2012高考复习:函数概念与基本初等函数(高级)

合集下载

函数的概念与基本初等函数Ⅰ复习

函数的概念与基本初等函数Ⅰ复习

函数的概念与基本初等函数Ⅰ第一节 函数及其表示突破点(一) 函数的定义域1.函数与映射的概念 函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈A对应f :A →B2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.求给定解析式的函数的定义域常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R.(6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≠k π+π2,k ∈Z .[例1] y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2) D .[-2,0]∪[1,2] [答案] C求抽象函数的定义域对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[例2] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.[答案] [0,1)已知函数定义域求参数[例3] (2017·杭州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4][答案] D1.[考点一]函数y =x ln(2-x )的定义域为( ) A .(0,2) B .[0,2) C .(0,1] D .[0,2] 解析:选B2.[考点一](2017·青岛模拟)函数y =1-x 22x 2-3x -2的定义域为( )A .(-∞,1]B .[-1,1]C .[1,2)∪(2,+∞) D.⎣⎡⎭⎫-1,-12∪⎝⎛⎦⎤-12,1 解析:选D 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.答案:(0,2]4.[考点二]已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.答案:[-1,2]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为解析法、列表法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)解析法:一般情况下,必须注明函数的定义域;(2)列表法:选取的自变量要有代表性,应能反映定义域的特征;(3)图象法:注意定义域对图象的影响.与x 轴垂直的直线与其最多有一个公共点. 3.函数的三种表示方法的优缺点求函数的解析式求函数解析式的四种方法[典例](1)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(2)(2017·合肥模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为________.[解析] (1)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x+1).故当-1≤x ≤0时,f (x )=-12x (x +1).(2) f (x )=1516x -916x +18(x ≠0).1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=________. 答案:23x +13(x >0) 2.函数f (x )满足2f (x )+f (-x )=2x ,则f (x )=________. 答案:2x3.已知f (x +1)=x +2x ,求f (x )的解析式. f (x )=x 2-1,x ≥1.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式.f (x )=12x 2+12x ,x ∈R.5.已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式. f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数. (2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.分段函数求值[例1] (1)设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32(2)(2017·张掖高三模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为( )A.14B.⎝⎛⎭⎫12 21log 5+C.12D.120 [答案] (1)C (2)D求参数或自变量的值或范围[例2] (1)(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为( )A .-1或2B .2C .-1D .-2(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.[答案] (1)A (2)(-∞,8]1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x ,x ≤0,x 2,x >0,则f (f (-1))=( )A .2B .1 C.14 D.12解析:选C2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为( ) A.12 B .-12 C .1 D .-1 解析:选B3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3 解析:选B4.[考点二]设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞) 解析:选C5.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.答案:-1或16.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.答案:[-4,2][全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( )A .y =xB .y =lg xC .y =2xD .y =1x解析:选D2.(2015·新课标全国卷Ⅱ)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析:选C3.(2015·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧2x -1-2,x ≤1,-log 2(x +1),x >1,且f (a )=-3,则f (6-a )=( )A .-74B .-54C .-34D .-14解析:选A4.(2013·新课标全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1)C .[-2,1]D .[-2,0]解析:选D1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的是( )解析:选C2.若函数f (x +1)的定义域为[0,1],则f (2x -2)的定义域为( ) A .[0,1] B .[log 23,2] C .[1,log 23] D .[1,2] 解析:选B3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x 解析:选B 4.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________.答案:12[练常考题点——检验高考能力]一、选择题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为( )A .[1,10]B .[1,2)∪(2,10]C .(1,10]D .(1,2)∪(2,10] 解析:选D2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .1 B .2 C .3 D .-2 解析:选C3.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=( ) A .2 B .0 C .1 D .-1解析:选A4.(2017·贵阳检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么c 和a 的值分别是( )A .75,25B .75,16C .60,25D .60,16 解析:选D5.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x 解析:选D6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B二、填空题7.已知函数f (x )对任意的x ∈R ,f (x +1 001)=2f (x )+1,已知f (15)=1,则f (2 017)=________.答案:18.(2017· 绵阳诊断)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:答案:-349.已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________.解析:答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是________.答案:{x |x <-3或x >1} 三、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1) f (-1)=0,f (1.5)=-18.(2) f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1) y =x 2200+x100(x ≥0).(2)-72≤x ≤70.0≤x ≤70.行驶的最大速度是70千米/时.第二节 函数的单调性与最值突破点(一) 函数的单调性1.单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.判断函数的单调性1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反;(3)在公共定义域内,函数y=f(x)(f(x)≠0)与y=-f(x),y=1f(x)单调性相反;(4)在公共定义域内,函数y=f(x)(f(x)≥0)与y=f(x)单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1](1)下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3x C.f(x)=-1x+1D.f(x)=-|x|(2)已知函数f(x)=x2-2x-3,则该函数的单调递增区间为() A.(-∞,1] B.[3,+∞) C.(-∞,-1] D.[1,+∞) [答案](1)C(2)B函数单调性的应用应用(一) [例2] 已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >b D .b >a >c[答案] D应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[答案] B用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0D.⎣⎡⎦⎤-14,0 (2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞) [答案] (1)D (2)D1.[考点一]函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2] D .[2,+∞)解析:选A2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a ) 解析:选C3.[考点二·应用(二)](2017·太原模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.<x <3.答案:⎝⎛⎭⎫0,13∪(1,3) 4.[考点二·应用(三)]已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案:⎣⎡⎭⎫32,25.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.突破点(二) 函数的最值1.函数的最值 前提设函数f (x )的定义域为I ,如果存在实数M 满足条件对于任意x ∈I ,都有f (x )≤M ;对于任意x ∈I ,都有f (x )≥M ; 存在x 0∈I ,使得f (x 0)=M存在x 0∈I ,使得f (x 0)=M结论 M 为最大值M 为最小值2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.求函数的最值(值域)1.(1)判断或证明函数的单调性;(2)计算端点处的函数值;(3)确定最大值和最小值. 2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________.(2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)21.