天津市和平区2018届高三上学期期末考试数学(理)试题Word版含解析
和平区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)

和平区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、252.如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .03. 点A是椭圆上一点,F 1、F 2分别是椭圆的左、右焦点,I 是△AF 1F 2的内心.若,则该椭圆的离心率为( )A. B. C. D.4. 为了解决低收入家庭的住房问题,某城市修建了首批108套住房,已知C B A ,,三个社区分别有低收入家 庭360户,270户,180户,现采用分层抽样的方法决定各社区所分配首批经济住房的户数,则应从C 社 区抽取低收入家庭的户数为( )A .48B .36C .24D .18【命题意图】本题考查分层抽样的概念及其应用,在抽样考查中突出在实际中的应用,属于容易题. 5. 若函数1,0,()(2),0,x x f x f x x +≥⎧=⎨+<⎩则(3)f -的值为( )A .5B .1-C .7-D .2 6. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( ) A .πB.C.D.7. 设变量x ,y满足约束条件,则目标函数z=4x+2y 的最大值为( )A .12B .10C .8D .28.已知向量=(﹣1,3),=(x ,2),且,则x=( )A.B.C.D.9. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y=3﹣5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y=bx+a必过;④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .310. 如果命题p ∨q 是真命题,命题¬p 是假命题,那么( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .命题p 一定是假命题B .命题q 一定是假命题C .命题q 一定是真命题D .命题q 是真命题或假命题11.已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .5612.已知函数f (x )=Asin (ωx ﹣)(A >0,ω>0)的部分图象如图所示,△EFG 是边长为2 的等边三角形,为了得到g (x )=Asin ωx 的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位二、填空题13.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]14.(﹣)0+[(﹣2)3]= .15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .16.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .17.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a 与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力. 18.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .三、解答题19.(本小题满分10分)选修4-1:几何证明选讲如图,四边形ABCD 外接于圆,AC 是圆周角BAD ∠的角平分线,过点C 的切线与AD 延长线交于点E ,AC 交BD 于点F .(1)求证:BD CE ;(2)若AB 是圆的直径,4AB =,1DE =,求AD 长20.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .21.如图,在边长为a 的菱形ABCD 中,∠ABC=60°,PC ⊥面ABCD ,E ,F 是PA 和AB 的中点. (1)求证:EF ∥平面PBC ; (2)求E 到平面PBC 的距离.22.已知函数f (x )=sinx ﹣2sin 2(1)求f (x )的最小正周期;(2)求f (x )在区间[0,]上的最小值.23.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.24.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.和平区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 2. 【答案】A【解析】解:因为,而(m ∈R ,i 表示虚数单位),所以,m=1. 故选A .【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.3. 【答案】B【解析】解:设△AF 1F 2的内切圆半径为r ,则S △IAF1=|AF 1|r ,S △IAF2=|AF 2|r ,S △IF1F2=|F 1F 2|r ,∵,∴|AF 1|r=2×|F 1F 2|r ﹣|AF 2|r ,整理,得|AF1|+|AF 2|=2|F 1F 2|.∴a=2,∴椭圆的离心率e===.故选:B .4. 【答案】C【解析】根据分层抽样的要求可知在C 社区抽取户数为2492108180270360180108=⨯=++⨯.5. 【答案】D111] 【解析】试题分析:()()()311112f f f -=-==+=. 考点:分段函数求值. 6. 【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x轴向右平移a个单位(a>0),可得y=﹣cos2(x﹣a)=﹣cos(2x﹣2a)的图象;再根据所得图象关于原点对称,可得2a=kπ+,a=+,k∈Z.则实数a的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos(ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题.7.【答案】B【解析】解:本题主要考查目标函数最值的求法,属于容易题,做出可行域,由图可知,当目标函数过直线y=1与x+y=3的交点(2,1)时,z取得最大值10.8.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.9.【答案】C【解析】解:对于①,方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变,正确;对于②,设有一个回归方程y=3﹣5x,变量x增加一个单位时,y应平均减少5个单位,②错误;对于③,线性回归方程y=bx+a必过样本中心点,正确;对于④,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病,错误;综上,其中错误的个数是2.故选:C.10.【答案】D【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又∵命题“非p”也是假命题,∴命题p为真命题.故命题q为可真可假.故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.11.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.12.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.二、填空题-13.【答案】[]1,1【解析】考点:函数的定义域.14.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.15.【答案】.【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案, 而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.16.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C 8r x 8﹣2r 令8﹣2r=0得r=4 则其常数项为C 84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.17.【答案】6π,18+ 【解析】18.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).三、解答题19.【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力.∴DE DC BC BA =BC AB=,则24BC AB DE =⋅=,∴2BC =. ∴在Rt ABC ∆中,12BC AB =,∴30BAC ∠=︒,∴60BAD ∠=︒,∴在Rt ABD ∆中,30ABD ∠=︒,所以122AD AB ==.20.【答案】(1)2,2==q d ;(2)12326-+-=n n n S .【解析】(2)1212--=n n n n b a ,………………6分 122121223225231---+-++++=n n n n n S ,①nn n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222nn nn S --=++++-,…………10分所以12326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nnb 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 21.【答案】【解析】(1)证明:∵AE=PE ,AF=BF , ∴EF ∥PB又EF ⊄平面PBC ,PB ⊂平面PBC , 故EF ∥平面PBC ;(2)解:在面ABCD 内作过F 作FH ⊥BC 于H ∵PC ⊥面ABCD ,PC ⊂面PBC ∴面PBC ⊥面ABCD又面PBC ∩面ABCD=BC ,FH ⊥BC ,FH ⊂面ABCD ∴FH ⊥面PBC又EF||平面PBC ,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH .在直角三角形FBH 中,∠FBC=60°,FB=,FH=FBsin ∠FBC=a ,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离,等于a .22.【答案】【解析】解:(1)∵f (x )=sinx ﹣2sin 2=sinx ﹣2×=sinx+cosx ﹣=2sin (x+)﹣∴f (x )的最小正周期T==2π;(2)∵x ∈[0,],∴x+∈[,π],∴sin (x+)∈[0,1],即有:f (x )=2sin (x+)﹣∈[﹣,2﹣],∴可解得f (x )在区间[0,]上的最小值为:﹣.【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.23.【答案】【解析】24.【答案】【解析】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S△ABC==1.。
