①和②B.②和③C.③和④D.①和④9.已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则a 与b 的夹角范围为 ( )A .)6,0[πB .],6(ππC .],3(ππD .2[,]33ππ10.双曲线)0(122≠=-mn ny m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( )A .163B .83C .316D .3811.函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设).3(),21(),0(f c f b f a ===则 ( )A .c b a <<B .b a c <<C .a b c <<D .a c b <<12.已知椭圆1532222=+n y m x 和双曲线1322222=-ny m x 有公共的焦点,那么双曲线的渐近线方程是 ( )A .y x 215±= B .x y 215±= C .y x 43±= D .x y 43±= 试卷Ⅱ(共计90分)二、填空题(本题共4个小题,每题5分,共计20分,请将答案写在答题纸上)13.36的全部正约数之和可按如下方法得到:由于2236=23⨯,所以36的全部正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的全部正约数之和为_______________14.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,假如分给同一人的2张参观券连号,那么不同的分法种数是_________.15. 1121lim (1)n n n n nn →∞-++++写成定积分是_________.16.如图是y =f (x )的导函数的图象,现有以下四种说法:(1)f (x )在(-3,1)上是增函数;(2)x =-1是f (x )的微小值点;(3)f (x )在(2,4)上是减函数,在(-1,2)上是增函数; (4)x =2是f (x )的微小值点; 以上正确的序号为________.三、解答题(本题共6小题,其中17题10分,其余各题12分,共计70分。