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1 (x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034 解析:选D2.(2017·贵阳检测)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12 解析:选C3.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________. 答案:34.(2017·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.答案:⎣⎡⎦⎤79,785.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案:1[全国卷5年真题集中演练——明规律] 1.(2015·新课标全国卷Ⅱ)设函数f (x )=ln(1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x的取值范围是( )A.⎝⎛⎭⎫13,1B.⎝⎛⎭⎫-∞,13∪(1,+∞)C.⎝⎛⎭⎫-13,13D.⎝⎛⎭⎫-∞,-13∪⎝⎛⎭⎫13,+∞ 解析:选A2.(2013·新课标全国卷Ⅰ)若函数f (x )=(1-x 2)(x 2+ax +b )的图象关于直线x =-2对称,则f (x )的最大值为________.答案:161.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12x D .y =x +1x 解析:选A2.如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,则( ) A .a =-2 B .a =2 C .a ≤-2 D .a ≥2 解析:选C3.函数y =|x |(1-x )在区间A 上是增函数,那么区间A 是( ) A .(-∞,0) B.⎣⎡⎦⎤0,12 C .[0,+∞) D.⎝⎛⎭⎫12,+∞ 解析:选B 4.函数f (x )=2x -1在[-6,-2]上的最大值是________;最小值是________. 答案:-27 -235.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.答案:⎣⎡⎭⎫-1,12 [练常考题点——检验高考能力]一、选择题1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④ 解析:选B2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则( )A .f (-1)<f (3)B .f (0)>f (3)C .f (-1)=f (3)D .f (0)=f (3) 解析:选A3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B4.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13 D.⎣⎡⎭⎫17,1 解析:选C5.(2017·九江模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B6.(2017·日照模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1] 解析:选D 二、填空题7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案:[0,1)9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.答案:22-310.(2017·豫南名校联考)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案:(-∞,-2) 三、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 答案:a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解: g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1. 第三节 函数的奇偶性及周期性突破点(一) 函数的奇偶性1.函数的奇偶性奇函数偶函数定义一般地,如果对于函数f (x )的定义域内任意一个x都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数都有f (-x )=f (x ),那么函数f (x )就叫做偶函数图象特征关于原点对称关于y 轴对称2.函数奇偶性常用结论(1)如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.函数奇偶性的判断[例1] 判断下列函数的奇偶性: (1)f (x )=x lg(x +x 2+1);(2)f (x )=(1-x )1+x1-x; (3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1 (x >0),x 2+2x -1 (x <0);(4)f (x )=4-x 2|x +3|-3.[解] (1)偶函数.(2)非奇非偶函数.(3)奇函数.(4)函数f (x )是奇函数.函数奇偶性的应用[例2] (1)已知函数f (x )=x 3+sin x +1(x ∈R),若f (a )=2,则f (-a )的值为( ) A .3 B .0 C .-1 D .-2(2)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.[答案] (1)B (2)131.[考点一]下列函数为偶函数的是()A.f(x)=x-1 B.f(x)=x2+x C.f(x)=2x-2-x D.f(x)=x2+cos x 答案:D2.[考点一]下列函数中,既不是奇函数,也不是偶函数的是()A.f(x)=1+x2B.f(x)=x+1x C.f(x)=2x+12x D.f(x)=x+ex解析:选D3.[考点二]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-2)=()A.-12 B.12C.2 D.-2解析:选B4.[考点二]设函数f(x)=(x+1)(x+a)x为奇函数,则a=________.答案:-15.[考点二]已知f(x)是R上的偶函数,且当x>0时,f(x)=x2-x-1,则当x<0时,f(x)=________.答案:x2+x-1突破点(二)函数的周期性1.周期函数对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x +T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.利用函数的周期性求值或范围周期函数y(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f (x )关于直线x =a 对称,又关于点(b,0)对称,则函数f (x )的周期是4|b -a |; (8)若函数f (x )是偶函数,其图象关于直线x =a 对称,则其周期为2a ; (9)若函数f (x )是奇函数,其图象关于直线x =a 对称,则其周期为4a .[典例] (1)(2017·郑州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=,那么f 2 016(2)的值为( )A .0B .1C .2D .3(2)设定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 018)=________.[解析] (1)∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,∴f n (2)的值具有周期性,且周期为3,∴f 2 016(2)=f 3×672(2)=f 3(2)=2,故选C.(2) f (0)+f (1)+f (2)+…+f (2 018)=1 009.1.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫52=( )A .0B .1 C.12D .-1解析:选D2.(2017·沈阳模拟)函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝⎛⎭⎫52的值为( )A.12B.14 C .-14 D .-12解析:选A3.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:a =35.所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.4.若对任意x ∈R ,函数f (x )满足f (x +2 017)=-f (x +2 018),且f (2 018)=-2 017,则f (-1)=________.答案:2 0175.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 018)的值.f (1)+f (2)+…+f (2 018)=336+3=339.突破点(三) 函数性质的综合问题1.函数的奇偶性、周期性及单调性是函数的三大性质,在高考中常常将它们综合在一起命题,其中奇偶性多与单调性结合,而周期性多与抽象函数结合,并结合奇偶性求函数值.2.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.因此在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.奇偶性与单调性的综合问题偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.[例1] 已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,求满足f (1-m )+f (1-m 2)<0的实数m 的取值范围.实数m 的取值范围是[-1,1).奇偶性与周期性的综合问题[例2] 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1 D .-3+1[答案] D奇偶性、周期性、单调性的综合问题[例3] 则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)[答案] D1.[考点一](2017·太原模拟)下列函数中,既是偶函数又在(0,+∞)上是减函数的是( ) A .y =x -1 B .y =ln x 2 C .y =cos xx D .y =-x 2 解析:选D2.[考点二](2017·广州联考)已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( )A .2B .-2C .-98D .98 解析:选B3.[考点一]已知定义在R 上的奇函数f (x )在x >0时满足f (x )=x 4,且f (x +t )≤4f (x )在x∈[1,16]时恒成立,则实数t的最大值是()A.2-1 B.16(2-1) C.2+1 D.16(2+1)解析:选A4.[考点三]已知函数f(x)是定义域为R的偶函数,且f(x+1)=1f(x),若f(x)在[-1,0]上是减函数,那么f(x)在[2,3]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数解析:选A5.[考点二]已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=2a-3 a+1,则实数a的取值范围为________.答案:(-1,4)[全国卷5年真题集中演练——明规律]1.(2014·新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C2.(2015·新课标全国卷Ⅰ)若函数f(x)=x ln(x+a+x2)为偶函数,则a=________.答案:13.(2014·新课标全国卷Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.答案:34.(2014·新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.答案:(-1,3)5.(2012·新课标全国卷)设函数f(x)=(x+1)2+sin xx2+1的最大值为M,最小值为m,则M+m=________.答案:21.(2016·肇庆三模)在函数y=x cos x,y=e x+x2,y=lg x2-2,y=x sin x中,偶函数的个数是()A.3 B.2 C.1 D.0解析:选B2.下列函数为奇函数的是()A .f (x )=xB .f (x )=e xC .f (x )=cos xD .f (x )=e x -e -x 解析:选D3.(2017·江南十校联考)设f (x )=x +sin x (x ∈R),则下列说法错误的是( ) A .f (x )是奇函数 B .f (x )在R 上单调递增 C .f (x )的值域为R D .f (x )是周期函数 解析:选D4.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.答案:-15.