【高三】天津市2018届高三《数学》上学期第一次月考试题理(含答案)

天津市2018届高三数学上学期第一次月考试题 理一、选择题:本大题共8小题,每小题5分,共40分 1.已知i 是虚数单位,则复数=--ii131 i D i C i B i A 212122--+-+-2.设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≤≥+≤+24222y y x y x ,则目标函数y x z -=的最小值是8524D C B A -3.阅读右面的程序框图,则输出的=S55203014D C B A4.在1021⎪⎭⎫ ⎝⎛-x x 的二项展开式中,4x 的系数为1515120120D C B A --5.已知{}⎭⎬⎫⎩⎨⎧<-=<+=03|,41|x x x N x x M ,那么”“M a ∈是”“N a ∈的 必要而不充分条件充分而不必要条件B A既不充分也不必要条件充分必要条件D C 6.已知双曲线()014222>=-a y a x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的离心率为553233559DCBA7.已知定义在R 上的函数()12-=-mx x f (m 为实数)为偶函数,记()3log 5.0f a =,()5log 2f b =,()m f c 2=,则c b a ,,的大小关系为c b a D bc a C ab c B ba c A <<<<<<<<8.已知函数()()⎪⎩⎪⎨⎧>≤+=0log 0122x x x x x f ,若方程()a x f =恰有四个不同的解()43214321,,,x x x x x x x x <<<,则()423213·1x x x x x ++的取值范围是 ()(]()[)1,11,1,1,1-∞--+∞-D C B A二、填空题:本大题共6小题,每小题5分,共30分9.设集合{}1,3+-=a A ,{}1,3,122+--=a a a B ,若{}3-=B A ,则实数=a 10.设数列{}n a 是首相为1a ,公差为1-的等差数列,n S 为其前n 项和.若421,,S S S 成等比数列,则2a 的值为11.直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,设点B A ,分别在曲线⎩⎨⎧+=+=θθsin 4cos 3:1y x C (θ为参数)和曲线1:2=ρC 上,则AB 的最小值为12.函数()⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-∈+-⎪⎭⎫⎝⎛+=4,443cos 33sin ·cos 2πππx x x x x f 的最小值为 13.已知棱长为2的正四面体的各顶点均在同一球面上,则该球的体积为14.梯形ABCD 中,︒=∠===60,2,1,4,//DAB AD DC AB CD AB ,点E 在线段BD 上,点F 在线段AC 上,且4·,,===DF AE CA CF BD BE μλ,则μλ+的最小值为三、解答题:本大题共6个小题,共计80分 15.(本小题满分13分)设ABC ∆的内角C B A ,,所对的边分别为c b a ,,,且97cos ,2,6===+B b c a (1)求c a ,的值 (2)求()B A -sin 的值 16.(本小题满分13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数c b a ,,满足c b a ≤≤,则称b 为这三个数的中位数) 17.(本小题满分13分)如图,︒=∠⊥90,//,ACB PC DA ABC PC 平面,E 为PB 的中点,1===BC AD AC ,2=PC .(1)求证:ABC DE 平面// (2)求证:BCD PD 平面⊥(3)设Q 为线段PB 上一点,λ=,试确定实数λ的值,使得二面角B CD Q --为︒45 18.(本小题满分13分)正项等比数列{}n a 的前n 项和记为n S ,11=a ,133=S . (1)求数列{}n a 的通项公式(2)等差数列{}n b 的各项为正,且52=b ,又332211,,b a b a b a +++成等比数列,设n n n b a A =,求数列{}n A 的前n 项和n T . 19.(本小题满分14分)已知椭圆()012222>>=+b a by a x 经过点()3,0,离心率为21,左右焦点分别为()()0,,0,21c F c F -.(1)求椭圆的方程 (2)若直线m x y l +-=21:与椭圆交于B A ,两点,与以21,F F 为直径的圆交于D C ,两点,且满足435=CDAB ,求直线l 的方程. 20.(本小题满分14分)已知函数()()a x x x f +-=ln 的最小值为0,其中0>a . (1)求a 的值(2)若对任意的[)+∞∈,0x ,有()2kx x f ≤成立,求实数k 的最小值 (3)证明:()()*212ln 1221N n n i ni ∈<+--∑= 天津市耀华中学2018届高三年级暑假验收考试数学参考答案(理科)一、选择题:本大题共8小题,每小题5分,共40分1.A ;2.C ;3.B ;4.C ;5.B ;6.D ;7.A ;8.B 二、填空题:本大题共6小题,每小题5分,共30分9.1-; 10.23-; 11.3; 12.21-; 13.π23; 14.36411+ 三、解答题:本大题共6个小题,共计80分 15.(本小题满分13分) 解:(1)由97cos =B 与余弦定理得,ac c a 914422=-+,又6=+c a ,解得3==c a (2) 又c a =,2=b ,924sin =B 与正弦定理得,322sin =A ,31cos =A .所以()27210sin cos cos sin sin =-=-B A B A B A 16.(本小题满分13分)解:(1)由古典概型中的概率计算公式知所求概率为845393334=+=C C C P (2) X 的所有可能值为1,2,3,且()4217139341524=+==C C C C X P ,()8443239331623121413=++==C C C C C C C X P , ()1213391722===C C C X P ,故X 的分布列为:从而()28123842421=⨯+⨯+⨯=X E 17.(本小题满分13分)(1)证明:以C 为原点建立空间直角坐标系xyz C -,()0,1,0B ,()1,0,1D ,()200,,P 则⎪⎭⎫ ⎝⎛1210,,E ,⎪⎭⎫ ⎝⎛-=0211,,,易知()2,0,0=为平面ABC 的一个法向量,PC DE PC DE ⊥∴=⋅,0ABC DE 平面⊄ ,ABC DE 平面//∴;(2)证明:()1,0,1-= ,()0,1,0=,()1,0,1=,0=⋅∴,0=⋅,DC PD BC PD ⊥⊥∴,, BCD PD C DC BC 平面⊥∴=⋂, ;(3)解:由(2)知平面BCD 的法向量为()1,0,1-=PD()2,1,0-=PB ,()λλλ2,,0-==PB PQ ,()10,∈λ,()22,,0+-=∴λλQ 而()()22,,0,1,0,1+-==λλCQ CD ,设平面QCD 的法向量为()000,,z y x =n ,由⎪⎩⎪⎨⎧=⋅=⋅00CD n n 得,()⎩⎨⎧=+-+=+02200000z y z x λλ, 令10=z ,则10-=x ,220-=λy ,即⎪⎭⎫⎝⎛--=1221,,λn , 故224862245cos 2=+-⋅-==︒λλλ, 解得22±=λ,由()10,∈λ得,22-=λ. 18.(本小题满分13分)解:(1)设公比为q ,则13123=++=q q S ,得43-==q q 或0>n a ,3=∴q ,1113--=⋅=∴n n n q a a ;(2)设{}n b 的公差为d ,由52=b ,可设d b d b +=-=5,531,又11=a ,32=a ,93=a ,由题意可得()()()2359515+=+++-d d ,解得10,221-==d d , 等差数列{}n b 的各项为正,2,0=∴>∴d d ,351=-=∴d b ,()()1221311+=⨯-+=-+=∴n n d n b b n ;()1312-⋅+==n n n n n b a A ,则()1323123937353-⋅+++⨯+⨯+⨯+=n n n T ,① ()n n n T 312393735333432⋅+++⨯+⨯+⨯+⨯=∴ ,②由①-②得,()()n n n n T 3123333232132⋅+-++++⨯+=--()()n n n n n 3231231313231⋅-=⋅+---⨯+=-,n n n T 3⋅=∴.19.(本小题满分14分) 解:(1)由题设3=b ,21=a c ,222c a b -=,解得1,3,2===c b a ∴椭圆的方程为13422=+y x ; (2)由题设,以1F ,2F 为直径的圆的方程为122=+y x ,圆心到直线l 的距离为52m d =由1<d 得,25<m ①,2224552541212m m d CD -=-=-=∴, 设()11,y x A ,()22,y x B ,由⎪⎪⎩⎪⎪⎨⎧+-==+m x y y x 2113422得,0322=-+-m mx x , m x x =+21,3221-=m x x ,()[]2222421534211m m m AB -=--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴,由435=CD AB得,145422=--m m ,解得33±=m ,满足①, ∴直线l 的方程为33213321--=+-=x y x y 或. 20.