2022-2023学年四川省成都市高二年级下册学期4月月考数学(理)试题【含答案】

2022-2023学年四川省成都市高二年级下册学期4月月考数学(理)试题【含答案】

2022-2023学年四川省成都市树德中学(宁夏校区)高二下学期4月月考数学(理)试题一、单选题1.若,则的虚部为( )(1i)1i z +=-z A .1B .C .D .1-i-i【答案】A【分析】根据复数代数形式的除法运算化简复数,即可得到,再根据复数的定义判断即可.z z 【详解】因为,所以,所以,(1i)1i z +=-()()()21i 1ii 1i 1i 1i z --===-++-i z =所以的虚部为.z 1故选:A2.用反证法证明命题:“设、为实数,则方程至少有一个实根”时,要做的假设是a b 30x ax b ++=( )A .方程没有实根30x ax b ++=B .方程至多有一个实根30x ax b ++=C .方程至多有两个实根30x ax b ++=D .方程恰好有两个实根30x ax b ++=【答案】A【解析】依据反证法的要求,即至少有一个的反面是一个也没有,即可得出结论.【详解】方程至少有一个实根的反面是方程没有实根,30x ax b ++=30x ax b ++=因此,用反证法证明命题:“设、为实数,则方程至少有一个实根”时,要做的假a b 30x ax b ++=设是“方程没有实根”.30x ax b ++=故选:A.3.设函数.则值为( )()31f x x =+()π2π2f x dx-⎰A .B .C .D .1π62+01π【答案】D【分析】利用微积分基本定理可求得所求定积分的值.【详解】因为,则()31f x x =+()()πππ22342πππ2221d 1d 4f x x x x x x ---⎛⎫=+=+ ⎪⎝⎭⎰⎰.441ππ1πππ422422⎡⎤⎡⎤⎛⎫⎛⎫=+---=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦故选:D.4.已知是曲线上的任一点,若曲线在点处的切线的倾斜角均是不小于的M 21ln 2y x x ax =++M π4锐角,则实数的取值范围是( )a A .B .C .D .[)2,+∞[)1,-+∞(],2-∞(],1-∞-【答案】B【分析】分析可知对任意的恒成立,结合参变量分离法以及基本不等1πtan 14y x a x '=++≥=0x >式可求得实数的取值范围.a 【详解】函数的定义域为,且,21ln 2y x x ax =++()0,∞+1y x a x '=++因为曲线在其上任意一点点处的切线的倾斜角均是不小于的锐角,21ln 2y x x ax =++M π4所以,对任意的恒成立,则,1πtan 14y x a x '=++≥=0x >11a xx -≤+当时,由基本不等式可得,当且仅当时,等号成立,0x >12x x +≥=1x =所以,,解得.12a -≤1a ≥-故选:B.5.如图所示,在平行六面体中,M 为与的交点.若,,1111ABCD A B C D -11A C 11B D AB a =AD b =,则下列向量中与相等的向量是( )1AA c = BMA .B .1122-++a b c1122a b c ++C .D .1122a b c--+ 1122a b c -+【答案】A【分析】根据题意结合空间向量的线性运算求解.【详解】由题意可得:,()111111111111112222BM BB B M BB B D BB A D A B a b c=+=+=+-=-++根据空间向量基本定理可知:只有与相等.1122-++a b c BM故选:A.6.下列有关回归分析的说法中不正确的是( )A .回归直线必过点(),x y B .回归直线就是散点图中经过样本数据点最多的那条直线C .当相关系数时,两个变量正相关0r >D .如果两个变量的线性相关性越弱,则就越接近于r【答案】B【分析】根据线性回归直线的性质可判断选项AB ;根据相关系数的性质可判断CD ,进而可得正确选项.【详解】对于A 选项,回归直线必过点,A 对;(),x y 对于B 选项,线性回归直线在散点图中可能不经过任一样本数据点,B 错;对于C 选项,当相关系数时,两个变量正相关,C 对;0r >对于D 选项,如果两个变量的线性相关性越弱,则就越接近于,D 对.r0故选:B.7.是的导函数,若的图象如图所示,则的图象可能是( )()f x '()f x ()f x '()f xA .B .C .D .【答案】C【分析】先利用题给导数图像得到的正负情况,再利用导数几何意义即可求得单调性,()f x '()f x 进而得到的可能图象.()f x 【详解】由的图象可得,()f x '当时,,则单调递增;0x <()0f x ¢>()f x 当时,,则单调递减;10x x <<()0f x '<()f x 当时,,则单调递增.1x x >()0f x ¢>()f x 则仅有选项C 符合以上要求.故选:C8.用数学归纳法证明“”时,由假设不等式成立,()*11112321n n n +++⋯+<∈-N ()*1,n k k k =>∈N 推证不等式成立时,不等式左边应增加的项数为( )1n k =+A .B .C .D .k 12k -2k12k +【答案】C【分析】分析当、时,不等式左边的项数,作差后可得结果.n k =1n k =+【详解】用数学归纳法证明“”,()*11112321n n n ++++<∈-N 当时,左边,共项,n k =11112321k=++++- ()21k -当时,左边,共项,1n k =+111112321k +=++++- ()121k +-所以,由假设不等式成立,推证不等式成立时,()*1,n k k k =>∈N 1n k =+不等式左边应增加的项数为.()()121212k k k+---=故选:C.9.已知,若不是函数的极小值点,则下列选项符合的是,R a b ∈x a =21()()()(1)x f x x a x b e -=---( )A .B .C .D .1b a ≤<1b a <≤1a b<≤1a b <≤【答案】B【分析】利用数轴标根法,画出的草图,对选项A ,B ,C ,D 逐一分析.()f x 【详解】解:令,得.21()()()(1)0x f x x a x b e -=---=123,,1x a x b x ===下面利用数轴标根法画出的草图,借助图象对选项A ,B ,C ,D 逐一分析.()f x 对选项A :若,由图可知是的极小值点,不合题意;1b a ≤<x a =()f x 对选项B :若,由图可知不是的极小值点,符合题意;1b a <≤x a =()f x 对选项C :若,由图可知是的极小值点,不合题意;1a b <≤x a =()f x 对选项D :若,由图可知是的极小值点,不合题意;1a b <≤x a =()f x 故选:B.【点睛】方法点睛:利用数轴标根法,口诀 “自上而下,从右到左,奇穿偶不穿”,画出的草()f x 图,结合极小值点的定义,对选项A ,B ,C ,D 逐一分析,即可求解.10.已知椭圆,过原点的直线交椭圆于、(在第一象限)由向轴()2222:10x y a b a b Γ+=>>A B A A x 作垂线,垂足为,连接交椭圆于,若三角形为直角三角形,则椭圆的离心率为( )C BCD ABDA .BCD 12【答案】B 【分析】设点、,其中,,则、,分析可知()00,A x y ()11,D x y 00x >00y >()00,B x y --()0,0C x,利用点差法可得出,可求得,由可求得该椭圆的离心率的1DA AB k k =-22DA DBb k k a =-22b a e =值.【详解】如下图所示,设点,其中,,则、,()00,A x y 00x >00y >()00,B x y --()0,0C x则,,00AB y k x =02BC y k x =设点,则,作差可得,()11,D x y 22112222002211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩22221010220x x y y a b --+=所以,,2221022210y y b x x a -=--所以,,则不互相垂直,2221010102221010101DA DBy y y y y y b k k x x x x x x a -+-=⋅==-≠--+-,AD BD 所以,则,所以,,AD AB ⊥1AD ABk k =-001AD AB x k k y =-=-又因为,所以,,0000122DA DB DA BC xy k k k k y x ==-⋅=-2212b a =所以,该椭圆的离心率为c e a =====故选:B.11.设是定义在R 上的奇函数,在上有,且()f x (),0∞-2023(2023)(2023)0xf x f x '+<,则不等式的解集为( )()20230f =()ln 20230x f x ⋅<A .B .C .D .()(),10,1-∞-⋃()(),11,0-∞-- ()()1,00,1- ()()1,01,-⋃+∞【答案】B 【分析】构造函数,利用题给条件求得在上单调性,再利用奇()()2023,0k x x f x x =⋅<()k x (,0)-∞函数满足求得,进而得到在上的函数值的正负情()f x ()20230f =()20230f -=()2023f x (,0)-∞况,再利用奇函数的性质即可求得不等式的解集.()ln 20230x f x ⋅<【详解】令,则()()2023,0k x x f x x =⋅<()()()2023202320230k x f x x f x ''=+⋅<则在上单调递减,()()2023k x x f x =⋅(,0)-∞又是定义在R 上的奇函数,,则,()f x ()20230f =()20230f -=则,()(1)120230k f -=-⨯-=则当时,,,;1x <-()0k x >()20230f x <()ln 20230x f x ⋅<当时,,,.10x -<<()0k x <()20230f x >()ln 20230x f x ⋅<又由是定义在R 上的奇函数,可得()f x 当时,,;1x >()20230f x >()ln 20230x f x ⋅>当时,,01x <<()20230f x <()ln 20230x f x ⋅>综上,不等式的解集为()ln 20230x f x ⋅<()(),11,0-∞-- 故选:B12.下列不等式成立的有( )个.①;②;③;④.0.2etan 0.21>+1819e 16<sin180.3︒>311cos324<A .1B .2C .3D .4【答案】C【分析】分别构造新的函数,利用导函数分析单调性,即可判断不等式的正误.【详解】解:令,()πe tan 1012x f x x x ⎛⎫-=-<< ⎪⎝⎭则,()2cos e 1x f x x '=-()32sin co e s xx f x x ''=-当时,,,π012x <<πsin sin 12x <πcos cos12x >所以,33π2sin2sin12πcos cos 12x x<而,πππππππ1sin sin sin cos cos sin 123434342⎛⎫=-=-=-= ⎪⎝⎭πππππππ1coscos cos cos sin sin 123434342⎛⎫=-=+=+= ⎪⎝⎭所以,3π2sin12561πcos 12=====-<则,所以在上单调递增,()32sin 0c s e o x x f x x ''=->()f x 'π0,12⎛⎫⎪⎝⎭所以,则在上单调递增,()()02100co 0e s f x f ''>=-=()f x π0,12⎛⎫⎪⎝⎭,()()0e tan 0100.20f f >--==所以,即,①正确;0.2etan 0.210-->0.2e tan 0.21>+令,可得,()3e 12x f x x =--()3e 2x f x '=-因为,,所以函数在上单调递减,()030e 02f '=-<103f ⎛⎫'=< ⎪⎝⎭()f x 10,3⎡⎤⎢⎥⎣⎦则,即,可得,②错误;()108f f ⎛⎫> ⎪⎝⎭18310e 128>-⨯-1819e 16>如图,是顶角为的等腰三角形,D 为BC 的中点ABC 36则,()118036722B ∠=⨯-=AD BC⊥设,,则,即,1BC =AB AC x ==sin cos BAD B ∠=112sin18cos 722x x ===由正弦定理可得,sin sin AC BCB BAC =∠即,11cos36sin 72sin 362sin 36cos36sin 362x x x =⇒=⇒=又由余弦定理可知,22222121cos3622x x x x x x +--==⋅所以,则,23222121022x xx x x -=⇒-+=()()2110x x x ---=解得(舍),(舍),,11x BC =<2x =<3x =,③正确;sin180.3∴===> 令,可得,()211cos 2f x x x =--()sin f x x x '=-+时,,所以函数在上单调递减,π0,2x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x π0,2⎡⎤⎢⎣⎦则,即,可得,④正确;()104f f ⎛⎫> ⎪⎝⎭1101cos 324>--311cos 324<综上所述,①③④正确,故选:C.