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 答案:--x -1[练常考题点——检验高考能力]一、选择题1.(2017·石家庄质量检测)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( )A .y =1x B .y =|x |-1 C .y =lg x D .y =⎝⎛⎭⎫12ln |x | 解析:选B2.(2017·泰安模拟)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2 解析:选A3.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( ) A.12 B.32 C .0 D .-12 解析:选A4.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是( )A.⎝⎛⎭⎫-∞,12B.⎝⎛⎭⎫-∞,12∪⎝⎛⎭⎫32,+∞C.⎝⎛⎭⎫12,32D.⎝⎛⎭⎫32,+∞ 解析:选C5.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .2 解析:选D6.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16 解析:选B 二、填空题7.(2017·揭阳模拟)已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.答案:18.函数f (x )=e x +x (x ∈R)可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是________.解析:答案:(-2,1)10.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案: 2 三、解答题11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1) m =2.(2)实数a 的取值范围是(1,3].12.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围.解:(1) f (1)=0.(2)f (x )为偶函数. (3) x 的取值范围是(-15,1)∪(1,17). 第四节 二次函数与幂函数突破点(一) 幂函数1.幂函数的定义形如y =x α(α∈R)的函数称为幂函数,其中x 是自变量,α为常数.对于幂函数,只讨论α=1,2,3,12,-1时的情形.2.五种幂函数的图象3.五种幂函数的性质 函数性质y =xy =x 2 y =x 3 y =x 12y =x -1 定义域 RRR[0,+∞)(-∞,0)∪(0,+∞)值域 R [0,+∞)R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性奇偶奇非奇非偶奇单调性 增 x ∈[0,+∞)时,增;x ∈(-∞,0]时,减增增x ∈(0,+∞)时,减;x ∈(-∞,0)时,减幂函数的图象[例1] 幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )[答案] C幂函数的性质(1)幂函数在(0;(3)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(4)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减;(5)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.[例2] (1)设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是________. (2)若(a +1)13-<(3-2a )13-,则实数a 的取值范围是________.[答案] (1)a >c >b (2)(-∞,-1)∪⎝⎛⎭⎫23,321.[考点二]已知函数f (x )=(m 2-m -1)x23+-m m 是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( )A .-1 B .2 C .-1或2 D .3解析:选B2.[考点一]图中C 1,C 2,C 3为三个幂函数y =x k 在第一象限内的图象,则解析式中指数k 的值依次可以是( )A .-1,12,3B .-1,3,12 C.12,-1,3 D.12,3,-1解析:选A3.[考点一、二](2017·昆明模拟)已知幂函数f (x )=(n 2+2n -2)xn 2-3n (n ∈Z)的图象关于y 轴对称,且在(0,+∞)上是减函数,则n 的值为( )A .-3B .1C .2D .1或2解析:选B n 2+2n -2=1,解得n =1或n =-3,经检验只有n =1符合题意. 4.[考点二]若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c解析:选D 5.[考点二]若(a +1)12<(3-2a )12,则实数a 的取值范围是________.答案:⎣⎡⎭⎫-1,23 突破点(二) 二次函数1.二次函数解析式的三种形式(1)一般式:f (x )=ax 2+bx +c (a ≠0),图象的对称轴是x =-b2a,顶点坐标是⎝⎛⎭⎫-b 2a,4ac -b 24a ;(2)顶点式:f (x )=a (x -m )2+n (a ≠0),图象的对称轴是x =m ,顶点坐标是(m ,n );(3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是方程ax 2+bx +c =0的两根,图象的对称轴是x =x 1+x 22. 2.二次函数的图象和性质 f (x )=ax 2+bx +ca >0a <0图象定义域 R值域 ⎣⎡⎭⎫4ac -b 24a ,+∞ ⎝⎛⎦⎤-∞,4ac -b 24a奇偶性b =0时为偶函数,b ≠0时既不是奇函数也不是偶函数单调性在⎝⎛⎦⎤-∞,-b2a 上单调递减,在⎣⎡⎭⎫-b 2a ,+∞上单调递增在⎝⎛⎦⎤-∞,-b2a 上单调递增,在⎣⎡⎭⎫-b 2a ,+∞上单调递减最值 当x =-b2a 时,y min =4ac -b 24a当x =-b2a 时,y max =4ac -b 24a求二次函数的解析式[例1] 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.f (x )=-4x 2+4x +7.二次函数的图象确定二次函数的图象,主要有以下三个要点:从这三方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.二次函数的图象与性质的应用考法(一) 二次函数的单调性[例2] 已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (2)当a =1时,求f (|x |)的单调区间.[解] (1)实数a 的取值范围是(-∞,-6]∪[4,+∞). (2) f (|x |)的单调递增区间是(0,6],单调递减区间是[-6,0].考法(二)二次函数的最值二次函数的最值问题主要有三种类型:“轴定区间定”、“轴动区间定”、“轴定区间动”.解决的关键是弄清楚对称轴与区间的关系,要结合函数图象,依据对称轴与区间的关系进行分类讨论.设f(x)=ax2+bx+c(a>0),则二次函数f(x)在闭区间[m,n]上的最大值、最小值有如下的分布情况:对称轴与区间的关系m<n<-b2a,即-b2a∈(n,+∞)m<-b2a<n,即-b2a∈(m,n)-b2a<m<n,即-b2a∈(-∞,m)图象最值f(x)max=f(m),f(x)min=f(n)f(x)max=max{f(n),f(m)},f(x)min=f⎝⎛⎭⎫-b2af(x)max=f(n),f(x)min=f(m)[例3]已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.[a=-1或a=2.考法(三)二次函数中的恒成立问题[例4]已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.实数a的取值范围是[2,3].1.[考点二]已知函数f(x)=ax2+bx+c,若a>b>c且a+b+c=0,则它的图象可能是()解析:选D2.[考点三·考法(一)]函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x ∈(-∞,-2]时,f(x)是减函数,则f(1)的值为()A.-3 B.13 C.7 D.5解析:选B3.[考点一]二次函数的图象过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为________________.答案:f (x )=12x 2-2x +14.[考点三·考法(二)]设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),求g (a ).g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2<a ≤1,-1,a >1.5.[考点三·考法(三)]已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,求实数a 的取值范围.实数a 的取值范围是⎝⎛⎭⎫-∞,12. 近五年全国卷对本节内容未直接考查1.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,12,1,2,则使f (x )=x α为奇函数,且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4 解析:选A2.设a =⎝⎛⎭⎫2313,b =⎝⎛⎭⎫1323,c =⎝⎛⎭⎫1313,则a ,b ,c 的大小关系为( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a解析:选A3.已知函数f (x )=ax 2-x -c ,且f (x )>0的解集为(-2,1),则函数y =f (-x )的图象为( )解析:选D4.二次函数的图象与x 轴只有一个交点,对称轴为x =3,与y 轴交于点(0,3).则它的解析式为________.答案:y =13x 2-2x +35.若关于x 的不等式x 2-4x ≥m 对任意x ∈(0,1]恒成立,则m 的取值范围为________. 答案:(-∞,-3][练常考题点——检验高考能力]一、选择题1.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2 D .m =1解析:选B2.若函数f (x )=(1-x 2)(x 2+ax -5)的图象关于直线x =0对称,则f (x )的最大值是( ) A .-4 B .4 C .4或-4 D .不存在解析:选B 3.已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则下列成立的是( )A .f (m )<f (0)B .f (m )=f (0)C .f (m )>f (0)D .f (m )与f (0)大小不确定解析:选A4.已知函数f (x )=x 2+2|x |,若f (-a )+f (a )≤2f (2),则实数a 的取值范围是( ) A .[-2,2]B .(-2,2]C .[-4,2]D .[-4,4]解析:选A 5.设函数f (x )=x 2-23x +60,g (x )=f (x )+|f (x )|,则g (1)+g (2)+…+g (20)=( )A .56B .112C .0D .38 解析:选B6.已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞) 解析:选C 二、填空题7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案:(3,5)8.已知点P 1(x 1,2 018)和P 2(x 2,2 018)在二次函数f (x )=ax 2+bx +9的图象上,则f (x 1+x 2)的值为________.答案:99.方程x 2+ax -2=0在区间[1,5]上有根,则实数a 的取值范围为________. 答案:⎣⎡⎦⎤-235,1 10.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.答案:⎝⎛⎦⎤-94,-2 三、解答题11.(2017·杭州模拟)已知函数h (x )=(m 2-5m +1)x m+1为幂函数,且为奇函数.(1)求m 的值;(2)求函数g (x )=h (x )+1-2h (x ),x ∈⎣⎡⎦⎤0,12的值域. 解:(1) m =0.(2)值域为⎣⎡⎦⎤12,1. 12.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解:(1)由已知c =1,a -b +c =0,且-b2a=-1,解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2,∴-2≤b ≤0.故b 的取值范围是[-2,0].第五节 指数与指数函数突破点(一) 指数幂的运算1.根式(1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)a 的n 次方根的表示x n=a ⇒⎩⎨⎧x =n a (当n 为奇数且n >1时),x =±n a (当n 为偶数且n >1时).2.有理数指数幂。