(本小题满分14分)解:(1))(x f 的定义域为()+∞-,a()ax a x a x x f +-+=+-='111,由()0='x f ,得a a x ->-=1 当a x a -<<-1时,()0<'x f ,函数)(x f 单调递减; 当a x ->1时,()0>'x f ,函数)(x f 单调递增,()a f -1为唯一的极小值,也是最小值,故由题意()011=-=-a a f ,所以1=a .(2)当0≤k 时,取1=x ,有()02ln 11>-=f ,故0≤k 不符合题意 当0>k 时,令()()2kx x f x g -=,即()()21ln kx x x x g -+-=()()1212212+-+-=-+='x xk kx kx x x x g令()0='x g ,得01=x ,12212->-=kkx ①当21≥k 时,0221≤-kk,()0<'x g 在()+∞,0上恒成立,因此()x g 在),0[+∞上单调递减,从而对于任意的),0[+∞∈x ,总有()()00=≤g x g ,即()2kx x f ≤在),0[+∞上恒成立,故21≥k 符合题意. ②当210<<k 时,0221>-k k ,对于⎪⎭⎫⎝⎛-∈k k x 221,0,()0>'x g故()x g 在⎪⎭⎫ ⎝⎛-k k 221,0内单调递增,因此,当取⎪⎭⎫⎝⎛-∈k k x 221,00时,()()000=>g x g , 即()200kx x f ≤不成立. 故210<<k 不符合题意.(3)证明:当1=n 时,不等式左边=<-=23ln 2右边,所以不等式成立, 当2≥n 时,()()[]()12ln 12212ln 12ln 1221221111+--=--+--=⎪⎭⎫ ⎝⎛-∑∑∑∑====n i i i i i f ni n i n i ni 在(2)中取21=k 得,())0(22≥≤x x x f ,从而()()()()2,123221221222≥∈--<-≤⎪⎭⎫⎝⎛-*i N i i i i i f 所以()()()∑∑∑===--+-<⎪⎭⎫⎝⎛-=+--ni n i ni i i i f n i 211123223ln 212212ln 122 212113ln 21213213ln 22<--+-=⎪⎭⎫ ⎝⎛---+-=∑=i i i ni 综上()∑=*∈<+--ni N n n i 1,212ln 122.。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。
写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。
为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。
若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。
2017-2018学年天津市和平区高二(上)期末数学试卷(理科)

2017-2018学年天津市和平区高二(上)期末数学试卷(理科)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)“m=1”是“双曲线的离心率为2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(3分)在空间直角坐标系中,已知A(1,0,﹣3),B(4,﹣2,1),则|AB|=()A. B. C. D.3.(3分)已知双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),则双曲线的标准方程为()A.﹣y2=1 B.﹣x2=1 C.﹣y2=1 D.﹣=14.(3分)若双曲线﹣y2=1(a>0)的离心率为2,则该双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x5.(3分)已知抛物线y2=x的焦点是椭圆+=1的一个焦点,则椭圆的离心率为()A.B.C.D.6.(3分)已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15 B.x=3,y=15 C.x=,y=D.x=6,y=7.(3分)如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.5x+2y﹣4=0 C.x+2y﹣8=0 D.2x+3y﹣12=08.(3分)已知椭圆C:,点M,N为长轴的两个端点,若在椭圆上存在点H,使,则离心率e的取值范围为()A.B.C.D.二、填空题(每题6分,满分36分,将答案填在答题纸上)9.(6分)若双曲线(p>0)的左焦点在抛物线y2=2px 的准线上,则p=.10.(6分)已知斜率为2 的直线经过椭圆的右焦点F2,与椭圆相交于A、B 两点,则AB 的长为.11.(6分)已知抛物线y2=4x的焦点为F,准线为直线l,过抛物线上一点P作PE⊥l于E,若直线EF的倾斜角为150°,则|PF|=.12.(6分)如图所示,已知空间四边形OABC中,OB=OC,且∠AOB=∠AOC=,则cos<,>的值为.13.(6分)设椭圆与双曲线有公共焦点F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2等于.14.(6分)已知双曲线(a>0,b>0 )的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q 两点,且PQ⊥PF1,若|PQ|=|PF1|,则双曲线的离心率为.三、解答题(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.)15.已知三点P(5,2)、F1(﹣6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.16.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x﹣1与抛物线C交于A,B两点,O为坐标原点.(1)求抛物线C的方程;(2)求△OAB的面积.17.三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN||平面BCC1B1;(Ⅱ)求证:平面AMN⊥平面A1B1C.18.已知椭圆E:(a>b>0 )的离心率为,C为椭圆E 上位于第一象限内的一点.(1)若点C 的坐标为(2,),求椭圆E的标准方程;(2)设A为椭圆E 的左顶点,B 为椭圆E 上一点,且=,求直线AB 的斜率.19.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.2017-2018学年天津市和平区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)“m=1”是“双曲线的离心率为2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据双曲线离心率的定义求出m的值,结合充分条件和必要条件的定义进行判断即可.【解答】解:由双曲线的方程得a2=m,(m>0),b2=3,则c2=3+m,∵双曲线的离心率e=2,∴e2===4,即3+m=4m,即3m=3,m=1,则“m=1”是“双曲线的离心率为2”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合双曲线的离心率公式是解决本题的关键.2.(3分)在空间直角坐标系中,已知A(1,0,﹣3),B(4,﹣2,1),则|AB|=()A. B. C. D.【分析】利用空间直角坐标系中两点间的距离公式,计算即可.【解答】解:空间直角坐标系中,A(1,0,﹣3),B(4,﹣2,1),则|AB|==.故选:B.【点评】本题考查了空间中两点间的距离应用问题,是基础题.3.(3分)已知双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),则双曲线的标准方程为()A.﹣y2=1 B.﹣x2=1 C.﹣y2=1 D.﹣=1【分析】设双曲线的方程为(a>0,b>0),利用双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),建立方程组,即可求出双曲线的标准方程.【解答】解:设双曲线的方程为(a>0,b>0),∵双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),∴,∴a=,b=1,∴双曲线的标准方程为﹣y2=1.故选:A.【点评】本题考查双曲线的简单性质,考查双曲线的方程,正确运用待定系数法是关键.4.(3分)若双曲线﹣y2=1(a>0)的离心率为2,则该双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x【分析】求出双曲线的c,由离心率公式,解方程求得a,再由双曲线的渐近线方程即可得到.【解答】解:双曲线﹣y2=1(a>0)的c=,则离心率e===2,解得,a=.则双曲线的渐近线方程为y=x,即为y=x.故选:D.【点评】本题考查双曲线的方程和性质,考查渐近线方程的求法和离心率公式的运用,考查运算能力,属于基础题.5.(3分)已知抛物线y2=x的焦点是椭圆+=1的一个焦点,则椭圆的离心率为()A.B.C.D.【分析】由题意,抛物线y2=x的焦点为(,0),从而求椭圆的离心率.【解答】解:抛物线y2=x的焦点为(,0);抛物线y2=x的焦点是椭圆+=1的一个焦点,故c=,b=,a==;故e===;故该椭圆的离心率为:;故选:D.【点评】本题考查了抛物线及椭圆的性质以及应用,属于基础题.6.(3分)已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15 B.x=3,y=15 C.x=,y=D.x=6,y=【分析】由l1∥l2,可得存在实数使得=k,【解答】解:∵l1∥l2,∴存在实数使得=k,∴,解得x=6,y=.故选:D.【点评】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.7.