【点睛】关键点点睛:本题的解题关键在于构造函数,并选择合适的定义域,利用求导分析函数的单调性及最值,进而证明不等式,属于难题.二、填空题13.如图,若向量对应的复数为z ,则表示的复数为______.OZ 4z z +【答案】##3i +i 3+【分析】先由图中得到,再利用复数的运算规则即可求得表示的复数.1i z =-4z z +【详解】由图可得,,1i z =-则()()()()41i 441i 1i 1i 21i 3i 1i 1i 1i z z ++=-+=-+=-++=+--+故答案为:3i+14.若曲线在在,两点处的切线互相垂直,则的最21sin 24y x x =+()11,Ax y ()22,B x y 12x x -小值为________.【答案】##π212π【分析】化简可得范围内,即可得出切线1πsin 223y x ⎛⎫=+⎪⎝⎭[1,1]-斜率必须一个是1,一个是,即可求出.1-【详解】, 2111cos 21πsin 2sin 2sin 244223x y x x x x +⎛⎫===+ ⎪⎝⎭∴πcos 23y x ⎛⎫=+ ⎝'⎪⎭曲线的切线斜率在范围内,∴[1,1]-又曲线在两点处的切线互相垂直,故在,两点处的切线斜率必须一个是1,一个是.()11,A x y ()22,B x y 1-不妨设在A 点处切线的斜率为1,则有,,()111π22πZ 3x k k +=∈()222π22ππZ 3x k k +=+∈则可得,()()1212ππππZ 22x x k k k k -=--=-∈所以.12minπ2x x -=故答案为:.π215.已知椭圆C :,过右焦点的直线交椭圆于,若满足22221(1)1x y a a a +=>-,A B ,则的取值范围______.OA OB OA OB-=+a 【答案】⎛ ⎝【分析】根据椭圆方程得右焦点坐标为,设直线方程为,,联()1,0AB 1x ny =+()()1122,,,A x y B x y 立得交点坐标关系,由得,即OA OB OA OB -=+ 0OA OB ⋅= ,整理得关于得方程有解,即可得的取值范围.()()21212110OA OB n y y n y y ⋅=++++=n a 【详解】已知椭圆C :,则其右焦点坐标为,22221(1)1x y a a a +=>-()1,0过右焦点的直线交椭圆于,若满足,所以,,A B OA OB OA OB -=+ 0OA OB ⋅= 则设直线方程为,AB 1x ny =+()()1122,,,A x y B x y 则,所以,2222111x y a a x ny ⎧+=⎪-⎨⎪=+⎩()()()222222212110n a a y n a y a ⎡⎤-++---=⎣⎦显然恒成立,所以,0∆>()()()()212222221222221111n a y y n a a a y y n a a ⎧-⎪+=--+⎪⎪⎨-⎪=-⎪-+⎪⎩则()()()()21212121212121111OA OB x x y y ny ny y y n y y n y y ⋅=+=+++=++++()()()()()222222222212111011a n a n n n a a n a a ----=+⋅+⋅+=-+-+整理得,所以,()()()22222111a a a a na a +---=--()()()22221101a a a a a a +---≥--又,所以,解得,1a >2101a a a ⎧--≤⎨>⎩1<≤a 所以的取值范围为.a ⎛ ⎝故答案为:.⎛ ⎝【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.16.已知函数,,若函数有且仅有3个零点,则2()ln 2(1ln )f x a x x x =+-R a ∈22()e ()2g x f x a =-的取值范围______.a 【答案】()2e,e 【分析】根据函数的导数,分四种情况①若,②若,③若,④若,讨论函0a ≤01a <<1a =1a >数的单调性;令,得,问题可转化为函数与的图像有3个()f x ()0g x =222()e a f x =()y f x =222e a y =不同的交点,根据单调性可得或,分两种情况①当时,②当时,讨()f x 01a <<1a >01a <<1a >论即可得出答案.【详解】函数的定义域为,且,()f x (0,)+∞()2ln 1a f x x x ⎛=-'⎫ ⎪⎝⎭①若,则,当时,,单调递增,0a ≤10a x -<(0,1)x ∈()0f x '>()f x 时,,单调递减,(1,)x ∈+∞()0f x '<()f x ②若,当时,,01a <<(0,)x a ∈()0f x '<当时,,(,1)x a ∈()0f x '>当时,,(1,)x ∈+∞()0f x '<所以在和上单调递减,在上单调递增,()f x (0,)a (1,)+∞(,1)a ③若,则,1a =()0f x '≤所以在上单调递减,()f x (0,)+∞④若,当时,,1a >(0,1)x ∈()0f x '<当时,,(1,)x a ∈()0f x '>当时,,(,)x a ∈+∞()0f x '<所以在和上单调递减,在上单调递增;()f x (0,1)(,)a +∞(1,)a 令,则,()0g x =222()e a f x =所以依题意可得函数与的图像有3个不同的交点,()y f x =222e a y =则有必有或,01a <<1a >①当时,在和上单调递减,在上单调递增,01a <<()f x (0,)a (1,)+∞(,1)a 所以的极大值为,()f x ()1f 2=的极大值为,的极小值为,()f x ()1f 2=()f x ()f a 2(ln 2ln 2)a a a =-+又,()f a 22222(ln 2ln 2)[(ln 1)1]e a a a a a a a =-+=-+>>函数与的图象,如图所示,()y f x =222e a y =所以函数与的图像至多有1个交点,不合题意,()y f x =222e a y =②当时,在和上单调递减,在上单调递增,1a >()f x (0,1)(,)a +∞(1,)a所以的极小值为,的极大值为,()f x ()1f 2=()f x ()f a 2(ln 2ln 2)a a a =-+函数与的图象,如图所示,()y f x =222e a y =所以必须有成立,22222(ln 2ln 2)e a a a a <<-+因为,所以,2222e a <e a >所以,2222(ln 2ln 2)e a a a a <-+所以,222ln 2ln 2ea a a <-+(*)下面求不等式的解集,(*)令,则不等式等价于,ln a x =(*)222e22x x x -<-+令函数,22()22e 2x h x x x -=--+则,2()222e x h x x -=--'令,有,2222e x y x -=--222ex y -=-'函数在区间上单调递增,在区间上单调递减,2222ex y x -=--(,-∞2](2,)+∞又,所以,()2y 0=2222e 0x y x -=--≤即恒成立,故函数单调递减,()0h x '≤()h x 又,()2h 0=所以当且仅当时,,2x <()0h x >所以不等式的解集为,222e 22x x x -<-+(,2)-∞即不等式的解集为.(*)2(0,e )所以的取值范围为.a ()2e,e故答案为:.()2e,e 三、解答题17.已知函数.1()ln ln f x x x =+(1)求函数的单调区间;()f x (2)求证:.21e ()ln x f x x ->-【答案】(1)的单调增区间,,单调减区间,()f x 10,e ⎛⎫ ⎪⎝⎭()e,+∞1,1e ⎛⎫ ⎪⎝⎭()1,e (2)证明见解析【分析】(1)求导函数,令,得,确定区间,,,()0f x '=121,e e x x ==10,e ⎛⎫ ⎪⎝⎭1,1e ⎛⎫ ⎪⎝⎭()1,e 导函数符号,即可得函数的单调区间;()e,+∞(2)将所证不等式转化为,构造函数,,求导确定函数的2e ln 0x x -->2()e ln x x x ϕ-=-()0,x ∈+∞单调性及取值情况,即可证得结论.【详解】(1)定义域,,()()0,11,+∞ 222111(ln )1()(ln )(ln )x f x x x x x x -'=-=⋅令,即,解得()0f x '=()2ln 10x -=121,e e x x ==当,时,,当,时,,10,e x ⎛⎫∈ ⎪⎝⎭()e,x ∈+∞()0f x '>1,1e x ⎛⎫∈ ⎪⎝⎭()1,e x ∈()0f x '<所以的单调增区间,,单调减区间,.()f x 10,e ⎛⎫ ⎪⎝⎭()e,+∞1,1e ⎛⎫ ⎪⎝⎭()1,e (2)证明:要证,即证21e ()ln x f x x ->-2e ln 0x x -->设函数,,则,2()e ln x x x ϕ-=-()0,x ∈+∞21()e x x x ϕ-='-令,则恒成立,所以在上单调递增.()21e x m x x -=-()221e 0x m x x -'=+>()x ϕ'()0,∞+又由,知,在上有唯一实数根,且()11e 10ϕ--'=<()0112e 022ϕ'=-=>()0x ϕ'=()0,∞+0x ,则,即.012x <<()02001e 0x x x ϕ--'==0201e x x -=当时,,单调递减;当时,,单调递增,()00,x x ∈()0x ϕ'<()x ϕ()0,x x ∈+∞()0x ϕ'>()x ϕ所以,结合,知,()0200()e ln x x x x ϕϕ-≥=-0201e x x -=002ln x x -=-所以,则,故原不等式()()()2200000000121120x x x x x x x x x ϕϕ--+≥=+-==>()2e ln 0x x x ϕ-=->得证.21e ()ln xf x x ->-18.当前,以“立德树人”为目标的课程改革正在有序推进.高中联招对初三毕业学生进行体育测试,是激发学生、家长和学校积极开展体育活动,保证学生健康成长的有效措施.年初中毕业生2022升学体育考试规定,考生必须参加立定跳远、掷实心球、分钟跳绳三项测试,三项考试满分分,150其中立定跳远分,掷实心球分,分钟跳绳分.某学校在初三上期开始时要掌握全年级学1515120生每分钟跳绳的情况,随机抽取了名学生进行测试,得到下边频率分布直方图,且规定计分规100则如表:每分钟跳绳个数[)155,165[)165,175[)175,185[)185,∞+得分17181920(1)请估计学生的跳绳个数的中位数和平均数(保留整数);(2)若从跳绳个数在、两组中按分层抽样的方法抽取人参加正式测试,并从中任[)155,165[)165,1756意选取人,求两人得分之和大于分的概率.234【答案】(1)中位数为,平均数为184185(2)1415【分析】(1)设学生的跳绳个数的中位数为,利用中位数的定义可得出关于的值;将每个矩形m m 底边的中点值乘以对应矩形的面积,相加可得出平均数;(2)计算可得出在内抽取人,分别记为、,在内抽取人,分别记为、[)155,1652a b [)165,1754A 、、,列举出所有的基本事件,并确定所求事件的基本事件,利用古典概型的概率公式可求B C D 得所求事件的概率.【详解】(1)解:设学生的跳绳个数的中位数为,m 因为,则,()()0.0060.012100.180.50.0060.0120.03410+⨯=<<++⨯()175,185m ∈由中位数的定义可得,解得,()()0.0060.012101750.0340.5m +⨯+-⨯=0.321751840.034m =+≈平均数(个).1600.061700.121800.341900.32000.12100.08185x =⨯+⨯+⨯+⨯+⨯+⨯=(2)解:跳绳个数在内的人数为个,跳绳个数在内的人数为[)155,1651000.066⨯=[)165,175个,1000.1212⨯=按分层抽样的方法抽取人,则在内抽取人,分别记为、,6[)155,1652a b 在内抽取人,分别记为、、、,[)165,1754A B C D 从这人中任意抽取人,所有的基本事件有:、、、、、62(),a b (),a A (),a B (),a C (),a D 、、、、、、、、、,共种,(),b A (),b B (),b C (),b D (),A B (),A C (),A D (),B C (),B D (),C D 15两人得分之和大于分包含的基本事件有:、、、、、34(),a A (),a B (),a C (),a D (),b A 、、、、、、、、,共种,(),b B (),b C (),b D (),A B (),A C (),A D (),B C (),B D (),C D 14则两人得分之和大于分的概率.341415P =19.如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【答案】(1)证明见解析;(2.