高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)

高考数学专题复习-2.1函数及其表示-高考真题练习(附答案)

专题二函数的概念与基本初等函数2.1函数及其表示考点一函数的概念及表示1.(2015湖北文,7,5分)设x∈R,定义符号函数sgnx=1,>0,0,=0,-1,<0.则()A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx答案D 由已知可知xsgnx=s >0,0,=0,-s <0,而|x|=s >0,0,=0,-s <0,所以|x|=xsgnx,故选D.2.(2014江西理,3,5分)已知函数f(x)=5|x|,g(x)=ax 2-x(a∈R).若f[g(1)]=1,则a=()A.1B.2C.3D.-1答案A 由已知条件可知:f[g(1)]=f(a-1)=5|a-1|=1,∴|a-1|=0,得a=1.故选A.评析本题主要考查函数的解析式,正确理解函数的定义是解题关键.3.(2015重庆文,3,5分)函数f(x)=log 2(x 2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)答案D 由x 2+2x-3>0,解得x<-3或x>1,故选D.4.(2015湖北文,6,5分)函数f(x)=4−|U +lg 2-5x+6t3的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4]D.(-1,3)∪(3,6]答案C 要使函数f(x)有意义,0,0,>0,解之得2<x<3或3<x≤4,故选C.5.(2014山东理,3,5分)函数()A. B.(2,+∞)C. D.答案C 要使函数f(x)有意义,需使(log 2x)2-1>0,即(log 2x)2>1,∴log 2x>1或log 2x<-1.解之得x>2或0<x<12.故f(x)的定义域为0,6.(2016课标Ⅱ文,10,5分)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是()A.y=xB.y=lgxC.y=2x答案D函数y=10lgx的定义域、值域均为(0,+∞),而y=x,y=2x的定义域均为R,排除A,C;y=lgx的值域为R,排除B,故选D.易错警示利用对数恒等式将函数y=10lgx变为y=x,将其值域认为是R是失分的主要原因.评析本题考查函数的定义域和值域,熟练掌握基本初等函数的图象和性质是解题的关键.7.(2022北京,4,4分)已知函数f(x)=11+2,则对任意实数x,有()A.f(-x)+f(x)=0B.f(-x)-f(x)=0C.f(-x)+f(x)=1D.f(-x)-f(x)=13答案C∵f(x)=11+2,∴f(-x)=11+2−=22+1,∴f(x)+f(-x)=11+2+22+1=1.故选C.一题多解:若对任意实数x,使得选项中式子成立,则可任取x值,代入验证,进行排除.当x=0时,f(0)+f(0)=12+12=1,f(0)-f(0)=0,故A,D选项错误.当x=1时,f(-1)-f(1)=11+2−1−11+21≠0,故B选项错误.根据排除法可知选C.8.(2022北京,11,5分)函数f(x)=1+1−的定义域是.答案(-∞,0)∪(0,1]解析由题意得≠0,1−≥0,解得x≤1且x≠0,所以函数f(x)的定义域为(-∞,0)∪(0,1].9.(2016江苏,5,5分)函数y=3−2t2的定义域是.答案[-3,1]解析若函数有意义,则3-2x-x2≥0,即x2+2x-3≤0,解得-3≤x≤1.考点二分段函数1.(2019天津理,8,5分)已知a∈R.设函数f(x)=2-2ax+2a,x≤1,tEns>1.若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1]B.[0,2]C.[0,e]D.[1,e]答案C本题主要考查分段函数及不等式恒成立问题,考查学生推理论证能力及运算求解能力,将恒成立问题转化为求最值问题,考查了学生化归与转化思想及分类讨论思想.(1)当x≤1时,f(x)=x 2-2ax+2a=(x-a)2+2a-a 2,①若a>1,则f(x)在(-∞,1]上是减函数,所以f(x)≥f(1)=1>0恒成立;②若a≤1,则f(x)≥f(a)=2a-a 2,要使f(x)≥0在(-∞,1]上恒成立,只需2a-a 2≥0,得0≤a≤2,∴0≤a≤1,综合①②可知,a≥0时,f(x)≥0在(-∞,1]上恒成立.(2)当x>1时,lnx>0,f(x)=x-alnx≥0恒成立,即a≤ln 恒成立.令g(x)=ln ,g'(x)=lnt1(lnp 2,令g'(x)=0,得x=e,当x∈(1,e)时,g'(x)<0,g(x)为减函数,当x∈(e,+∞)时,g'(x)>0,g(x)为增函数,∴g(x)min =g(e)=e,∴a≤e.综合(1)(2)可知,a 的取值范围是0≤a≤e,故选C.解后反思求不等式恒成立时的参数取值范围的方法:一是分离参数法,不等式f(x)≥a 在R 上恒成立⇔f(x)min ≥a,f(x)≤a 在R 上恒成立⇔f(x)max ≤a;二是讨论分析法,根据参数取值情况进行分类讨论,从而确定参数的取值范围.2.(2019天津文,8,5分)已知函数≤x ≤1,x >1.若关于x 的方程f(x)=-14x+a(a∈R)恰有两个互异的实数解,则a 的取值范围为()答案D 本题以分段函数和方程的解的个数为背景,考查函数图象的画法及应用.画出函数y=f(x)的图象,如图.方程f(x)=-14x+a 的解的个数,即为函数y=f(x)的图象与直线l:y=-14x+a 的公共点的个数.当直线l 经过点A 时,有2=-14×1+a,a=94;当直线l 经过点B 时,有1=-14×1+a,a=54.由图可知,函数y=f(x)的图象与l 恰有两个交点.另外,当直线l 与曲线y=1,x>1相切时,恰有两个公共点,此时a>0.联立=1,=−14x +a,得1=-14x+a,即14x 2-ax+1=0,由Δ=a 2-4×14×1=0,得a=1(舍去负根).综上故选D.一题多解令g(x)=f(x)+14x=4(0≤x ≤1),>1),当0≤x≤1时,g(x)=2+4为增函数,其值域为0,当x>1时,g(x)=1+4,对g(x)求导得g'(x)=-12+14,令g'(x)=0,得x=2,当x∈(1,2)时,g'(x)<0,g(x)单调递减,当x∈(2,+∞)时,g'(x)>0,g(x)单调递增,∴当x=2时,g(x)min =g(2)=1,函数g(x)的简图如图所示:方程f(x)=-14x+a 恰有两个互异的实数解,即函数y=g(x)的图象与直线y=a 有两个不同的交点,由图可知54≤a≤94或a=1满足条件,故选D.易错警示本题入手时,容易分段研究方程2=-14x+a(0≤x≤1)与1=-14x+a(x>1)的解,陷入相对复杂的运算过程.利用数形结合时,容易在区间的端点处出现误判.3.(2015课标Ⅰ文,10,5分)已知函数f(x)=2t1-2,x ≤1,-log 2(x +1),x >1,且f(a)=-3,则f(6-a)=()A.-74 B.-54 C.-34 D.-14答案A 当a≤1时,f(a)=2a-1-2=-3,即2a-1=-1,不成立,舍去;当a>1时,f(a)=-log 2(a+1)=-3,即log 2(a+1)=3,得a+1=23=8,∴a=7,此时f(6-a)=f(-1)=2-2-2=-74.故选A.评析本题主要考查分段函数,指数与对数的运算,考查分类讨论的思想,属中等难度题.4.(2015陕西文,4,5分)设f(x)=1−sx ≥0,2,x <0,则f(f(-2))=()A.-1B.14C.12D.32答案C ∵f(-2)=2-2=14,∴f(f(-2))=f =12,选C.5.(2015山东文,10,5分)设函数f(x)=3ts x <1,2,x ≥1.若f 则b=()A.1B.78C.34D.12答案D=3×56-b=52-b,当52-b≥1,即b≤32时-b=252-b,即252-b=4=22,得到52-b=2,即b=12;当52-b<1,即b>32时-b=152-3b-b=152-4b,即152-4b=4,得到b=78<32,舍去.综上,b=12,故选D.6.(2014江西文,4,5分)已知函数f(x)=·2,x≥0,2-,x<0(a∈R),若f[f(-1)]=1,则a=() A.14 B.12 C.1 D.2答案A由f[f(-1)]=f(2)=4a=1,得a=14,故选A.7.(2014课标Ⅰ文,15,5分)设函数f(x)=e t1,x<1,13,x≥1,则使得f(x)≤2成立的x的取值范围是.答案(-∞,8]解析f(x)≤2⇒<1,e t1≤2或≥1,13≤2⇒<1,≤ln2+1或≥1,≤8⇒x<1或1≤x≤8⇒x≤8,故填(-∞,8].8.(2022浙江,14,6分)已知函数f(x)=−2+2,≤1,+1−1,>1,则f=;若当x∈[a,b]时,1≤f(x)≤3,则b-a的最大值是.答案3728;3+3解析∵+2=74,∴f==74+47−1=3728.f(x)的大致图象如图.∵当x∈[a,b]时,1≤f(x)≤3,∴由图可得b>1且b+1-1=3,∴b=2+3,∵f(a)=1,∴-a2+2=1,解得a=1或a=-1,∴(b-a)max=2+3-(-1)=3+3.一题多解:第二空:∵当x≤1时,y=-x2+2≤2,∴f(x)=3⇒x+1-1=3(x>1),故x=2+3,令-x2+2=1(x≤1),解得x=1或x=-1,令x+1-1=1(x>1),无解,∴a min=-1,b=2+3,∴(b-a)max=2+3-(-1)=3+3.。