(3分)如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.5x+2y﹣4=0 C.x+2y﹣8=0 D.2x+3y﹣12=0【分析】若设弦的端点为A(x1,y1)、B(x2,y2),代入椭圆方程得9x12+36y12=36×9①,9x22+36y22=36×9②;作差①﹣②,并由中点坐标公式,可得直线斜率k,从而求出弦所在的直线方程.【解答】解:设弦的端点为A(x1,y1)、B(x2,y2),代入椭圆方程,得:9x12+36y12=36×9①,9x22+36y22=36×9②;①﹣②得:9(x1+x2)(x1﹣x2)+36(y1+y2)(y1﹣y2)=0;由中点坐标=4,=2,代入上式,得72(x1﹣x2)+144(y1﹣y2)=0,∴直线斜率为k==﹣,所求弦的直线方程为:y﹣2=﹣(x﹣4),即x+2y﹣8=0.故选:C.【点评】本题考查了圆锥曲线中由中点坐标公式,通过作差的方法,求得直线斜率k的应用模型,属于基础题目.8.(3分)已知椭圆C:,点M,N为长轴的两个端点,若在椭圆上存在点H,使,则离心率e的取值范围为()A.B.C.D.【分析】设H(x0,y0),则=.可得k MH k NH==∈,即可得出.【解答】解:M(﹣a,0),N(a,0).设H(x0,y0),则=.∴k MH k NH====∈,可得:=e2﹣1∈,∴e∈.故选:A.【点评】本题考查了椭圆的标准方程及其性质、斜率计算公式、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.二、填空题(每题6分,满分36分,将答案填在答题纸上)9.(6分)若双曲线(p>0)的左焦点在抛物线y2=2px 的准线上,则p=4.【分析】求出双曲线的左焦点坐标,代入抛物线的准线方程,求出P即可.【解答】解:双曲线(p>0)的左焦点(﹣,0),双曲线(p>0)的左焦点在抛物线y2=2px的准线上,可得:﹣=,解得p=4.故答案为:4.【点评】本题考查双曲线的简单性质以及抛物线的简单性质的应用,考查计算能力.10.(6分)已知斜率为2 的直线经过椭圆的右焦点F2,与椭圆相交于A、B 两点,则AB 的长为.【分析】求得椭圆的a,b,c,可得右焦点,求得直线AB的方程,代入椭圆方程,可得交点A,B的坐标,由两点的距离公式计算即可得到所求弦长.【解答】解:椭圆的a=,b=2,c==1,右焦点为(1,0),直线的方程为y=2(x﹣1),代入椭圆方程,可得6x2﹣10x=0,解得x=0或x=,即有交点为A(0,﹣2),B(,),则弦长为|AB|==.故答案为:.【点评】本题考查直线和椭圆的位置关系,考查直线方程和椭圆方程联立,求交点和弦长,考查运算能力,属于基本知识的考查.11.(6分)已知抛物线y2=4x的焦点为F,准线为直线l,过抛物线上一点P作PE⊥l于E,若直线EF的倾斜角为150°,则|PF|=.【分析】由抛物线y2=4x方程,可得焦点F(1,0),准线l的方程为:x=﹣1.由直线EF的倾斜角为150°,可得k l=.进而得到直线EF的方程为:,与抛物线方程联立,可得解得y E.由于PE⊥l于E,可得y P=y E,代入抛物线的方程可解得x P.再利用|PF|=|PE|=x P+1即可得出.【解答】解:由抛物线y2=4x方程,可得焦点F(1,0),准线l的方程为:x=﹣1.∵直线EF的倾斜角为150°,∴k l=tan150°=.∴直线EF的方程为:y=﹣(x﹣1),联立,解得y=.∴E.∵PE⊥l于E,∴y P=,代入抛物线的方程可得,解得x P=.∴|PF|=|PE|=x P+1=.故答案为:.【点评】本题考查了抛物线的定义标准方程及其性质、直线与抛物线相交问题转化为方程联立,属于中档题.12.(6分)如图所示,已知空间四边形OABC中,OB=OC,且∠AOB=∠AOC=,则cos<,>的值为0.【分析】利用向量三角形法则、数量积运算性质即可得出.【解答】解:∵,OB=OC,∴===﹣=0,故答案为:0.【点评】本题考查了向量三角形法则、数量积运算性质,考查了计算能力,属于基础题.13.(6分)设椭圆与双曲线有公共焦点F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2等于.【分析】先求出公共焦点分别为F1,F2,再联立方程组求出P,由此可以求出和,利用向量的数量积求解cos∠F1PF2.【解答】解:由题意知F1(﹣2,0),F2(2,0),解方程组,得取P点坐标为(,),=(﹣2﹣,﹣),=(2﹣,﹣)cos∠F1PF2==.故答案为:.【点评】本题考查圆锥曲线的性质和应用,解题时要注意公式的灵活运用.14.(6分)已知双曲线(a>0,b>0 )的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q 两点,且PQ⊥PF1,若|PQ|=|PF1|,则双曲线的离心率为.【分析】由PQ⊥PF1,|PQ|与|PF1|的关系,可得|QF1|于|PF1|的关系,由双曲线的定义可得2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,解得|PF1|,然后利用直角三角形,推出a,c的关系,可得双曲线的离心率.【解答】解:设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=|PF1|,在直角三角形PF1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=|PF1|,即有|PF2|+|QF2|=|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=|PF1|,∴(1﹣+)|PF1|=4a,解得|PF1|=.∴|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|==,则e=.故答案为:.【点评】本题考查了双曲线的定义、方程及其性质,考查勾股定理,考查了推理能力与计算能力,属于中档题.三、解答题(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.)15.已知三点P(5,2)、F1(﹣6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.【分析】(Ⅰ)根据题意设出所求的椭圆的标准方程,然后代入半焦距,求出a,b.最后写出椭圆标准方程.(Ⅱ)根据三个已知点的坐标,求出关于直线y=x的对称点分别为点,设出所求双曲线标准方程,代入求解即可.【解答】解:(1)由题意可设所求椭圆的标准方程为(a>b>0),其半焦距c=6∴,b2=a2﹣c2=9.所以所求椭圆的标准方程为(2)点P(5,2)、F1(﹣6,0)、F2(6,0)关于直线y=x的对称点分别为点P′(2,5)、F1′(0,﹣6)、F2′(0,6).设所求双曲线的标准方程为由题意知,半焦距c1=6,,b12=c12﹣a12=36﹣20=16.所以所求双曲线的标准方程为.【点评】本小题主要考查椭圆与双曲线的基本概念、标准方程、几何性质等基础知识和基本运算能力.属于中档题.16.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x﹣1与抛物线C交于A,B两点,O为坐标原点.(1)求抛物线C的方程;(2)求△OAB的面积.【分析】(1)根据题意,由抛物线的定义,可得,解可得p=2,代入标准方程,即可得答案;(2)联立直线与抛物线的方程,消去y得x2﹣6x+1=0,进而设A(x1,y1),B(x2,y2),由一元二次方程根与系数的关系可得x1+x2=6,结合抛物线的几何性质,可得|AB|的长,由点到直线距离公式可得O到直线y=x﹣1,进而由三角形面积公式计算可得答案.【解答】解:(1)根据题意,D(2,y0)在抛物线y2=2px,上且|DF|=3由抛物线定义得,∴p=2故抛物线的方程为y2=4x;(2)由方程组,消去y得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),则x1+x2=6;∵直线y=x﹣1过抛物线y2=4x的焦点F,∴|AB|=x1+x2+p=6+2=8又O到直线y=x﹣1的距离,∴△ABO的面积.【点评】本题考查抛物线的几何性质,涉及直线与抛物线的位置关系,关键是利用抛物线的几何性质求出其标准方程.17.三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN||平面BCC1B1;(Ⅱ)求证:平面AMN⊥平面A1B1C.【分析】(Ⅰ)连接BC1,AC1,运用三角形的中位线定理和线面平行的判定定理,即可得证;(Ⅱ)连接A1M,CM,运用面面垂直的判定定理,证得MN⊥平面A1B1C,即可得证.【解答】证明:(Ⅰ)连接BC1,AC1,在△ABC1中,由AM=MB,AN=NC1,可得MN∥BC1,MN⊄平面BCC1B1,BC1⊂平面BCC1B1,则MN∥平面BCC1B1;(Ⅱ)三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,AB=BC=BB1=2,可得四边形BCC1B1为正方形,即有BC1⊥B1C,MN⊥B1C,连接A1M,CM,由AM=BM,AA1=BC,∠A1AM=∠MBC=90°,可得△AMA1≌△BMC,可得A1M=CM,又N是A1C的中点,则MN⊥A1C,B1C∩A1C=C,MN⊥平面A1B1C,MN⊂平面AMN,则平面AMN⊥平面A1B1C.【点评】本题考查线面平行和面面垂直的判定定理的运用,注意运用转化思想,考查推理能力和空间想象能力,属于中档题.18.已知椭圆E:(a>b>0 )的离心率为,C为椭圆E 上位于第一象限内的一点.(1)若点C 的坐标为(2,),求椭圆E的标准方程;(2)设A为椭圆E 的左顶点,B 为椭圆E 上一点,且=,求直线AB 的斜率.【分析】(1)利用抛物线的离心率求得=,将(2,)代入椭圆方程,即可求得a和b的值;(2)方法一:设直线OC的斜率,代入椭圆方程,求得C的纵坐标,则直线直线AB的方程为x=my﹣a,代入椭圆方程,求得B的纵坐标,由=,则直线直线AB的斜率k;方法二:由=,y2=2y1,将B和C代入椭圆方程,即可求得C点坐标,利用直线的离心率公式即可求得直线AB的斜率.