【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定AD ⊥PDC 理,证得,从而得到平面;//AD l l ⊥PDC (2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之(,0,1)Q m 后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面QCD PB cos ,n PB <> PB 所成角的正弦值的最大值.QCD 【详解】(1)证明:在正方形中,,因为平面,平面,ABCD //AD BC AD ⊄PBC BC ⊂PBC 所以平面,又因为平面,平面平面,//AD PBC AD ⊂PAD PAD ⋂PBC l =所以,因为在四棱锥中,底面是正方形,所以且//AD l P ABCD -ABCD ,,AD DC l DC ⊥∴⊥平面,所以PD ⊥ABCD ,,AD PD l PD ⊥∴⊥因为,所以平面.CD PD D = l ⊥PDC (2)[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:,,DP DA DC D xyz -因为,设,1PD AD ==(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B 设,则有,(,0,1)Q m (0,1,0),(,0,1),(1,1,1)DC DQ m PB ===- 设平面的法向量为,QCD (,,)n x y z = 则,即,00DC n DQ n ⎧⋅=⎨⋅=⎩ 00y mx z =⎧⎨+=⎩令,则,所以平面的一个法向量为,则1x =z m =-QCD (1,0,)n m =-cos ,n PB n PB n PB ⋅<>== 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD所成角的正弦值等于|cos ,|n PB <>==时取等号,所以直线与平面=≤≤=1m =PB .QCD [方法二]:定义法如图2,因为平面,,所以平面.l ⊂PBC Q l ∈Q ∈PBC 在平面中,设.PQC PB QC E = 在平面中,过P 点作,交于F ,连接.PAD PF QD ⊥QD EF 因为平面平面,所以.PD ⊥,ABCD DC ⊂ABCD DC PD ⊥又由平面,平面,所以平面.又平,,DC AD AD PD D PD ⊥=⊂ PAD AD ⊂PAD DC ⊥PAD PF ⊂面,所以.又由平面平面,所以PAD DC PF⊥,,PF QD QD DC D QD ⊥=⊂ ,QOC DC ⊂QDC 平面,从而即为与平面所成角.PF ⊥QDC FEP ∠PB QCD 设,在中,易求.PQ a =PQD △PF =由与相似,得,可得PQE BEC1PE PQa EB BC ==PE =所以,当且仅当时等号成立.sin FEP ∠==≤=1a =[方法三]:等体积法如图3,延长至G ,使得,连接,,则,过G 点作平面,CB BG PQ =GQ GD //PB QG GM ⊥QDC 交平面于M ,连接,则即为所求.QDC QM GQM∠设,在三棱锥中,.PQ x =Q DCG -111()(1)326Q DCG V PD CD CB BG x -=⋅⋅+=+在三棱锥中,.G QDC-111323G QDC V GM CD QD GM -=⋅⋅=由得Q DCG G QDC V V --=11(1)63x GM+=解得,GM ===≤当且仅当时等号成立.1x =在中,易求,所以直线PB 与平面QCD 所成角的正弦值的最大值为Rt PDB△PB QG ==sin MQG ∠==【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB 与平面QCD 所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不等QCD n PB cos ,n PB <> 式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB 与平面QCD 所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用,将线转移,再利用等体积法求得点面距,利用直线PB 与平面QCD //PB QG 所成角的正弦值即为点面距与线段长度的比值的方法,即可求出.20.设函数,().2()ln (21)1f x ax x x a x a =---+-a ∈R(1)若在定义域上单调递增,求实数a 的取值范围;()f x (2)对任意的函数恒成立,求实数a 的取值范围.[)1,x ∞∈+()0f x ≥【答案】(1)12a =(2)1,2a ∞⎡⎫∈+⎪⎢⎣⎭【分析】(1)将在定义域上单调递增,转化为在区间上恒成立,分类讨论a ()f x ()0,∞+()0f x '≥并,令,求导分析的单调性即可;()2(1)ln g x a x x =--()f x '(2),令,分析单调性可知,进而得到()2(1)ln f x a x x '=--()ln 1h x x x =-+ln 1≤-x x ,分类讨论a ,求出在上的单调性,即可判断是否恒成立.()(21)(1)f x a x '≥--()f x [)1,+∞()0f x ≥【详解】(1),()21ln (21)2(1)ln f x ax x a a x x '=----=--若在定义域上单调递增,则在区间上恒成立,,()f x ()0,∞+()0f x '≥()10f '=当,在单调递减,显然不合题意.0a ≤()f x '()0,∞+令,,()2(1)ln g x a x x =--121()2ax g x a x x -'=-=当时,,10,2a ⎛⎫∈ ⎪⎝⎭112a >当时,,在单调递减,112x a <<()0g x '<()g x 11,2a ⎛⎫ ⎪⎝⎭即在单调递减,则在上,不合题意,()f x '11,2a ⎛⎫ ⎪⎝⎭11,2a ⎛⎫ ⎪⎝⎭()()10f x f '<=当时,由得;由得;12a =()0g x '<01x <<()0g x '>1x >所以在上单调递减,上单调递增,则,满足题意,()g x ()0,1()1,+∞()()()10f x g x g '=≥=当时,,1,12a ⎛⎫∈ ⎪⎝⎭112a <当时,,在单调递增,112x a <<()0g x '>()g x 1,12a ⎛⎫ ⎪⎝⎭即在单调递增,则在上有,不合题意.()f x '11,2a ⎛⎫ ⎪⎝⎭11,2a ⎛⎫ ⎪⎝⎭()()10f x f '<=综上所述.12a =(2),()21ln (21)2(1)ln f x ax x a a x x '=----=--令,,则,()ln 1h x x x =-+0x >()11h x x '=-当时,;当时,,01x <<()0h x '>1x >()0h x '<所以在上单调递增,在上单调递减,()h x (]0,1[)1,+∞在处有最大值,则,1x =()()1ln1110h x f ≤=-+=即,所以,ln 10x x -+≤ln 1≤-x x 则,()2(1)(1)(21)(1)f x a x x a x '≥---=--当即时,由得恒成立,210a -≥12a ≥[)1,x ∞∈+()0f x '≥在上单调递增,,符合题意.所以.()f x [)1,+∞()()10f x f ≥=12a ≥当时,由得恒成立,0a ≤[)1,x ∞∈+()0f x '≤在上单调递减,,不符合题意,舍去.()f x [)1,+∞()()10f x f ≤=0a ≤当时,由,得,即,102a <<ln 1≤-x x 11ln 1x x ≤-1ln 1x x ≥-则,11()2(1)1(21)x f x a x ax x x -⎛⎫⎛⎫'≤---=- ⎪ ⎪⎝⎭⎝⎭因为,所以.时,恒成立,102a <<112a >11,2x a ⎡⎫∈⎪⎢⎣⎭()0f x '≤在上单调递减,,不符合题意,舍去.()f x 11,2a ⎡⎫⎪⎢⎣⎭()()10f x f ≤=102a <<综上可得:.1,2a ∞⎡⎫∈+⎪⎢⎣⎭21.已知椭圆C :的焦距为.()222210x y a b a b +=>>12⎫⎪⎭(1)求椭圆方程;(2)A 为椭圆的上顶点,三角形AEF 是椭圆C 内接三角形,若三角形AEF 是以A 为直角顶点的等腰直角三角形,求三角形AEF 的面积.【答案】(1)2214x y +=(2)或者6425S =3215S =【分析】(1)先利用题给条件列方程求得,,进而得到椭圆方程;24a =21b =(2)先分别设出直线AE ,AF 的方程,再与椭圆方程联立,利用设而不求的方法分别求得的代数表达式,利用列方程求得直线AE 的斜率,进而求得三角形AEF 的面,AE AF AE AF=积.【详解】(1)椭圆C 过点,则,又,12⎫⎪⎭223114a b +=2c =223a b =+所以,解之得,,则椭圆方程为.2231134b b +=+24a =21b =2214x y +=(2)由题可知,直线AE 斜率存在,设直线AE :y =kx +1,令,11(,)E x y 由整理得:,则22141x y y kx ⎧+=⎪⎨⎪=+⎩()221480k x kx ++=1218140A Ak xx k x x ⎧+=-⎪+⎨⎪=⎩=设直线AF :,令,11y x k =-+22(,)F x y 由整理得:,则221411x y y x k ⎧+=⎪⎪⎨⎪=-+⎪⎩()22480k x kx +-=222840A A k xx k x x ⎧+=⎪+⎨⎪=⎩==由题知得:,AE AF =221144k kk =++不妨设k >0,化简方程知:,()2(1)310k k k --+=解之得k =1,k =又因为,()()()()()22222211144323224k AE AFS k k k k k ++=+⋅+==+将k =1,代入得三角形面积为,或者.k =6425S =3215S =22.已知.2()e 2x a f x x x =--(1)若在x =0处取得极小值,求实数a 的取值范围;()f x (2)若有两个不同的极值点,(),判断的正负,并说明理()f x 1x 2x 12x x <122x x f +⎛⎫'' ⎪⎝⎭由.(为的二阶导数).()f x ''()f x 【答案】(1)(),1-∞(2)小于0,理由见解析122x x f +⎛⎫'' ⎪⎝⎭【分析】(1)求出函数导数,讨论,,和四种情况,根据导数情况讨论函数0a ≤01a <<1a =1a >的单调性即可得出;(2)根据题意可得,构造函数,122x x f +⎛⎫'' ⎪⎝⎭()2121122121e1e e x x x x x x x x x --⎡⎤-+-⎢⎥=⎢⎥-⎢⎥⎣⎦2()2e 1e (0)t t g t t t =+->利用导数即可求解.【详解】(1)由题意得,,,()e 1xf x ax =--'()00f '=()e x f x a ''=-①当时,在上单调递增,0a ≤()f x '(),-∞+∞所以当x <0时,,当x >0时,,()()00f x f ''<=()()00f x f ''>=所以在x =0处取得极小值,符合题意.()f x 当时,由可得,由可得,0a >()0f x ''>ln x a >()0f x ''<ln x a <②当0<a <1时,,在单调递增,ln 0a <()f x '()ln ,a +∞所以当时,,当时,,()ln ,0x a ∈()()00f x f ''<=()0,x ∈+∞()()00f x f ''>=所以在x =0处取得极小值,符合题意.()f x ③当a =1时,知在区间单调递减,在区间单调递增,()f x '(),ln a -∞()f x '()ln ,a +∞所以在处取得最小值,即,()f x 'ln x a =()()()ln 00f x f a f '''≥==所以函数在上单调递增,()f x R 所以在x =0处无极值,不符合题意.()f x④当a >1时,,由(Ⅰ)知的减区间为,ln 0a >()f x '(),ln a -∞所以当时,,当时,,(),0x ∈-∞()()00f x f ''>=()0,ln x a ∈()()00f x f ''<=所以在x =0处取得极大值,不符合题意,()f x 综上可知,实数a 的取值范围为.(),1-∞(2),为的零点,则,,,1x 2x ()e 1x f x ax =--'1212e 10e 10x x ax ax ⎧--=⎨--=⎩1212e e x x a x x -=-()e xf x a ''=-,121212122212e e e e2x x x x x x x x f a x x +++-⎛⎫''=-=-⎪-⎝⎭()212121211122121221e 1e 1e e ee x x x x x x x x x x x x x x x x ----⎡⎤⎛⎫-+--⎢⎥=-= ⎪⎢⎥--⎝⎭⎢⎥⎣⎦令,构造函数,212x x t -=2()2e 1e (0)t tg t t t =+->则,()2()2e 2e 2e 2e 1e 0t t t t t g t t t '=+-=+-<所以在单调递减,故,故原不等式得证.()g t ()0,∞+()()0g t g <故小于0.122x x f +⎛⎫'' ⎪⎝⎭【点睛】关键点睛:本题考查函数极值点的辨析,解题的关键是求出导数,根据导数形式正确分类讨论参数情况。