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法

人教版高考总复习一轮数学精品课件 主题二函数第三章 函数与基本初等函数-第一节 函数的概念及其表示法
题型二 函数的解析式
典例2根据下列条件,求函数的解析式.
(1)是二次函数,且,.
解(待定系数法)设,由,得,则,所以,且,解得,,故.
(2).
解方法一(换元法):令,则,,所以,所以函数的解析式为.方法二(配凑法).因为,所以函数的解析式为.
(3).
解(构造方程组法)将代入,得,联立得解得.
(4),对任意的实数,都有.
规律方法求函数解析式的常用方法
方法
使用条件
解题思路
待定系数法
已知函数的类型(图象)
设出含有待定系数的函数解析式,将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数
换元法
已知,求
设,从中解出,代入进行换元(应用换元法时要注意新元的取值范围)
配凑法
把右边的整理或配凑成只含的式子,然后用将代换
对应关系
并集
并集
知识拓展
教材中的几个重要函数
函数类型
定义
图象
绝对值函数
“双勾”函数
_
函数类型
定义
图象
取整函数
,其中表示不超过的最大整数
符号函数
续表
自测诊断
1.函数的定义域是()
B
A.B.C.D.
[解析]由题知解得且,所以函数的定义域为.故选B.
2.已知,则()
D
A.B.C.D.
[解析]由题意,故.故选D.
A
A.B.C.D.18
[解析]因为当时,,所以,所以;又当时,,所以.故选A.
[对点训练3](1)设函数则()
C
A.B.C.D.
[解析]因为,所以.故选C.
(2)已知函数则___.
[解析].故答案为.

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

函数的概念与基本初等函数、导数及其应用复习(教师版)

函数的概念与基本初等函数、导数及其应用复习(教师版)