【解答】解:(1)由题意可知:椭圆的离心率e===,则=,①由点C在椭圆上,将(2,)代入椭圆方程,+=1,②解得:a2=9,b2=5,∴椭圆E的标准方程为+=1;(2)方法一:由(1)可知:=,则椭圆方程:5x2+9y2=5a2,设直线OC的方程为x=my(m>0),B(x1,y1),C(x2,y2),,消去x整理得:5m2y2+9y2=5a2,∴y2=,由y2>0,则y2=,由=,则AB∥OC,设直线AB的方程为x=my﹣a,则,整理得:(5m2+9)y2﹣10amy=0,由y=0,或y1=,由=,则(x1+a,y1)=(x2,y2),则y2=2y1,则=2×,(m>0),解得:m=,则直线AB的斜率=;方法二:由(1)可知:椭圆方程5x2+9y2=5a2,则A(﹣a,0),B(x1,y1),C(x2,y2),由=,则(x1+a,y1)=(x2,y2),则y2=2y1,由B ,C 在椭圆上,∴,解得:x 2=,y 2=则直线直线AB 的斜率k==;直线AB 的斜率=【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查直线的斜率公式,向量共线定理,考查计算能力,属于中档题.19.如图,在四棱锥S ﹣ABCD 中,SD ⊥平面ABCD ,四边形ABCD 是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1 (1)求二面角S ﹣BC ﹣A 的余弦值;(2)设P 是棱BC 上一点,E 是SA 的中点,若PE 与平面SAD 所成角的正弦值为,求线段CP 的长.【分析】以D 为原点建立如图所示的空间直角坐标系D ﹣xyz ,则D (0,0,0),B (2,2,0),C (0,1,0),S (0,0,2),利用空间向量求解. 【解答】解:(1)以D 为原点建立如图所示的空间直角坐标系D ﹣xyz , 则D (0,0,0),B (2,2,0),C (0,1,0),S (0,0,2) ∴,,设面SBC 的法向量为由可取∵SD⊥面ABC,∴取面ABC的法向量为|cos|=,∵二面角S﹣BC﹣A为锐角.二面角S﹣BC﹣A的余弦值为(2)由(1)知E(1,0,1),则,,设,(0≤λ≤1).则,易知CD⊥面SAD,∴面SAD的法向量可取|cos|=,解得λ=或λ=(舍去).此时,∴||=,∴线段CP的长为【点评】本题考查了空间向量求解面面角,线面角,解题时要仔细运算,合理转化,属于中档题.。
天津和平区2018-2019年高一上年末数学试卷含解析(4)

天津和平区2018-2019年高一上年末数学试卷含解析(4)第I 卷选择题〔共24分〕【一】选择题:本大题共8小题,每题3分,共24分、在每题给出旳四个选项中只有—项是符合题目要求旳,请将题中正确选项旳代号填在以下表格中、1、sin 420旳值是A 、12B 、2C 、2、、与456-角终边相同旳角旳集合是A.{}|360264,a k k Z ⋅+∈B 、{}|360264,a k k Z ⋅-∈C.{}|36096,a k k Z ⋅+∈D.{}|360456,a k k Z ⋅+∈3、在四边形ABCD 中,给出以下四个结论,其中一定正确旳选项是A 、AB BC CA +=B 、BC CD BD +=C 、AB AD AC +=D 、AB AD BD -=4、向量(2,3)(4,7)BA CA ==,那么向量BC =A 、(2,4)--B 、(2,4)C.(6,10)D 、(6,10)--5、直线3y =与函数tan (0)y x ωω=>旳‘图象相交,那么相邻两交点间旳距离是A 、πB.2πω C 、2πωD 、πω6、以下各组中旳两个三角函数值旳大小关系正确旳选项是A.sin508sin144>B.cos760cos(770)<-C.7tan tan 86ππ>D.4744cos()cos()109ππ->- 7、向量(2,1),(1,3)a b ==-,假设存在向量c ;使得4,9a c b c ⋅=⋅=-,那么向量c 为A 、(3,2)-B 、(4,3)C 、(3,2)-D 、(2,5)-8、函数[]sin 2sin ,0,2y x x x π=+∈旳图象与曹线y=k 有且只有两个不同旳交点,那么k 旳取值范围是A 、0<k<lB 、1<k<3C 、1≤k ≤3D 、0<k<3第二卷非选择题〔共76分〕【二】填空题:本大题共6小题,每题4分,共24分、请将【答案】直截了当填在题中旳横线上9、△ABC 旳三个顶点分别是A(4,6),B(7,6),C(1,8),D 为BC 旳中点,那么向量AD 旳坐标为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、10、函数cos 2cos 1x y x -=-旳值域为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、 11、不共线向量,a b ,(),AB ta b t R AC a b =-∈=+,假设A 、B 、C 三点共线,那么实数,t 等于﹏﹏﹏﹏﹏﹏﹏﹏﹏.12、、向量,a b 满足2,2,a b a b a ==-⊥,那么向量a 与b 旳夹角为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏.13、函数()sin()(0,0,,)22f x A x A x R ππωϕωϕ=+>>-<<∈旳部分图象如下图,那么函数()y f x =旳【解析】式为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏,14、函数11sin sin ,cos cos 35x y x y +=-=,那么cos()x y +旳值为﹏﹏﹏﹏﹏﹏﹏﹏﹏、 【三】解答题:本大题共6小题,共52分,解答题应写出文字说明,演算步骤15、〔此题总分值8分〕角α旳顶点在原点,始边与x 轴旳非负半轴重合,终边通过点(P -、(I)求tan()sin()2cos()sin()πααπαπα-++---旳值: (Ⅱ)求tan2α旳值、16、〔此题总分值8分〕1tan()43πα-=、 (I)求tan α旳值;(II)求6sin cos 3sin 2cos αααα+-旳值、 17、〔此题总分值8分〕O 为坐标原点,(1,1),(3,1),(,)OA OB OC a b ==-=(I)假设2AC AB =,求点C 旳坐标;(II)假设A ,B ,C 三点共线,求a+b 旳值.18、〔此题总分值9分〕函数2()cos cos f x x x x a =++,(I)求()f x 旳最小正周期及单调递增区间;(II)假设()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上旳最大值与最小值旳和为32,求a 旳值。
2017-2018年天津市和平区高二上学期期末数学试卷(理科)与解析

2017-2018学年天津市和平区高二(上)期末数学试卷(理科)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)“m=1”是“双曲线的离心率为2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(3分)在空间直角坐标系中,已知A(1,0,﹣3),B(4,﹣2,1),则|AB|=()A. B. C. D.3.(3分)已知双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),则双曲线的标准方程为()A.﹣y2=1 B.﹣x2=1 C.﹣y2=1 D.﹣=14.(3分)若双曲线﹣y2=1(a>0)的离心率为2,则该双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x5.(3分)已知抛物线y2=x的焦点是椭圆+=1的一个焦点,则椭圆的离心率为()A.B.C.D.6.(3分)已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15 B.x=3,y=15 C.x=,y=D.x=6,y=7.(3分)如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.5x+2y﹣4=0 C.x+2y﹣8=0 D.2x+3y﹣12=08.(3分)已知椭圆C:,点M,N为长轴的两个端点,若在椭圆上存在点H,使,则离心率e的取值范围为()A.B.C.D.二、填空题(每题6分,满分36分,将答案填在答题纸上)9.(6分)若双曲线(p>0)的左焦点在抛物线y2=2px 的准线上,则p=.10.(6分)已知斜率为2 的直线经过椭圆的右焦点F2,与椭圆相交于A、B 两点,则AB 的长为.11.(6分)已知抛物线y2=4x的焦点为F,准线为直线l,过抛物线上一点P作PE⊥l于E,若直线EF的倾斜角为150°,则|PF|=.12.(6分)如图所示,已知空间四边形OABC中,OB=OC,且∠AOB=∠AOC=,则cos<,>的值为.13.(6分)设椭圆与双曲线有公共焦点F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2等于.14.(6分)已知双曲线(a>0,b>0 )的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q 两点,且PQ⊥PF1,若|PQ|=|PF1|,则双曲线的离心率为.三、解答题(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.)15.已知三点P(5,2)、F1(﹣6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.16.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x﹣1与抛物线C交于A,B两点,O为坐标原点.(1)求抛物线C的方程;(2)求△OAB的面积.17.三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN||平面BCC1B1;(Ⅱ)求证:平面AMN⊥平面A1B1C.18.已知椭圆E:(a>b>0 )的离心率为,C为椭圆E 上位于第一象限内的一点.(1)若点C 的坐标为(2,),求椭圆E的标准方程;(2)设A为椭圆E 的左顶点,B 为椭圆E 上一点,且=,求直线AB 的斜率.19.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.2017-2018学年天津市和平区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)“m=1”是“双曲线的离心率为2”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由双曲线的方程得a2=m,(m>0),b2=3,则c2=3+m,∵双曲线的离心率e=2,∴e2===4,即3+m=4m,即3m=3,m=1,则“m=1”是“双曲线的离心率为2”的充要条件,故选:C.2.