高二数学下学期第二次月考试题 理含解析 试题

高二数学下学期第二次月考试题 理含解析 试题

智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析

山东省济南市第二高级中学2022年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 直线的斜率为A. B. C. D.参考答案:A2. 图中的图象所表示的函数解析式是()A. B.C. D.参考答案:B3. 买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是()A.前者贵 B.后者贵 C.一样 D.不能确定参考答案:A 解析:设郁金香x元/枝,丁香y元/枝,则,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵。

4. 下列四个命题:①对立事件一定是互斥事件②若、为两个事件,则③若事件两两互斥,则④若事件满足则是对立事件.其中错误命题的个数是()A.0B.1C.2D.3参考答案:D5. 设表示三条直线,、表示两个平面,则下列命题的逆命题不成立的是 ( )A.⊥,若⊥,则∥;B.β,是在内的射影,若⊥,则⊥;C.β,若⊥则⊥;D.,,若∥,则∥;参考答案:C略6. 正方体AC1中,点P、Q分别为棱A1B1、DD1的中点,则PQ与AC1所成的角为( )A.30o B.45o C.60o D.90o参考答案:D略7. 用“辗转相除法”求得333和481的最大公约数是()A.3 B.9 C.37 D.51参考答案:C【考点】用辗转相除计算最大公约数.【专题】转化思想;算法和程序框图.【分析】利用“辗转相除法”即可得出.【解答】解:481=333×1+148,333=148×2+37,148=37×4.∴333和481的最大公约数是37.故选:C.【点评】本题考查了“辗转相除法”,考查了推理能力与计算能力,属于基础题.8. 已知椭圆,则椭圆的焦距长为()(A). 1 (B). 2 (C). (D). 参考答案:D略9. 已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.参考答案:D【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.10. 如图,正方体ABCD﹣A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF=,则下列结论错误的是()A.AC⊥BF B.直线AE、BF所成的角为定值C.EF∥平面ABC D.三棱锥A﹣BEF的体积为定值参考答案:B【考点】异面直线及其所成的角.【分析】通过直线AC垂直平面平面BB1D1D,判断A是正确的;通过直线EF垂直于直线AB1,AD1,判断A1C⊥平面AEF是正确的;计算三角形BEF 的面积和A到平面BEF的距离是定值,说明C是正确的;只需找出两个特殊位置,即可判断D是不正确的;综合可得答案.【解答】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,又BE?平面BB1D1D,∴AC⊥BE,故A正确;∵当点E在D1处,F为D1B1的中点时,异面直线AE,BF所成的角是∠OEB,当E在上底面的中心时,F在C1的位置,异面直线AE,BF所成的角是∠OE1B,显然两个角不相等,B不正确;∵平面ABCD∥平面A1B1C1D1,EF?平面A1B1C1D1,∴EF∥平面ABCD,故C正确;∵由于点B到直线B1D1的距离不变,故△BEF的面积为定值.又点A到平面BEF的距离为,故V A ﹣BEF为定值.D正确;故选B.二、填空题:本大题共7小题,每小题4分,共28分11. 已知=2,=3,=4…,若=6,(a,t为互质的正整数),由以上等式,可推测a,t的值,则a+t=________.参考答案:41根据题中所列的前几项的规律可知其通项应为,所以当n=6时,,.12. 若直线ax+2by﹣2=0(a,b>0)始终平分圆x2+y2﹣4x﹣2y﹣8=0的周长,则的最小值为.参考答案:【考点】直线与圆的位置关系;基本不等式.【专题】计算题.【分析】由题意可知圆x 2+y 2﹣4x ﹣2y ﹣8=0的圆心(2,1)在直线ax+2by ﹣2=0上,可得a+b=1,而=()(a+b),展开利用基本不等式可求最小值【解答】解:由圆的性质可知,直线ax+2by ﹣2=0即是圆的直径所在的直线方程∵圆x2+y2﹣4x﹣2y﹣8=0的标准方程为(x﹣2)2+(y﹣1)2=13,∴圆心(2,1)在直线ax+2by﹣2=0上∴2a+2b﹣2=0即a+b=1∵=()(a+b)==3+2∴的最小值故答案为:【点评】本题主要考查了圆的性质的应用,利用基本不等式求解最值的问题,解题的关键技巧在于“1”的基本代换13. 用等值算法求294和84的最大公约数时,需要做次减法.参考答案:414. 设,将个数依次放入编号为的个位置,得到排列.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列,将此操作称为变换.将分成两段,每段个数,并对每段作变换,得到;当时,将分成段,每段个数,并对每段作变换,得到.例如,当时,,此时位于中的第4个位置.(1)当时,位于中的第个位置;(2)当时,位于中的第个位置.参考答案:(1)6;(2)15. 已知直线曲线相切则 .参考答案:16. 已知 -3+2 i是关于x的方程2x2+px+q=0的一个根,(p、q∈R),则p+q=________;参考答案:3817. 一个病人服用某种新药后被治愈的概率为0.9,服用这种新药的3个人中恰有1人被治愈的概率为__________(用数字作答).参考答案:0.027恰有人被治愈的概率.三、解答题:本大题共5小题,共72分。