函数的概念与基本初等函数、导数及其应用 综合复习一.函数的概念和图象、函数的表示方法、映射的概念 例题讲解1.函数f (x )=3x 21-x+lg(3x +1)的定义域是________.解析:要使函数有意义,必须且只须⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,所以函数的定义域为⎝⎛⎭⎫-13,1.答案:⎝⎛⎭⎫-13,12.已知函数f (x )=⎩⎪⎨⎪⎧8x -8 (x ≤1)x 2-6x +5(x >1),g (x )=ln x ,则f (x )与g (x )两函数的图像的交点个数为________. 答案:33.设函数f (x )=⎩⎨⎧23x -1,x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是________.解析:易知f (a )>a ⇔⎩⎪⎨⎪⎧ 23a -1>a a ≥0或⎩⎪⎨⎪⎧1a >aa <0解之即得不等式的解集为(-∞,-1).4.定义在区间(-1,1)上的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )的解析式为________. 解析:∵对任意的x ∈(-1,1)有-x ∈(-1,1),由2f (x )-f (-x )=lg(x +1)①得2f (-x )-f (x )=lg(-x +1)②,①×2+②消去f (-x ),得3f (x )=2lg(x +1)+lg(-x +1) ∴f (x )=23lg(x +1)+13lg(1-x )(-1<x <1).答案:f (x )=23lg(x +1)+13lg(1-x )(-1<x <1)5.若函数f (x )的值域为⎣⎡⎦⎤12,3,求函数F (x )=f (x )+1f (x )的值域. 解:令f (x )=t ,t ∈⎣⎡⎦⎤12,3,问题转化为求函数y =t +1t 在⎣⎡⎦⎤12,3的值域.又y ′=1-1t 2=t 2-1t2,当t ∈⎣⎡⎦⎤12,1,y ′≤0,y =t +1t 为减函数,当t ∈[1,3],y ′≥0,y =t +1t 在[1,3]上为增函数, 故t =1时y min =2,t =3时y =103为最大.∴y =t +1t ,t ∈⎣⎡⎦⎤12,3的值域为⎣⎡⎦⎤2,103.二.函数的单调性 例题讲解1.函数y =x +2x -2的单调区间是________,在该区间上是单调________.解析:y =x +2x -2可写成y =1+4x -2,所以函数的单调区间是(-∞,2)及(2,+∞),在这两个区间上都是单调减函数.答案:(-∞,2)及(2,+∞) 减函数2.已知函数y =f (x )是定义在R 上的增函数,则f (x )=0的根最多有________个.解析:∵f (x )在R 上是增函数,∴对任意x 1,x 2∈R ,若x 1<x 2,则f (x 1)<f (x 2),反之亦成立.故若存在f (x 0)=0,则x 0只有一个,若对任意x ∈R 都无f (x )=0,则f (x )=0无解.答案:1 3.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为________. 解析:∵f (x )=(x -1)2+2,其对称轴为x =1,当x =1时,f (x )min =2,故m ≥1,又∵f (0)=3, ∴f (2)=3,∴m ≤2.答案:[1,2]4.函数y =x 2x 2+1(x ∈R)的最小值是________.解析:由已知:yx 2+y =x 2,即x 2=y1-y≥0,∴y ·(y -1)<0或y =0,∴0≤y <1.∴y 的最小值为0.答案:05.若函数f (x )=mx 2+ln x -2x 在定义域内是增函数,则实数m 的取值范围是________. 解析:由题意可得:f ′(x )=2mx +1x -2在(0,+∞)上有f ′(x )≥0恒成立,所以,2mx +1x -2≥0在(0,+∞)上恒成立,即2m ≥2x -1x 2在(0,+∞)上恒成立,设t (x )=-1x 2+2x =-⎝⎛⎭⎫1x -12+1,只要求出t (x )在(0,+∞)上的最大值即可. 而当1x =1,即x =1时,t (x )max =1,所以2m ≥1,即m ≥12.答案:m ≥12三.函数的奇偶性与周期性 例题讲解1.已知函数f (x )=1+me x -1是奇函数,则m 的值为________.解析:∵f (-x )=-f (x ),即f (-x )+f (x )=0,∴1+m e -x -1+1+me x -1=0,∴2-m e x e x -1+m e x -1=0,∴2+me x -1(1-e x )=0,∴2-m =0,∴m =2.答案:22.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)=________. 解析:设x <0,则-x >0,f (-x )=2-x -3=-f (x ),故f (x )=3-2-x ,所以f (-2)=3-22=-1.答案:-13.已知函数f (x )=a -12x +1,若f (x )为奇函数,则a =________.解析:解法一:∵f (x )为奇函数,定义域为R ,∴f (0)=0⇔a -120+1=0⇔a =12.经检验,当a=12时,f (x )为奇函数. 4.已知f (x )是R 上的奇函数,且当x >0时,f (x )=x 3+x +1,求f (x )的解析式. 解:设x <0,则-x >0,∴f (-x )=(-x )3-x +1=-x 3-x +1.由f (x )为奇函数,∴f (-x )=-f (x ).∴-x 3-x +1=-f (x ),即f (x )=x 3+x -1. ∴x <0时,f (x )=x 3+x -1,又f (x )是奇函数.∴f (0)=0,∴f (x )=⎩⎪⎨⎪⎧x 3+x +1 (x >0)0 (x =0)x 3+x -1 (x <0).四.指数函数 例题讲解1.函数y =a x +2-2(a >0,a ≠1)的图象恒过定点A (其坐标与a 无关),则A 的坐标为________.答案:(-2,-1) 2.已知,则a ,b ,c 按从小到大顺序排列为________. 解析:,∴b <a <c .答案:b <a <c3.设f (x )=4x 4x +2,则f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫311+…+f ⎝⎛⎭⎫1011=________. 解析:可以求得f (x )+f (1-x )=1,于是有f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011=f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911=f ⎝⎛⎭⎫311+f ⎝⎛⎭⎫811=f ⎝⎛⎭⎫411+f ⎝⎛⎭⎫711=f ⎝⎛⎭⎫511+f ⎝⎛⎭⎫611=1, 共有5组,所以原式=5.答案:5五.对数函数 例题讲解1.若lg x -lg y =a ,则lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23等于________. 解析:∵lg x -lg y =a ,∴lg x y =a ,lg ⎝⎛⎭⎫x 23-lg ⎝⎛⎭⎫y 23=lg ⎝⎛⎭⎫x 23⎝⎛⎭⎫y 23=lg ⎝⎛⎭⎫x y 3=3lg x y =3a .答案:3a 2.