(3分)在空间直角坐标系中,已知A(1,0,﹣3),B(4,﹣2,1),则|AB|=()A. B. C. D.【解答】解:空间直角坐标系中,A(1,0,﹣3),B(4,﹣2,1),则|AB|==.故选:B.3.(3分)已知双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),则双曲线的标准方程为()A.﹣y2=1 B.﹣x2=1 C.﹣y2=1 D.﹣=1【解答】解:设双曲线的方程为(a>0,b>0),∵双曲线的一个焦点坐标为(,0),且经过点(﹣5,2),∴,∴a=,b=1,∴双曲线的标准方程为﹣y2=1.故选:A.4.(3分)若双曲线﹣y2=1(a>0)的离心率为2,则该双曲线的渐近线方程为()A.y=±x B.y=±3x C.y=±x D.y=±x【解答】解:双曲线﹣y2=1(a>0)的c=,则离心率e===2,解得,a=.则双曲线的渐近线方程为y=x,即为y=x.故选:D.5.(3分)已知抛物线y2=x的焦点是椭圆+=1的一个焦点,则椭圆的离心率为()A.B.C.D.【解答】解:抛物线y2=x的焦点为(,0);抛物线y2=x的焦点是椭圆+=1的一个焦点,故c=,b=,a==;故e===;故该椭圆的离心率为:;故选:D.6.(3分)已知向量=(2,4,5),=(3,x,y),分别是直线l1、l2的方向向量,若l1∥l2,则()A.x=6,y=15 B.x=3,y=15 C.x=,y=D.x=6,y=【解答】解:∵l1∥l2,∴存在实数使得=k,∴,解得x=6,y=.故选:D.7.(3分)如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.5x+2y﹣4=0 C.x+2y﹣8=0 D.2x+3y﹣12=0【解答】解:设弦的端点为A(x1,y1)、B(x2,y2),代入椭圆方程,得:9x12+36y12=36×9①,9x22+36y22=36×9②;①﹣②得:9(x1+x2)(x1﹣x2)+36(y1+y2)(y1﹣y2)=0;由中点坐标=4,=2,代入上式,得72(x1﹣x2)+144(y1﹣y2)=0,∴直线斜率为k==﹣,所求弦的直线方程为:y﹣2=﹣(x﹣4),即x+2y﹣8=0.故选:C.8.(3分)已知椭圆C:,点M,N为长轴的两个端点,若在椭圆上存在点H,使,则离心率e的取值范围为()A.B.C.D.【解答】解:M(﹣a,0),N(a,0).设H(x0,y0),则=.∴k MH k NH====∈,可得:=e2﹣1∈,∴e∈.故选:A.二、填空题(每题6分,满分36分,将答案填在答题纸上)9.(6分)若双曲线(p>0)的左焦点在抛物线y2=2px 的准线上,则p=4.【解答】解:双曲线(p>0)的左焦点(﹣,0),双曲线(p>0)的左焦点在抛物线y2=2px的准线上,可得:﹣=,解得p=4.故答案为:4.10.(6分)已知斜率为2 的直线经过椭圆的右焦点F2,与椭圆相交于A、B 两点,则AB 的长为.【解答】解:椭圆的a=,b=2,c==1,右焦点为(1,0),直线的方程为y=2(x﹣1),代入椭圆方程,可得6x2﹣10x=0,解得x=0或x=,即有交点为A(0,﹣2),B(,),则弦长为|AB|==.故答案为:.11.(6分)已知抛物线y2=4x的焦点为F,准线为直线l,过抛物线上一点P作PE⊥l于E,若直线EF的倾斜角为150°,则|PF|=.【解答】解:由抛物线y2=4x方程,可得焦点F(1,0),准线l的方程为:x=﹣1.∵直线EF的倾斜角为150°,∴k l=tan150°=.∴直线EF的方程为:y=﹣(x﹣1),联立,解得y=.∴E.∵PE⊥l于E,∴y P=,代入抛物线的方程可得,解得x P=.∴|PF|=|PE|=x P+1=.故答案为:.12.(6分)如图所示,已知空间四边形OABC中,OB=OC,且∠AOB=∠AOC=,则cos<,>的值为0.【解答】解:∵,OB=OC,∴===﹣=0,故答案为:0.13.(6分)设椭圆与双曲线有公共焦点F1,F2,P是两条曲线的一个公共点,则cos∠F1PF2等于.【解答】解:由题意知F1(﹣2,0),F2(2,0),解方程组,得取P点坐标为(,),=(﹣2﹣,﹣),=(2﹣,﹣)cos∠F1PF2==.故答案为:.14.(6分)已知双曲线(a>0,b>0 )的左、右焦点分别为F1、F2,过F2的直线交双曲线右支于P,Q 两点,且PQ⊥PF1,若|PQ|=|PF1|,则双曲线的离心率为.【解答】解:设P,Q为双曲线右支上一点,由PQ⊥PF1,|PQ|=|PF1|,在直角三角形PF1Q中,|QF1|==|PF1|,由双曲线的定义可得:2a=|PF1|﹣|PF2|=|QF1|﹣|QF2|,由|PQ|=|PF1|,即有|PF2|+|QF2|=|PF1|,即为|PF1|﹣2a+|PF1|﹣2a=|PF1|,∴(1﹣+)|PF1|=4a,解得|PF1|=.∴|PF2|=|PF1|﹣2a=,由勾股定理可得:2c=|F1F2|==,则e=.故答案为:.三、解答题(本大题共5小题,共52分.解答应写出文字说明、证明过程或演算步骤.)15.已知三点P(5,2)、F1(﹣6,0)、F2(6,0).(Ⅰ)求以F1、F2为焦点且过点P的椭圆标准方程;(Ⅱ)设点P、F1、F2关于直线y=x的对称点分别为P′、F1′、F2′,求以F1′、F2′为焦点且过点P′的双曲线的标准方程.【解答】解:(1)由题意可设所求椭圆的标准方程为(a>b>0),其半焦距c=6∴,b2=a2﹣c2=9.所以所求椭圆的标准方程为(2)点P(5,2)、F1(﹣6,0)、F2(6,0)关于直线y=x的对称点分别为点P′(2,5)、F1′(0,﹣6)、F2′(0,6).设所求双曲线的标准方程为由题意知,半焦距c1=6,,b12=c12﹣a12=36﹣20=16.所以所求双曲线的标准方程为.16.已知抛物线C:y2=2px(p>0)的焦点为F,点D(2,y0)在抛物线C上,且|DF|=3,直线y=x﹣1与抛物线C交于A,B两点,O为坐标原点.(1)求抛物线C的方程;(2)求△OAB的面积.【解答】解:(1)根据题意,D(2,y 0)在抛物线y2=2px,上且|DF|=3由抛物线定义得,∴p=2故抛物线的方程为y2=4x;(2)由方程组,消去y得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),则x1+x2=6;∵直线y=x﹣1过抛物线y2=4x的焦点F,∴|AB|=x1+x2+p=6+2=8又O到直线y=x﹣1的距离,∴△ABO的面积.17.三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN||平面BCC1B1;(Ⅱ)求证:平面AMN⊥平面A1B1C.【解答】证明:(Ⅰ)连接BC1,AC1,在△ABC1中,由AM=MB,AN=NC1,可得MN∥BC1,MN⊄平面BCC1B1,BC1⊂平面BCC1B1,则MN∥平面BCC1B1;(Ⅱ)三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,AB=BC=BB1=2,可得四边形BCC1B1为正方形,即有BC1⊥B1C,MN⊥B1C,连接A1M,CM,由AM=BM,AA 1=BC,∠A1AM=∠MBC=90°,可得△AMA1≌△BMC,可得A1M=CM,又N是A1C的中点,则MN⊥A1C,B1C∩A1C=C,MN⊥平面A1B1C,MN⊂平面AMN,则平面AMN⊥平面A1B1C.18.已知椭圆E:(a>b>0 )的离心率为,C为椭圆E 上位于第一象限内的一点.(1)若点C 的坐标为(2,),求椭圆E的标准方程;(2)设A为椭圆E 的左顶点,B 为椭圆E 上一点,且=,求直线AB 的斜率.【解答】解:(1)由题意可知:椭圆的离心率e===,则=,①由点C在椭圆上,将(2,)代入椭圆方程,+=1,②解得:a2=9,b2=5,∴椭圆E的标准方程为+=1;(2)方法一:由(1)可知:=,则椭圆方程:5x2+9y2=5a2,设直线OC的方程为x=my(m>0),B(x1,y1),C(x2,y2),,消去x整理得:5m2y2+9y2=5a2,∴y2=,由y2>0,则y2=,由=,则AB∥OC,设直线AB的方程为x=my﹣a,则,整理得:(5m2+9)y2﹣10amy=0,由y=0,或y1=,由=,则(x1+a,y1)=(x2,y2),则y2=2y1,则=2×,(m>0),解得:m=,则直线AB的斜率=;方法二:由(1)可知:椭圆方程5x2+9y2=5a2,则A(﹣a,0),B(x1,y1),C(x2,y2),由=,则(x1+a,y1)=(x2,y2),则y2=2y1,由B,C在椭圆上,∴,解得:x2=,y2=则直线直线AB的斜率k==;直线AB的斜率=19.如图,在四棱锥S﹣ABCD中,SD⊥平面ABCD,四边形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1(1)求二面角S﹣BC﹣A的余弦值;(2)设P是棱BC上一点,E是SA的中点,若PE与平面SAD所成角的正弦值为,求线段CP的长.【解答】解:(1)以D为原点建立如图所示的空间直角坐标系D﹣xyz,则D(0,0,0),B(2,2,0),C(0,1,0),S(0,0,2)∴,,设面SBC的法向量为由可取∵SD⊥面ABC,∴取面ABC的法向量为|cos|=,∵二面角S﹣BC﹣A为锐角.二面角S﹣BC﹣A的余弦值为(2)由(1)知E(1,0,1),则,,设,(0≤λ≤1).则,易知CD⊥面SAD,∴面SAD的法向量可取|cos|=,解得λ=或λ=(舍去).此时,∴||=,∴线段CP的长为赠送—高中数学知识点【1.3.1】单调性与最大(小)值(1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x=为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.yxo【1.3.2】奇偶性(4)函数的奇偶性②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
2017-2018学年天津市和平区高二数学上期末考试(理)试题
和平区2017-2018 学年度第一学期高二年级数学(理)学
科期末质量调查试卷
第I卷选择题(共24 分)
、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有项是符合题目要求的.