2021-2022学年吉林省白城市洮南市高二年级下册学期第三次月考数学试题【含答案】

2021-2022学年吉林省白城市洮南市高二年级下册学期第三次月考数学试题【含答案】

2021-2022学年吉林省白城市洮南市第一中学高二下学期第三次月考数学试题一、单选题1.(,)可以表示为( )()()()()34910n n n n --⋅⋅⋅--*n ∈N 10n >A .B .C .D .83C n -810A n -73A n -83A n -【答案】D【分析】根据排列数和组合数计算公式计算4个选项,得到正确答案.【详解】,()()()()83C 872134910n n n n n ---=⨯⨯⋅⋅⋅-⨯-⨯ ,()()()()81010111617A n n n n n -=--⋅⋅⋅--,()()()73A 349n n n n -=--⋅⋅⋅-,D 正确.()()()()83A 34910n n n n n -=--⋅⋅⋅--故选:D2.某单位为了解夏季用电量与月份的关系,对本单位2021年5月份到8月份的日平均用电量y (单位:千度)进行了统计分析,得出下表数据:月份(x )5678日平均用电量(y )1.93.4t7.1若y 与x 线性相关,且求得其线性回归方程,则表中t 的值为( )A .5.8B .5.6ˆ 1.787.07yx =-C .5.4D .5.2【答案】B【分析】由样本中心必在回归直线上即可求解.(),x y 【详解】解:由表格中的数据可得,,5678 6.54x +++== 1.9 3.47.112.444t ty ++++==将点代入回归直线方程得,解得.(,x y 12.4 1.78 6.57.07 4.54t+=⨯-= 5.6t =故选:B .3.函数的极值点的个数为( )431143y x x =-A .0B .1C .2D .3【答案】B 【详解】因为,所以,由得,当变化时,431143y x x=-()322'1y x x x x =-=-'0y =120,1x x ==x 的变化情况如下表',y y x(),0∞-0()0,11()1,+∞'y --+y无极值极小值由表可知,函数只有一个极值点,故选B.4.某班有6名班干部,其中4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( )A .B .C .D .35251223【答案】B【分析】设男生甲被选中为事件,女生乙被选中为事件,分别求得,,再结合条A B ()P A ()P AB 件概率的计算公式,即可求解.【详解】解:由题意,从现有4名男生,2名女生选出3人参加学校组织的社会实践活动,设男生甲被选中为事件,其概率为,A 2536C 1()C 2P A ==设女生乙被选中为事件,B 则男生甲被选中且女生乙也被选中的概率为,1436C 1()C 5P AB ==所以在男生甲被选中的情况下,女生乙也被选中的概率为. ()1()25|1()52P AB P B A P A ===故选:B.5.4个男生,3个女生站成一排,且甲乙二人之间恰好有三个人,则不同的排法种数为( )A .360个B .480个C .720个D .960个【答案】C【分析】选三人排在甲乙之间,然后捆绑在一起与其他2人排列,由此可得.【详解】从5人选3人排在甲乙之间,这5人捆绑一起与其他2人全排列,方法数为:.323523A A A 720=故选:C .6.某种产品的广告支出费用(单位:万元)与销售量(单位:万件)之间的对应数据如下表x y 所示:根据表中的数据可得回归直线方程,,以下说法正确的是( )ˆ 2.27 1.08y x =-20.96R ≈广告支出费用x 2.2 2.6 4.0 5.3 5.9销售量y3.85.47.011.6122A .销售量的多少有96%是由广告支出费用引起的yB .销售量的多少有4%是由广告支出费用引起的yC .第三个样本点对应的残差,回归模型的拟合效果一般3ˆ1e =-D .第三个样本点对应的残差,回归模型的拟合效果较好3ˆ1e =【答案】A【分析】根据已知条件结合残差和相关系数的定义可得答案.【详解】因为表示解释变量对于预报变量的贡献率,,所以销售量的多少有96%由2R 20.96R ≈y 广告支出费用引起的,故A 正确,B 错误;当时,第三个样本点对应的残差为,又,4x =ˆ7 2.274 1.081=-⨯+=-y 20.96R ≈故拟合效果较好,故CD 错误.故选:A.7.长时间玩手机可能影响视力,据调查,某校学生大约30%的人近视,而该校大约有40%的学生每天玩手机超过2h ,这些人的近视率约为60%.现从每天玩手机不超过2h 的学生中任意调查一名学生,则他近视的概率为( )A .B .C .D .11038252225【答案】A 【分析】令“玩手机时间超过2h 的学生”,“玩手机时间不超过2h 的学生”,B =“任意调查1A =2A =一人,利用全概率公式计算即可.【详解】令“玩手机时间超过2h 的学生”,“玩手机时间不超过2h 的学生”,B =“任意调查1A =2A =一人,此人近视”,则,且,互斥,,,,,12A A Ω= 1A 2A ()10.4P A =()20.6P A =()1|0.6P B A =()0.3P B =依题意,,()()()()()()11222||0.40.60.6|0.3P B P A P B A P A P B A P B A =+=⨯+⨯=解得,所以所求近视的概率为.()21|10P B A =110故选:A8.一场5局3胜制的乒乓球对抗赛,当甲运动员先胜2局时,比赛因故中断.已知甲、乙水平相当,每局甲、乙胜的概率都为,则这场比赛的奖金分配(甲∶乙)应为( )12A .6∶1B .7∶1C .3∶1D .4∶1【答案】B【分析】由题意,可知奖金分配比即为甲、乙取胜的概率比,甲前两局已胜,甲胜有3种情况,分别求解其概率,利用互斥事件的概率求和公式,即可求解.【详解】由题意,可知奖金分配比,即为甲、乙取胜的概率比,甲前两局已胜,甲胜有3种情况:①甲第三局胜为A 1,P(A 1)=;②甲第三局负、第四局胜为A 2,P(A 2)=;③第三局、第12111224⨯=四局甲负,第五局甲胜为A 3,P(A 3)=,所以甲胜的概率P=P(A 1)+P(A 2)+P(A 3)=,乙胜11112228⨯⨯=78的概率则为,故选B.18【点睛】本题主要考查了互斥事件的概率计算问题,其中解答中认真审题,得出甲胜有3中情况,分别求解其概率,再利用互斥事件的概率求和公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、多选题9.已知的展开式中第3项与第8项的二项式系数相等,则( )22nx x ⎛⎫- ⎪⎝⎭A .B .9n =11n =C .常数项是672D .展开式中所有项的系数和是-1【答案】AD【分析】求得的值判断选项AB ;求得常数项的值判断选项C ;求得展开式中所有项的系数和判n 断选项D.【详解】由,可得,则选项A 判断正确;选项B 判断错误;27C C n n =9n =的展开式的通项公式为22nx x ⎛⎫- ⎪⎝⎭929399C (2)(2)C r r r r r r r x x x ----=-令,则,则展开式的常数项是.选项C 判断错误;930r -=3r =339(2)C 672-=-展开式中所有项的系数和是.判断正确.292111⎛⎫- ⎪⎭=-⎝故选:AD10.已知随机变量,满足,且,则下列说法正确的是( )ξη25ξη+=()~10,0.2B ξA .B .()()46P P ξξ===()1E η=C .D .()0.64D η=() 1.6D E ξξ-=⎡⎤⎣⎦【答案】BD 【分析】因为,可判断A ;因为可求出,由方差和标准差的()~10,0.2B ξ()~10,0.2B ξ()(),E D ξξ性质,可判断B 、C 、D.【详解】因为随机变量,满足,且,所以ξη25ξη+=()~10,0.2B ξ对于A ,,所以A 不正确;()()()()()()466446101040.20.8,60.20.8P C P C ξξ====对于B ,,,()~10,0.2B ξ()100.22E ξ=⨯=,所以B 正确;()()()52525221E E E ηξξ=-=-=-⨯=对于C ,,,()~10,0.2B ξ()100.20.8 1.6D ξ=⨯⨯=,所以C 不正确;()()()25224 1.6 6.4D D D ηξξ=-==⨯=对于D ,,所以D 正确.()() 1.6D E D ξξξ⎡⎤-==⎣⎦故选:BD.11.已知两种不同型号的电子元件(分别记为,)的使用寿命均服从正态分布,X Y ~X N,,这两个正态分布密度曲线如图所示,下列结论正确的是( )()211,μσ()222~,Y N μσ参考数据:若,则,()2~,Z N μσ()0.6827P Z μσμσ-≤≤+≈()220.9545P Z μσμσ-≤≤+≈A .()111120.8186P X μσμσ-<<+≈B .()()21P Y P Y μμ≥<≥C .()()21P X P X σσ≤<≤D .对于任意的正数,有t ()()P X t P Y t ≤>≤【答案】ABD【分析】抓住平均数和标准差这两个关键量,结合正态曲线的图形特征分析即可.μσ【详解】对于A ,,故A 选项正确;()111112(0.68270.9545)0.81862P X μσμσ-<<+≈+⨯=对于B ,由正态分布密度曲线,可知,所以,故B 选项正确;12μμ<21()()P Y P Y μμ<≥≥对于C ,由正态分布密度曲线,可知,所以,故C 选项错误;12σσ<21()()P X P Xσσ>≤≤对于D ,对于任意的正数,由图象知表示的面积始终大于表示的面积,所以t ()P X t ≤()P Y t ≤,D 选项正确,()()P X t P Y t ≤>≤故选:ABD .12.已知函数,若,则下列结论正确的是( )()ln f x x x =120x x <<A .B .()()2112<x f x x f x ()()1122+<+x f x x f x C .D .当时,()()12120f x f x x x -<-ln 1x >-()()()1122212x f x x f x x f x +>【答案】AD【分析】设,函数单调递增,可判断A ;设,则()()ln f x g x x x ==()g x ()()h x f x x =+不是恒大于零,可判断B ;,不是恒小于零,可判断C ;()ln 2h x x ='+()ln f x x x=()ln 1'=+f x x 当时,,故,函数单调递增,故1x e >ln 1x >-()ln 10f x x +'=>()ln f x x x =,()()()()()()()2121112221120x x f x f x x f x x f x x f x x f x ⎡⎤--=+-->⎣⎦即,由此可判断D.得选项.()()()()11222112+x f x x f x x f x x f x +>【详解】解: 对于A 选项,因为令,在上是增函数,所以当()()ln f x g x x x ==()0,+¥时,,所以,即.故A 选项正确;120x x <<()()12g x g x <1212()()f x f x x x <()()2112<x f x x f x 对于B 选项,因为令,所以,所以时,()()ln g x f x x x x x=+=+()ln 2g x x '=+()2,x e -∈+∞单调递增,时,单调递减.所以与无()()0,g x g x '>()20,x e -∈()()0,g x g x '<()11x f x +()22xf x +法比较大小.故B 选项错误;对于C 选项,令,所以时,在单调递减,()ln 1f x x '=+10,x e ⎛⎫∈ ⎪⎝⎭()()0,f x f x '<10,e ⎛⎫⎪⎝⎭时,在单调递增,所以当时,,故1,x e ⎛⎫∈+∞ ⎪⎝⎭()()0,f x f x '>1,e ⎛⎫+∞ ⎪⎝⎭1210x x e <<<()()12f x f x >成立,当时,,.故C 选项错误;1212()()0f x f x x x -<-121e x x <<()()12f x f x <1212()()0f x f x x x ->-对于D 选项,由C 选项知,当时,单调递增,又因为A 正确,成ln 1x >-()f x ()()2112<x f x x f x 立,所以()()()()()()()112221112221122x f x x f x x f x x f x x f x x f x x f x ⋅⋅⋅--⋅+->+,故D 选项正确.()()()()112212x f x f x f x f x x =-+⎡-⎤⎣⎦⎡⎤⎣⎦()()()12120x x f x f x =-->⎡⎤⎣⎦故选:AD .【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面:(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域;(2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式;(3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用.三、填空题13.在一组样本数据不相等)的散点图中,若所有样本点1122(,),(,),x y x y ...(),,n n x y 12(2,,n n x x x ≥ 都在直线上,则这组样本数据的样本相关系数为_________()(),1,2,,i i x y i n =⋯132y x =+【答案】1【分析】根据样本相关系数的定义及直线的斜率为正,得到相关系数为1.【详解】因为所有样本点都在直线上,且直线的斜率为,132y x =+132y x =+102>故相关系数为1.