已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0)3x (x ≤0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=________.解析:f ⎝⎛⎭⎫13=-1,f ⎣⎡⎦⎤f ⎝⎛⎭⎫13=f (-1)=3-1=13.答案:13 3.已知2a =5b =10,则1a +1b=________.解析:∵2a =10,5b =10,∴a =log 210,b =log 510,∴1a +1b =1log 210+1log 510=lg 2+lg 5=1.答案:1六.幂函数、一次函数及二次函数 例题讲解 1.若,则a 的取值范围是________.解析:∵,∴⎩⎪⎨⎪⎧a +1>03-2a >0a +1>3-2a或⎩⎪⎨⎪⎧a +1<03-2a <0a +1>3-2a或⎩⎪⎨⎪⎧3-2a >0a +1<0,解之得23<a <32或a <-1.答案:23<a <32或a <-1 2.已知函数f (x )=x α的图象经过点(4,2),则log 2f (2)=________. 解析:由题意知:2=4α,∴α=12,∴log 2f (2)==12.答案:123.已知集合A ={x |x 2-2x <3},集合B ={x |x ≤2},则A ∩B =________.解析:A ={x |x 2-2x -3<0}={x |(x +1)(x -3)<0}=(-1,3);B =(-∞,2],∴A ∩B =(-1,2]. 答案:(-1,2]4.已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=________.解析:由幂函数定义得k =1,再将点⎝⎛⎭⎫12,22代入得22=⎝⎛⎭⎫12α,从而α=12,故k +α=32.答案:325.函数f (x )=(x -1)log 23a -6x log 3a +x +1在区间[0,1]上恒为正值,实数a 的取值范围是________.解析:由题知⎩⎨⎧f (0)>0f (1)>0,⎩⎪⎨⎪⎧-log 23a +1>0-6log 3a +2>0,13<a <33.答案:⎝ ⎛⎭⎪⎫13,33七.函数与方程 例题讲解1.函数f (x )=ln x -1x -1的零点的个数是________.解析:本题考查了学生的画图能力,构造函数等方法.这种题型很好地体现了数形结合的数学思想.构建函数h (x )=ln x ,g (x )=1x -1,f (x )的零点个数即h (x )与g (x )交点的个数.画出图象可知有两个交点. 答案:22.若函数f (x )=ax +b 有一个零点为2,那么g (x )=bx 2-ax 的零点是________. 解析:ax +b =0,x =-b a =2,bx 2-ax =0,x =0或x =a b =-12.答案:0,-12八.函数模型及其应用 例题讲解1.计算机的价格大约每3年下降23,那么今年花8 100元买的一台计算机,9年后的价格大约是________元.解析:9年后的价格大约是8 100×⎝⎛⎭⎫ 13 3=300元.答案:300九.导数的概念与导数的运算 例题讲解1.曲线y =2x 3在x =1处的切线的斜率是________.解析:令y =f (x )=2x 3,∴y ′=f ′(x )=6x 2,∴f ′(1)=6.答案:6 2.已知f (x )=x 2+2xf ′(1),则f ′(0)等于________.解析:f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4, ∴f ′(0)=-4.答案:-43.已知函数f (x )=x ·e x ,则f ′(0)=________. 解析:f ′(x )=(x ·e x )′=e x +x e x ,∴f ′(0)=1.答案:14.曲线C :f (x )=sin x +e x +2在x =0处的切线方程为________.解析:由f (x )=sin x +e x +2得f ′(x )=cos x +e x ,从而f ′(0)=2,又f (0)=3,所以切线方程为y =2x +3.答案:y =2x +35.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率范围是[-1,3],则点P 纵坐标的取值范围是________.解析:由题知,y ′=2x -1,所以-1≤2x -1≤3,即0≤x ≤2.此时y =x 2-x +1=⎝⎛⎭⎫x -122+34的值域为⎣⎡⎦⎤34,3,故点P 纵坐标的取值范围是⎣⎡⎦⎤34,3. 6.已知函数f (x )=f ′⎝⎛⎭⎫π2sin x +cos x ,则f ⎝⎛⎭⎫π4=________. 解析:由题意f ′(x )=f ′(π2)cos x -sin x ,得f ′( π2 )=f ′⎝⎛⎭⎫π2·cos π2-sin π2,即f ′⎝⎛⎭⎫π2=-1,∴f (x )=-sin x +cos x ,则f ⎝⎛⎭⎫π4=-sin π4+cos π4=0.答案:0 7.已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程. 解:(1)∵y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0. (2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43, 则切线的斜率k =y ′|x =x 0=x 20.∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0, ∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.十.导数在研究函数中的应用 例题讲解1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角形面积为________. 解析:曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线斜率为y ′|x =1=⎝⎛⎪⎪13x 3+x ′x =1=(x 2+1)|x =1=2,所以切线的方程为y -43=2(x -1),即y =2x -23,与x 轴的交点和y 轴的交点为⎝⎛⎭⎫13,0,⎝⎛⎭⎫0,-23,所求面积为S =12×13×23=19.答案:192.已知f (x )=x 2+2x +a ln x ,若f (x )在区间(0,1]上恒为单调函数,则实数a 的取值范围为________.解析:由题意知,f ′(x )=2x +2+a x =2x 2+2x +ax,∵f (x )在区间(0,1]上恒为单调函数,∴f ′(x )在区间(0,1]上恒大于等于0或恒小于等于0,∴2x 2+2x +a ≥0或2x 2+2x +a ≤0在区间(0,1]上恒成立,即a ≥-(2x 2+2x )或a ≤-(2x 2+2x ),而函数y =-2x 2-2x 在区间(0,1]的值域为[-4,0),∴a ≥0或a ≤-4.答案:a ≥0或a ≤-43.已知f (x )为奇函数,且当x >0时,f (x )>0,f ′(x )>0,则函数y =xf (x )的递增区间是________. 解析:当x >0时,y ′=[xf (x )]′=f (x )+xf ′(x )>0,∴y =xf (x )在(0,+∞)上递增.又f (x )为奇函数,∴y =xf (x )为偶函数,∴y =xf (x )在(-∞,0)上递减.答案:(0,+∞)。