分也不必要条件
则()
D. x =6
7.如果椭圆y =1
36 的弦被点(4 , 2)平分,则这条弦所在的直线方程是
1.“ m =1 ”是“双曲线=1的离心率为2”的(
A .充分不必要条件
B •必要不充分条件C.充要条件既不充
2.在空间直角坐标系中, 已知-2 , 1),贝U AB
B . .29 D . 、、1 49
3.已知双曲线的一个焦点坐标为('.6 , 0),且经点(_5 , 2),则双曲线的标准方程为
2
A
X 2 A . y
5=1
2
B. - x =1
5
2
c x 2
C . ■ y = 1
25
2
x
D -
4
4.若双曲线
2
x
厂—y
a
=1 (a .0 )的离心力为2 ,则该双曲线的渐近线方程为(
5.已知抛物线
B. y = 3x
C. y
的焦点是椭圆
2
x
一+
2
a
=1 的一个焦点,则椭圆的离心率为(
13
C.-
13
V37
D.
37
6.已知向量y) ,分别是直线l1、I
2的方向向量,若l1//l
2 ,
A. x =6 =15
B. x =3 ,
C. x
2。
2018年新课标I、II、III数学(文)(理)高考真题试卷(Word版含答案)
2018 年一般高等学校招生全国一致考试( Ⅰ卷 )文科数学注意事项:1.答卷前,考生务势必自己的九名、考生号等填写在答题卡和试卷指定地点上.2.回答选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需变动,用橡皮擦洁净后,再选涂其余答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(此题共 12 小题,每题 5 分,共60 分.在每题给出的四个选项中,只有一项是切合题目要求的.)1.已知会合 A 0,2 ,B 2 , 1,0 ,1,2 ,则AIB ()A. 0,2 B. 1,2 C. 0 D. 2, 1,0 ,1,21 i,则 z ()2.设z 2i1 iA.0 B.1C. 1 D. 2 23.某地域经过一年的新乡村建设,乡村的经济收入增添了一倍.实现翻番.为更好地认识该地域乡村的经济收入变化状况,统计了该地域新乡村建设前后乡村的经济收入组成比率.获得以下饼图:则下边结论中不正确的选项是()A.新乡村建设后,栽种收入减少B.新乡村建设后,其余收入增添了一倍以上C.新乡村建设后,养殖收入增添了一倍D.新乡村建设后,养殖收入与第三家产收入的总和超出了经济收入的一半4.记 S n为等差数列a n的前n项和.若 3S3 S2 S4, a1 2 ,则 a3 ()A.12 B.10 C.10 D. 125.设函数 f x x 3a 1 x 2ax .若 f x 为奇函数, 则曲线 yf x 在点 0 ,0 处的切线方程为()A . y2xB . y xC . y 2xD . y x6.在 △ ABC 中, AD 为 BC 边上的中线,uuurE 为 AD 的中点,则 EB ()A . 3 uuur1 uuurB . 1 uuur 3 uuur4 AB4 AC 4 AB AC4 C . 3 uuur 1 uuur D . 1 uuur 3 uuur 4 AB4 AC4 AB AC47.某圆柱的高为 2,底面周长为 16,其三视图以下图,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱 侧面上,从 M 到 N的路径中,最短路径的长度为( )A .2 17B .2 5C .3D .28.设抛物线 C :y24 x 的焦点为 F ,过点2 ,0 且斜率为2的直线与 C 交于 M , N 两点,3uuuur uuur ()则FM FNA .5B . 6C .7D . 89.已知函数 f xx, ≤0 , f xf x x a (),若 g x 存在 2 个零点, 则 a 的exln x ,x 0取值范围是A . 1,0B . ,C . 1,D . 1,10.下列图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆组成,三个半圆的直径分别为直角三角形ABC 的斜边 BC ,直角边 AB , AC , △ ABC 的三边所围成的地区记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1 , p 2 , p 3 ,则( )A . p 1 p 2B . p 1 p 3C . p 2 p 3D . p 1 p 2p 3211.已知双曲线 C :xy 2 1 , O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐 3近线的交点分别为 M , N .若 △ OMN 为直角三角形,则 MN () A .3B . 3C .2 3D . 4212.设函数 f x2 x, ≤ 0,则知足 f x 1f 2x 的 x 的取值范围是()x 01,yA .,1B . 0,C . 1,0D . ,0二、填空题(此题共 4 小题,每题 5 分,共 20 分)13.已知函数 f xlog 2 x 2 a ,若 f 31 ,则 a________.x 2 y 2 ≤ 014.若 x ,y 知足拘束条件x ≥ 0 ,则 z3x 2 y 的最大值为 ________.y 1y ≤ 015.直线 y x 1 与圆 x 2y 2 2 y 3 0 交于 A ,B 两点,则 AB________ .16. △ ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 b sinC csin B4asin Bsin C ,b 2c 2 a 2 8 ,则 △ ABC 的面积为 ________.三、解答题(共70 分。
(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)
绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0 B .12 C .1 D .22.已知集合2{|20}A x x x =-->,则A =R ðA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->UD .{|1}{|2}x x x x -U ≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a =,则5a = A .12- B .10- C .10 D .125.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =uu rA .3144AB AC -uu u r uuu r B .1344AB AC -uuu r uuu rC .3144AB AC +uu u r uuu rD .1344AB AC +uuu r uuu r7.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x =:的焦点为F ,过点(2,0)-且斜率为23的直线与C 交于M ,N 两点,则FM FN?uuu r uuu r A .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ. 在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则A .12p p =B .13p p =C .23p p =D .123p p p =+11.已知双曲线2213x C y :-=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N . 若OMN △为直角三角形,则||MN = A .32B .3C .23D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33B .23C .32D .3二、填空题:本题共4小题,每小题5分,共20分。
天津市和平区2018届高三上学期期末考试数学(文)试题含答案
8. 已知函数
则的取值范围是(
)
A.