故答案为:114.在的展开式中,的系数为__________.25(2)x x y ++52x y 【答案】60【详解】, 而在中 , 223235(2)T C x x y =+23(2)x x +236133()(2)2k k k k k k k T C x x C x --+==⋅⋅'65,1k k -==,,则 ,的系数为60.5232T x ='⨯52523103260T x y x y =⨯⨯=52x y 15.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).【答案】96【解析】根据题意,假设正五角星的区域依此为、、、、、,分析6个区域的涂色方A B C D E F 案数,再根据分步计数原理计算即可.【详解】根据题意,假设正五角星的区域依此为、、、、、,如图所示:A B C D E F要将每个区域都涂色才做完这件事,由分步计数原理,先对区域涂色有3种方法,A 、、、、这5个区域都与相邻,每个区域都有2种涂色方法,B C D E F A 所以共有种涂色方案.32222296⨯⨯⨯⨯⨯=故答案为:96【点睛】方法点睛:涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法;(2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.16.已知,若关于x 的方程有3个不同实根,则实数取值范围为()3,0e 3,0xxx f x x x x ⎧≥⎪=⎨⎪-<⎩()f x a =a ______.【答案】10,e ⎛⎫⎪⎝⎭【分析】利用导函数研究出函数的单调性,极值情况,画出函数图象,并将函数的根的问()y f x =题转化为两函数交点个数问题,数形结合求出实数的取值范围.a 【详解】当时,,,0x ≥()e xx f x =()1e xxf x -'=当时,,当时,,[)0,1x ∈()10e x xf x -'=>()1,x ∈+∞()10e x x f x -'=<故在上单调递增,在上单调递减,()f x [)0,1x ∈()1,x ∈+∞且,当时,恒为正,()11e f =0x >()e xxf x =当时,,,0x <()33=-f x x x ()()()233311f x x x x '=-=+-当时,,当时,,(),1x ∈-∞-()2303'=-<f x x ()1,0x ∈-()2303'=->f x x 故在上单调递减,在上单调递增,()f x (),1x ∈-∞-()1,0x ∈-且,()1312f -=-+=-画出的图象如下:()3,0e 3,0xxx f x x x x ⎧≥⎪=⎨⎪-<⎩要想关于x 的方程有3个不同实根,则要函数与有3个不同的交点即可,()f x a=()y f x =y a =显然当时,符合要求.10,e a ⎛⎫∈ ⎪⎝⎭故答案为:10,e ⎛⎫ ⎪⎝⎭四、解答题17.设有编号为1,2,3,4,5的五个小球和编号为1,2,3,4,5的五个盒子,现将这五个小球放入5个盒子中.(1)若没有一个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(2)每个盒子内投放一球,并且至少有两个球的编号与盒子编号是相同的,有多少种投放方法?【答案】(1)119种(2)31种【分析】(1)利用间接法可得满足题意的方法数.(2)由分类加法计数原理结合分步乘法计数原理可得满足题意的方法数.【详解】(1)利用间接法可知满足题意的投放方法为:种.551119A -=(2)分为三类:第一类,五个球的编号与盒子的编号完全相同的投放方法有1种;第二类,三个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的35C 编号与盒子的编号不同的投放方法有1种,所以投放方法有种;35110C ⨯=第三类,两个球的编号与盒子的编号相同,球的编号与盒子的编号相同的投放方法有种,球的25C 编号与盒子的编号不同的投放方法有2种,所以投放方法有种.35220C ⨯=根据分类加法计数原理得,所有的投放方法有种.1102031++=【点睛】本题主要考查间接法的应用,分类加法计数原理和分步乘法计数原理及其应用等知识,意在考查学生的转化能力和计算求解能力.18.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率是,乙获胜概率是.2313(1)求甲恰好在第四局获胜的概率是多少?(2)记表示比赛决出胜负时的总局数,求的分布列与期望.X X【答案】(1)881(2)分布列见解析;22481【分析】(1)根据题意,分析甲在每局的胜负情况即可求解.(2)根据题意先确定随机变量的取法,再分别求解对应概率,列出分布列,最后根据数学期望公式求期望.【详解】(1)由题意可知,比赛四局,甲获胜,则第一局甲胜,第二局甲负,第三局甲胜,第四局甲胜,故甲恰好在第四局获胜的概率是.21228333381P =⨯⨯⨯=(2)由题可知,的可能取值为2,3,4,5,X ,22115(2)33339P X ==⨯+⨯=,1222112(3)3333339P X ==⨯⨯+⨯⨯=,2122121110(4)3333333381P X ==⨯⨯⨯+⨯⨯⨯=;8(5)1(2)(3)(4)81P X P X P X P X ==-=-=-==所以的分布列为:X X2345P59291081881数学期望.52108224()234599818181E X =⨯+⨯+⨯+⨯=19.2021年10月16日,搭载“神州十三号”的火箭发射升空,这是一件让全国人民普遍关注的大事,因此每天有很多民众通过手机、电视等方式观看有关新闻.某机构将每天关注这件大事的时间在2小时以上的人称为“天文爱好者”,否则称为“非天文爱好者”,该机构通过调查,并从参与调查的人群中随机抽取了100人进行分析,得到下表(单位:人)天文爱好者非天文爱好者合计女2050男15合计100附:,其中.()()()()()22n ad bc a b c d a c b d χ-=++++n a b c d =+++α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828(1)将上表中的数据填写完整,并判断能否在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关?(2)现从抽取的女性人群中,按“天文爱好者”和“非天文爱好者”这两种类型进行分层抽样抽取5人,然后再从这5人中随机选出3人,求其中至少有1人是“天文爱好者”的概率.【答案】(1)表格见解析,能在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关;(2)910【分析】(1)完善列联表,计算卡方,与7.879比较后得到结论;(2)先根据分层抽样的定义求出抽取的5人中,2名为“天文爱好者”,3名为“非天文爱好者”,从而利用列举法求出相应的概率.【详解】(1)天文爱好者非天文爱好者合计女203050男351550合计5545100()()()()()222100(20153035)9.0917.87950505545n ad bc K a b c d a c b d ⨯-⨯≈>-=+++⨯⨯+⨯故能在犯错误的概率不超过0.005的前提下认为“天文爱好者”或“非天文爱好者”与性别有关;(2)因为抽取的女性人群中,“天文爱好者”和“非天文爱好者”这两种类型人数比为,20:302:3=故按分层抽样抽取的5人中:2名为“天文爱好者”,编号为a 、b ;3名为“非天文爱好者”,编号为1、2、3,则从这5人中随机选出3人,所有可能结果如下:ab 1,ab 2,ab 3,a 12,a 13,a 23,b 12,b 13,b 23,123,共10种情况,其中至少有1人是“天文爱好者”的有9种,概率为.∴91020.已知.()()()()2111ng x x x x =++++⋅⋅⋅++2012nn a a x a x a x =+++⋅⋅⋅+(1)若,求121253n a a a n -++⋅⋅⋅+=-n(2)当,时,求除以7所得的余数.1x =29n =()g x 【答案】(1)7(2)6【分析】(1)令,根据等式的特点,结合等比数列前项和公式求出、的值,进而求出1x =n 0a n a 的值;n (2)根据等比数列前项和公式,结合二项式定理进行求解即可.n 【详解】(1)令,,1x =()210122(12)12222212n nn n g a a a a +⋅-=++⋅⋅⋅+=+++⋅⋅⋅+==--又,,所以,0a n =1n a =1121122n n n a a a +-+++⋅⋅⋅++=-故,所以,1121221253n n a a a n n +-++⋅⋅⋅+=---=-7n =(2)当,时,1x =29n =,()292293010212)1222228212g -=++⋅⋅⋅+==-=--(而()10101019282919101010182(71)2771717112g C C C =-=+-=+⋅⋅+⋅⋅++⋅⋅+- 化简得:,()1019288291101010101777771g C C C C =+⋅+⋅++⋅+⋅- 因此除以7所得的余数6.()1g 所以当,时,除以7所得的余数为61x =29n =()g x 21.随着科技进步,近来年,我国新能源汽车产业迅速发展.以下是中国汽车工业协会2022年2月公布的近六年我国新能源乘用车的年销售量数据:年份201620172018201920202021年份代码x123456新能源乘用车年销售y (万辆)5078126121137352(1)根据表中数据,求出y 关于x 的线性回归方程;(结果保留整数)(2)若用模型拟合y 与x 的关系,可得回归方程为,请分别利用(1)与(2)e nxy m =0.331ˆ37.7e =x y 中两个模型,求2022年我国新能源乘用车的年销售量的预测值;参考数据:设,其中.ln u y =ln i i u y =yu61()()iii x x y y =--∑61()()i ii x x uu =--∑ 3.63e 5.94e 6.27e 144 4.78841 5.7037.71380528参考公式:对于一组具有线性相关关系的数据(i =1,2,3,⋅⋅⋅,n ),其回归直线(),i i x y 的斜率和截距的最小二乘估计公式分别为,ˆˆˆybx a =+121()()ˆ())niii ni ii x x y y bx x ==--=-∑∑ˆˆay bx =-【答案】(1)4824ˆyx =-(2)312万辆,380万辆【分析】(1)根据表中数据和参考数据,得出,,,的值,运用x y ()()61i i i x xy y=--∑()21ni i x x=-∑最小二乘法求回归直线方程即可;(2)根据回归方程,代入的值即可求出预测值.x 【详解】(1)由表中数据得,,,,123456 3.56x +++++==144y =()()61841i ii x x y y =--=∑()()()()()()()22222221234561nii x x x x xxxxxxxxxx=-=-+-+-+-+-+-∑()()()()()()2222221 3.52 3.53 3.54 3.55 3.56 3.5=-+-+-+-+-+-,17.5=,,()()()121841ˆ4817.5niii nii x x y y x x b==--∴=≈-=∑∑ˆˆ14448 3.524a b y x =-=-⨯=- y 关于x 的线性回归方程为:;∴4824ˆyx =-(2)由(1)知,y 关于x 的线性回归方程为:,4824ˆyx =-当时,2022年我国新能源乘用车的年销售量的预测值:7x =(万辆);487ˆ24312y =⨯-=对于回归方程,0.3337.71e x y =当时,2022年我国新能源乘用车的年销售量的预测值:7x =(万辆).0.337 3.63 2.31 5.9437.71e e e e 380y ⨯==⨯==22.已知函数,求:()ln 3f x x x kx k =+-(1)当时,求曲线在点处的切线方程;1k =()f x (1(1))f ,(2)当时,总有,求整数的最小值.3x >()1f x >k 【答案】(1)240x y --=(2)-3【分析】(1)先对函数求导,计算出斜率,再用点斜式即可;(2)分离参数转化为函数的最值问题.【详解】(1)当时,1k =()ln 3f x x x x =+-()ln 2'∴=+f x x (1)2(1)2f f '∴==-在点处的切线方程为即()f x ∴(1,(1))f 22(1)y x +=-240x y --=(2)由题意,,即,即,()1f x >ln 31x x kx k +->(3)1ln k x x x ->-又,恒成立.3x >1ln 3x xk x -∴>-令,1ln ()3x x g x x -=-23ln 2()(3)x x g x x -+'∴=-令,则恒成立.()3ln 2h x x x =-+3()0x h x x -'=<在上递减,()h x ∴()3,+∞,(8)3ln 860h =-> (9)3ln 970h =-<使,即,则,0(8,9)x ∴∃∈0()0h x =003ln 20x x -+=002ln 3x x -=当时,,当时,∴0(8,)x x ∈()0g x '>0(,)x x ∈+∞()0g x '<00000max 000211ln 1103()()(,3)3333x x x x x g x g x x x --⋅-+∴====-∈----因为,且,,即整数k 的最小值为-3max ()k g x >Z k ∈3k ∴≥-【点睛】方法点睛:对于零点不可求问题,可以设而不求,整体替换从而求出范围。