B.
C.
【答案】 C
若始终存在实数 ,使得函数 D.
的零点不唯一,
当 A 错误;
当 时,
,则 时,
的零点不唯一,选项 B 错误;
当 时,
, 函数在 上单调递增,则不存在实数 ,使得函数
的零点不唯一,选项 D 错误 . 本题选择 C 选项 . :分段函数中求参数范围问题 : (1) 问题中参数值影响变形时,往往要分类讨论,需有明确的标准、全面的考虑; (2) 求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.
5. 阅读下面的程序框图,运行相应的程序,则输出的
的值为(
)
A. 56 B. 72 【答案】 B
C. 84
D. 90
阅读流程图可得,该流程图的功能为计算:
.
本题选择 B 选项 .
6. 将函数
的图象向右平移 个单位,得到图象对应的式为(
)
A.
B.
C.
D.
【答案】 D
结合函数平移的结论可得: 将函数
的图象向右平移 个单位, 得到图象对应的式
(Ⅲ)当
时,求方程
在区间
内实根的个数 .
【答案】 ( Ⅰ)
;( Ⅱ) 证明见; ( Ⅲ)2.
试题:
(Ⅰ )函数有相同的切线,则
,
, 据此计算可得
;
(Ⅱ )构造函数,令
, 原问题等价于
在
立,讨论函数的单调性可得
,即
在
上恒成立 .
上恒成
(Ⅲ )构造函数
,其中
,结合导函数讨论函数的单调性有
减,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 和平区2017—2018学年度第一学期高三年级期末质量调查试卷 数学(理) 第Ⅰ卷(共40分) 一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设集合,,则( )
A. B. C. D. 【答案】C 【解析】∵集合,集合 ∴ 故选C 2. “”是“关于的方程有实数根”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】∵若关于的方程有实数根 ∴,即 ∴不一定等于
故选A 3. 设变量满足约束条件则目标函数的最大值为( )
A. 9 B. 5 C. 1 D. -5
【答案】B 2
【解析】由约束条件作出可行域如图所示: 目标函数可化为 由图可知当直线过点时,取最大值 故选B 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.
4. 已知双曲线的右焦点为,若过点的直线与双曲线的右支有且只有一个交点,
则该直线斜率的取值范围是( ) A. B. C. D. 【答案】D
【解析】∵双曲线的方程为 ∴双曲线的渐近线方程为,右焦点 ∵过点的直线与双曲线的右支有且只有一个交点 ∴直线的斜率在和之间,包括端点 故选D 5. 阅读下面的程序框图,运行相应的程序,则输出的的值为( ) 3
A. 72 B. 90 C. 101 D. 110
【答案】B 【解析】输入参数 第一次循环,,满足,继续循环 第二次循环,,满足,继续循环 第三次循环,,满足,继续循环 第四次循环,,满足,继续循环 第五次循环,,满足,继续循环 第六次循环,,满足,继续循环 第七次循环,,满足,继续循环 第八次循环,,满足,继续循环 第九次循环,,不满足,跳出循环,输出 故选B 点睛:此类问题的一般解法是严格按照程序框图设计的计算步骤逐步计算,逐次判断是否满足判断框内的条件,决定循环是否结束.要注意初始值的变化,分清计数变量与累加(乘)变量,掌握循环体等关键环节. 6. 将函数的图象向左平移个单位,得到图象对应的解析式为( )
A. B. C. D. 【答案】D 【解析】将函数的图像向左平移个单位,得 故选D 7. 如图,正方形的边长为2,为的中点,,且与相交于点,则
的值为( ) 4
A. B. C. D. 【答案】A 【解析】以为原点,,所在的直线分别为轴,轴建立平面直角坐标系,则,,,
∵为的中点, ∴, ∴直线的方程为,直线的方程为
联立,得 ∴, ∴ 故选A 点睛:这个题目考查的是向量基本定理的应用,向量的数量积运算.解决向量的小题常用方法有:数形结合,向量的三角形法则,平行四边形法则等;建系将向量坐标化;向量基底化,选基底时一般选择已知大小和方向的向量为基底. 8. 已知函数若始终存在实数,使得函数的零点不唯一,
则的取值范围是( ) A. B. C. D. 5
【答案】C 【解析】由题可知函数的零点不唯一,等价于两函数与图象的交点个数不唯一 ∵的图象是开口向下、对称轴的抛物线,的图象是恒过的直线,注意到、,则分、、三种情况讨论: ①当时, ∵在上为增函数,在上为减函数,在上为减函数(当时为常数函数) ∴在上为增函数,在上为减函数 ∴始终存在实数使得在上与图象的交点个数不唯一. ②当时,在上为增函数,在上为减函数 ∵在上为增函数,且 ∴始终存在实数使得在上与图象的交点个数不唯一. ③当时,在上为增函数,在上为增函数,欲使始终存在实数使得在上与图象的交点个数不唯一,则必有,即,解得:. 综上所述,的取值范围是. 故选C 点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程
根的个数,即为直线与函数图象的公共点的个数; (3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形
结合求解,对于一些比较复杂的函数的零点问题常用此方法求解. 第Ⅱ卷(共110分) 二、填空题(每题5分,满分30分,将答案填在答题纸上) 9. 已知是虚数单位,则复数__________.
【答案】 6
【解析】结合复数的运算法则有:. 10. 的展开式中的系数为__________.(用数字作答)
【答案】60
【解析】的展开式的通项公式为 令得 ∴的系数为 故答案为60 11. 一个由棱锥和半球体组成的几何体,其三视图如图所示,则该几何体的体积为
__________.
【答案】 【解析】由三视图可得,该几何体是一个组合体, 其上半部分是一个四棱锥,四棱锥的底面是一个对角线长度为2的菱形,高为2, 其体积为:, 下半部分是半个球,球的半径,其体积为 据此可得,该几何体的体积为. 点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解. 12. 已知,则的最小值为__________.
【答案】-1 7
【解析】∵ 又∵ ∴,当且仅当,即时取等号 ∴最小值为 故答案为 点睛:本题主要考查利用基本不等式求最值,属于中等题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).
13. 已知函数,若,则的值为__________.
【答案】4 【解析】依题意函数的自变量满足,即,此时恒成立
∴
∴ ∴ 故答案为4 14. 现有6个人排成一横排照相,其中甲不能被排在边上,则不同排法的总数为__________.
【答案】480 【解析】假设6个人分别对应6个空位,甲不站在两端,有4个位置可选,则其他5人对应其他5个位置,有种情况,故不同排列方法种数种. 故答案为480 三、解答题 (本大题共6小题,共80分.解答应写出文字说明、证明过程或 8
演算步骤.) 15. 在中,角所对的边分别是,且.
(Ⅰ)若,求; (Ⅱ)若,,求的面积. 【答案】(Ⅰ);(Ⅱ). 【解析】试题分析: (Ⅰ)由题意结合正弦定理角化边可得.则.据此利用余弦定理可得. (Ⅱ)由题意可得.利用同角三角函数基本关系可得.则∴.据此结合三角形面积公式有的面积. 试题解析: (Ⅰ)由及正弦定理,得.
∵, ∴.
由余弦定理,得
. (Ⅱ)由已知,,得. ∵在中,为锐角,且,
∴. ∴. 由,及公式, ∴的面积. 16. 甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概 9
率依次为、、,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响. (Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率; (Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望. 【答案】(Ⅰ);(Ⅱ)答案见解析. 【解析】试题分析:(Ⅰ)记笔试、口试、实验独立通过考试分别为事件,则则事件“甲同学进入复赛的”表示为,由与互斥,且、、彼此独立,能求出甲同学进入复赛的概率;(Ⅱ)随机变量的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出的分布列和数学期望. 试题解析:(Ⅰ)记笔试、口试、实验独立通过考试分别为事件, 则事件“甲同学进入复赛的”表示为. ∵与互斥,且彼此独立, ∴. (Ⅱ)随机变量的所有可能取值为0,1,2,3. , , , . 所以,随机变量的分布列为
数学期望. 17. 如图,在三棱锥中,平面,,为的中点,为的中点,
点在线段上,,. (Ⅰ)求证:平面;