实验中学高二数学下学期第二次月考试题理含解析

实验中学高二数学下学期第二次月考试题理含解析
10. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )
A. 144B。120C. 72D. 24
【答案】D
【解析】
试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有 种
考点:排列、组合及简单计数问题
11。若随机变量 ,则 最大时, 的值为( )
A. 1或2B. 2或3C. 3或4D。 5
【答案】D
【解析】
【分析】
由 ,两边取对数得,化简得 ,构造函数 ,然后作图可求得答案。
【详解】由 ,两边取对数得, ,然后化简得 ,
设 ,然后可以画出 的图像,如图,
明显地,当 ,且 时,只有阴影部分内的取值能成立,此时, 和 的取值在阴影部分,即 ,从图像观察可得, 的最大值是 ,没有最小值,但是 ,综上, 的范围为
【点睛】本题考查了根据函数过点和公切线求参数,求公切线,意在考查学生的计算能力和转化能力。
20。“石头、剪刀、布"是一种广泛流传于我国民间的古老游戏,其规则是:用三种不同的手势分别表示石头、剪刀、布;两个玩家同时出示各自手势 次记为 次游戏,“石头”胜“剪刀”,“剪刀"胜“布”,“布”胜“石头";双方出示的手势相同时,不分胜负.现假设玩家甲、乙双方在游戏时出示三种手势是等可能的。
4。从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 , 组成复数 ,其中虚数有( )
A。 30个B. 42个C. 36个D。 35个
【答案】C
【解析】
【详解】解:∵a,b互不相等且为虚数,
∴所有b只能从{1,2,3,4,5,6}中选一个有6种,
a从剩余的6个选一个有6种,
∴根据分步计数原理知虚数有6×6=36(个).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a a 2015-2016学年度下学期第三次月考高二数学 理科试卷 (120分钟150分) 测试范围:选修2-3第一章计数原理;第二章概率. 第I卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.下列问题是组合问题的是 A.10名学生中选正、副班长各一人 B.1到10十个自然数中任取两个数组成点的坐标 C.集合},,,,{edcba中任取三个元素形成一个子集 D.平面上5个点,无三点共线,任取两点连射线 2.已知随机变量X的分布列如下,则p的值是 X -1 O l

p 12 13 p

A.O B.21 C.31 D.61 3.为适应素质教育,周末学生进行社团活动.高二(7)班有五位同学报名参加趣味数学、乒乓球两个社团,若每位同学限报其中一个社团,则不同的报名方法共有 A.10种 B.20种 C. 25种 D.32种 4.随机抛掷一枚骰子,所得骰子点数X的期望为 A. 3. 5 B. 4 C. 4.5 D. 3 5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有 A.6种 B.12种 C. 24种 D.30种 6.设服从二项分布(,)Bnp的随机变量X的期望与方差分别是15和445,则np、的值分别是 A.50,41 B.60,41 C. 50,43 D. 60,43 7.若111999nnnnnCC是11的倍数,则自然数n为 a a A. 偶数 B.奇数 C.3的倍数 D.被3除余1的数 8.已知)1,0(~NX,且(20)(01)PXaa,则)2(XP等于 A.a B.a2 C.a21 D.a21 9.5043)1(...)1()1(xxx展开式中,3x的系数是 A.351C B.450C C.451C D.447C 10.一套重要资料锁在一个保险箱中,现有n把钥匙依次分给n个同学依次开柜,但其中只 有一把可以打开柜门,平均来说打开柜门需要试开的次数为 A.1 B.n C.21n D.21n 11.下面四个等式: 1111111,,,mmkkmmmmnnnnnnnnnnAAkCnCCCAnAnmm①②③④

中正确的有 A.1个 B.2个 C. 3个 D.4个 12.一批型号相同的产品,有2件次品,5件正品,每次抽一件测试,直到将2件次品全部区分为止,假定抽后不放回,则第5次测试后停止的概率是 A.211 B.215 C. 214 D.2110 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中的横线上. 13. 12名同学合影,站成前排4人,后排8人,现摄影师要从后排8人中抽2人调整至前排,若其他人相对顺序不变,则不同调整方法总数是 种, 14.设随机变量)5.0,(~nBX且2)(XD,则事件“1X”的概率为____. 15.六一儿童节为鼓励幼儿园的小朋友积极参与节目,老师决定把一个小红花,一个笑脸,一个五角星共三个奖励给表现突出的4名小朋友,每个小朋友的奖励不超过2个,则不同 的奖励方案有 种. 16.已知抛物线2(0)yaxbxca的对称轴在y轴的左侧,其中{3,2,abc、、 1,0,1,2,3}.在这些抛物线中,记随机变量Xab,则X的数学期望)(XE____.

三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤. a a 17.(本小题满分10分) 若直线方程0ByAx中的BA、可以从0,1,2,3,4,5这六个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条? 18.(本小题满分12分) 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以X表示取出的3只球中的最大号,写出随机变量X的分布列. 解析:根据题意可知随机变量X的取值为3,4,5. 19.(本小题满分12分) 已知BA、两个集合都有12个元素且BA、中有4个公共元素,现从A或B中取三个不同元素构成集合C,则满足AC的集合C有多少种取法? 20.(本小题满分12分)

已知nxx)21(的展开式中,前三项系数的绝对值依次成等差数列. (1)证明展开式中没有常数项; (2)求展开式中所有的有理项. 21.(本小题满分12分) 有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜 色各异的灯,假若每只灯正常发光的概率为0.5,若一个侧面上至少有3只灯发光,则不 需要更换这个面,否则需要更换这个面,假定更换一个面需要100元,用表示更换的面

数,用表示更换费用. (1)求①号面需要换的概率; (2)求6个面中恰好有2个面需要更的概率; (3)写出的分布列,求的数学期望. 22.(本小题满分12分) 在一个盒子中,放人标号分别为O,1,2的三个小球,现从这个盒子中,有放回地先后随机 摸出两个小球,其标号分别为nm,,记2.Xmmn (1)求随机变量X的最大值,并求事件“X取得最大值”的概率; (2)求随机变量X的分布列和数学期望).(XE a a 1.解析:从集合},,,,{edcba中任取三个元素形成一个子集无需要顺序,其他几个都有顺序的要求, 答案:C 2.解析:11123p,得16p 答案:D 3.解析:由题意,每位同学都有趣味数学、乒乓球两种选择,故五位同学的报名方法有3225种. 答案:D 4.解析:.5.3616612611)(,6,,2,1,61)(XEiiXP 答案:A 5.解析:从4门中选1门为甲、乙相同的有14C种,再从剩下3门中选2门分别给甲、乙有23A种,所以一共有124324CA种 答案:C

6.解析:由15,45(1),4npnpp得60,14np 答案:B 7.解析:将原式写为1119991(91)1(111)1nnnnnnnnnCCC,易知n为偶数. 答案:A 8. 解析:因(2)1(2),(2)(2),PXPXPXPX 而结合正态分布的图象可知:),10()20()02(aaxPXP 又1)2()20()02()2(XPXPXPXP,因此.21)2(aXP 答案:D

9. 解析:xxxxxx

])1(1[)1()1()1()1(483

5043

51351(1)(1),(1)xxxx

中含4x的系数是451C

答案:C a a 10. 解析:对于打开柜门需要试次数X而言共有n、、、、321种可能,其概率均为n1,因此期望为1231()2nnEXn

答案:C 11.解析:;)!(!)!()1(1mnmnAmnnmnnmnnAmnn

11(1)!!!;()!(1)!()!(1)!()!(1)!kknnnnknnCnkCnkknkknkkk





11(1)!!.;()!(1)!()!!mmnnnnnnCCmmnmmnmm





11(1)!!()!()!mmnnnnnAnAnmnm



,故四个等式都是正确的,

答案:D 12. 解析:对于第5次测试后停止有两种可能,即第5次抽到第二个次品,或前5次抽到都是正品;

对于第5次抽到第二个次品,则可见前4次中也有一个次品抽到,概率为13425457421CCAA;对于前5

次抽到的都是正品其概率为5557121AA,则第5次测试后停止的概率是215 答案:B 13.解析:从后排选2人有28C种,把2人捆绑插入和不相邻插入有212552AAA,所以一共有22128552()2830840CAAA

种.

答案:840 14.解析:1881()0.5(10.5)2,8,(1)(0.5)32DXnnPXC 答案:321 15. 解析:按条件可把3分为2,l,0,O与1,1,l,0的结构,再分配到4个小朋友即可. 所以有223344362460CAA种, 答案:60 16.解析:由抛物线的对称轴在y轴的左侧可得,0,02abab,即ba,同号,从而知X的可a a 能值为O,1,2,对应的概率为98184218811860)(,184,188,186XE 答案:98 17.(本小题满分10分) 解析:分两类完成: 第1类,当A或B中有一个为0时,表示的直线为0x或0y,共2条; 第2类,当BA,都不为O时,BA、从5个数中取2个排列.有25A种. 又直线02yx与042yx为同一直线,02yx与024yx为同一直线. ∴由分类加法计数原理,方程所表示的不同直线共有252220A条. 18.(本小题满分12分) 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以X表示取出的3只球中的最大号,写出随机变量X的分布列. 解析:根据题意可知随机变量X的取值为3,4,5. 当3X时,即取出的三只球中最大号码为3,则其他两球的编号只能是1,2,

故有22351(3)10CPXC当4X时,即取出的三只球中最大号码为4,则其他两球只能在编号为1,2,3的3球中取2个, 故2234335536(4).(5)1010CCPXPXCC 可得X的分布列为 X 3 4 5

p 110 310 610 19.(本小题满分12分) 已知BA、两个集合都有12个元素且BA、中有4个公共元素,现从A或B中取三个不同元素构成集合C,则满足AC的集合C有多少种取法? 解析:(法一)分三类:①从A中取3个元素有312C种; ②从A中取2个元素,B中取1个元素,把B中与A相同的4个元素看成A中的元素有 21128CC

种;

相关文档
最新文档