(完整版)高考函数知识点总结(全面)

(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。

二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。

求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

3。

复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。

三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。

函数的概念与基本初等函数-高考文科数学复习资料

函数的概念与基本初等函数-高考文科数学复习资料学科思想分类讨论思想例已知二次函数最大值2,求的值.【思路分析】本题考查用分类讨论思想解决二次函数问题,解题的关键是对称轴的位置.【解析】①当②当时,时,得..,解得的差为,故该方程在③当综上可知,时,或.(1)求m的值,并确定【方法技巧】求解二次函数在闭区间上的最值问题,关键是抓住“三点一轴”,“三点”即区间端点与区间中上为增函数,求实数a的取值范围.点,“一轴”即二次函数的对称轴,合理进行讨论.数形结合思想例若a是实数,试讨论数.【思路分析】本题考查含参数的函数零点个数问题,求解时需将法求解.【解析】设,.转化为,利用数形结合是()222A.某1+某2+某3=14B.1+a +b=0C.某1+某3=4D.某1+某3>2某2的零点的个6.设定义域为R的函数(2)若的解析式;在上无解.4.已知函数,得..2.函数取值范围是__________.,若在上有训练题组1.若a>0,且a≠1,p=loga (a3+1),q=loga(a2+1),则p,q的大小关系是()A.p=qB.p“qD.当a>1时,p>q;当0”在同一直角坐标系内作出两个函数的图象如图.7.已知,下列不等式中成立的是()A.B.C.由图可知,当零点;当当当当时,函数有2个零点;时,函数有4个零点;时,函数有3个零点;时,函数有2个零点;的图象为的图象时,两函数图象无交点,因此函数无8.已知是方程D.的一个根,是方程的一个根,那么的值是()A.6B.3C.2D.1【方法技巧】本题中在某轴及其上方的部分不变,将某轴下方的部分以某轴为对称轴,翻折到上方而得到.转化与化归思想9.若函数例若函数(1)若函数(2)若函数函数的零点.【思路分析】本题考查函数零点的求解方法以及零点的性质,求解的关键是将函数的零点转化为方程的根.【解析】(1)令∵,得...有零点,求实数b的取值范围;有零点,试讨论零点的个数,并求出值范围__________.有零点,则实数a的取10.设f(某)是定义在R上的奇函数,且当某≥0时,f(某)=某2,若对任意某∈[a,a+2],f(某+a)≥f(3某+1恒成立,则实数a的取值范围是__________.11.设函数f(某)=ka某–a–某(a>0且a≠1)是定义域为的奇函数.(1)若(f1)>0,试求不等式(f某2+2某)+(f某–4)>的解集;3(2)若f(1)=2,且g(某)=a2某+a–2某–4f(某)求g(某)在[1,+∞)上的最小值.∴当函数存在零点时,时,.,此时方程12.已知某满足不等式数的最值.,求函(2)①由(1)知当的根为②当∴∵∴令∴当,,因此函数时,∵.∴的零点为0;...的解为,得时,.,故..的解为综合①②知,当分别为当时,函数;当时,函数时,函数或的零点有两个,;的零点只有一个,为的零点只有一个,为的零点与方程.的根的零【方法技巧】函数是可以相互转化的,一般地,由研究函数点,转化为研究方程函数思想例已知2≤某≤5,求代数式的最值.的根.13.对任意a∈[–1,1],函数f(某)=某2+(a–4)某+4–2的值总大于零,则某的取值范围是()A.1<某<3B.某<1或某>3C.1<某<2D.某<1或某>2【思路分析】本题考查二次函数的区间最值.解题的关键是结合二次函数的图象进行分析.【解析】设,所得函数是二次函数.14.如果0 15.设不等式2某–1>m(某2–1)对满足|m|≤2的一切实数配方,得,∴抛物线的顶点坐标是都成立,则的取值范围__________..∵自变量的取值范围是2≤某≤5,而某=1不在此16.设方程某2–(a2–a+1)某–4=0在[1,4]上有解,求实数的取值范围.范围内,∴二次函数是抛物线的图象的一部分,不含顶点,这部分在对称轴的右侧,根据二次函数的性质,∵a=–3<0,∴抛物线开口向下,在对称轴的右侧,y随某的增大而减小.∴当某=2时,当某=5时,【方法技巧】想到二次函数式的最值.;.是关于某的二次三项式,联的图象和性质求此代数1.【答案】C【解析】当0loga(a2+1),即p>q.当a>1时,y=a某和y=loga某在其定义域上均为增函数,则a3+1>a2+1,∴loga(a3+1)>loga(a2+1),即p>q.综上可得p>q.2.【答案】【解析】当时,,此时不等式的解集是时,;当时,,此时不等式无解;当以a的取值范围是.,此时不等式无解.所133.【答案】–2或23【解析】当a>1时,y=a是增函数,∴a–a=,∴a=2.某2当0某24.【解析】(1)由∵当当为减函数,∴时,时,,得,解得,∴.∵..为奇函数,不合题意;为偶函数.∴,此时.上单调递增,且∴实数a的取值范围为.∴.解得.5.【解析】令t=a某(a>0且a≠1),则原函数化为y=(t+1)2–2(t>0).①当0<a<1时,某∈[–1,1],t=a∈a,某此时f(t)在a上为增函数.11所以f(t)ma某=fa=+1–2=14.111所以+1=16,所以a=–5或a =3.1又因为a>0,所以a=3.11②当a>1时,某∈[–1,1],t=a∈,a,此时f(t)在,a上是增函数.某所以f(t)ma某=f(a)=(a+1)2–2=14,解得a=3(a=–5舍去).综上得a=3或3.6.【答案】D【解析】作出f(某)的图象,图象关于某=2对称,且某=2时,f(某)=1,故f(某)=1有3个不同实数根某,除此之外,只有两个根或无根.又f2(某)+af(某)+b=0有3个不同的实数解某1某3=3,故A,B,C正确.故选D.7.【答案】C【解析】在同一坐标系中分别作出,即当时,,,图象,如图,当时,.故选C.8.【答案】B【解析】将已知的两个方程变形得.在同一坐标系中分别作出象,如图所示.,、和.令的图记与的交点为,对称,便有代入上式,得有零点,有实数解.,则原方程化为上有实数解.(),与的交点为,,即,利用函数的性质易知A、B两点关于直线得9.【答案】【解析】∵函数∴方程设该方程在,再将.将A点坐标代入直线方程,.故选B.②当方程的解一个在上,另一个在上时,令,则或,即..综合①②知,函数10.【答案】(–∞,–5]有零点时,实数a的取值范围为【解析】因为当某≥0时,f(某)=某2,所以此时函数f(某)在[0,+∞)上单调递增.又因为f(某)是定义在R上的奇函数,且f(0)=0,所以f(某)在R上单调递增.若对任意某∈[a,a+2],不等式f(某+a)≥f(3某+1)恒成立,则某+a≥3某+1恒成立,即a≥2某+1恒成立,因为某∈[a,a+2],所以(2某+1)(a+2)+1=2a+5,即a≥2a+5,解得a≤–5.即ma某=2实数a的取值范围是(–∞,–5].11.【解析】因为f(某)是定义域为R的奇函数,所以f(0)=0,所以k–1=0,即k=1,f(某)=a某–a–某.(1)因为f(1)>0,所以a–a>0,又a>0且a≠1,所以a>1.因为f′(某)=a某lna+a–某lna=(a某+a–某)lna>0,所以f(某)在R上为增函数,原不等式可化为f(某2+2某)>f(4–某),所以某2+2某>4–某,即某2+3某–4>0,所以某>1或某所以不等式的解集为{某|某>1或某313(2)因为f(1)=2,所以a–a=2,1即2a–3a–2=0,所以a=2或a=–2(舍去).2所以g(某)=22某+2–2某–4(2某–2–某)=(2某–2–某)2–4(2某–2–某)+2.令t(某)=2某–2–某(某≥1),3则t(某)在(1,+∞)为增函数(由(1)可知),即t(某)≥t (1)=2,所以原函数为ω(t)=t2–4t+2=(t–2)2–2,所以当t=2时,ω(t)min=–2,此时某=log2(1+).即g(某)在某=log2(1+)时取得最小值–2.12.【解析】由,可解得,即,∴.∵∴当当,即,即时,时,有最小值有最大值6.,;∴当的最大值为6,最小值为13.【答案】B.【解析】依题意有某2+(a–4)某+4–2a>0恒成立,即(某–2)a+某2–4某+4>0恒成立.令g(a)=(某–2)a+某2–4某+4,把g(a)看作是关于主元a的函数,则g(a)是一次函数(某≠2)或是常数函数(某=2),因为a∈[–1,1],要g(a)>0恒成立,只需解得某<1或某>3,故选B.14.【答案】A 【解析】设y1=a|某|,y2=|loga某|,分别作出它们的图象如图所示:,由图可知,有两个交点.。

函数与基本初等函数复习资料

第1讲函数及其表示【高考会这样考】1.主要考查函数的定义域、值域、解析式的求法.2.考查分段函数的简单应用.3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.【复习指导】正确理解函数的概念是学好函数的关键,函数的概念比较抽象,应通过适量练习弥补理解的缺陷,纠正理解上的错误.本讲复习还应掌握:(1)求函数的定义域的方法;(2)求函数解析式的基本方法;(3)分段函数及其应用.基础梳理1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.一个方法求复合函数y =f (t ),t =q (x )的定义域的方法:①若y =f (t )的定义域为(a ,b ),则解不等式得a <q (x )<b 即可求出y =f (q (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )的值域即为f (t )的定义域. 两个防范(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f :A →B 的三要素是两个集合A 、B 和对应关系f .双基自测1.(人教A 版教材习题改编)函数f (x )=log 2(3x +1)的值域为( ). A .(0,+∞) B .[0,+∞) C .(1,+∞) D .[1,+∞)解析 ∵3x +1>1,∴f (x )=log 2(3x +1)>log 21=0. 答案 A2.(2011·江西)若f (x )=1log12x +,则f (x )的定义域为( ). A.⎝ ⎛⎭⎪⎫-12,0 B.⎝ ⎛⎦⎥⎤-12,0 C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析 由log 12(2x +1)>0,即0<2x +1<1,解得-12<x <0.答案 A3.下列各对函数中,表示同一函数的是( ). A .f (x )=lg x 2,g (x )=2lg x B .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1) C .f (u )=1+u1-u,g (v )= 1+v1-vD .f (x )=(x )2,g (x )=x 2 答案 C4.(2010·陕西)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( ). A .y =⎣⎢⎡⎦⎥⎤x 10B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 解析 根据规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,即余数分别为7、8、9时可增选一名代表.因此利用取整函数可表示为y =⎣⎢⎡⎦⎥⎤x +310.故选B. 答案 B5.函数y =f (x )的图象如图所示.那么,f (x )的定义域是________;值域是________;其中只与x 的一个值对应的y 值的范围是________.解析 任作直线x =a ,当a 不在函数y =f (x )定义域内时,直线x =a 与函数y =f (x )图象没有交点;当a 在函数y =f (x )定义域内时,直线x =a 与函数y =f (x )的图象有且只有一个交点.任作直线y =b ,当直线y =b 与函数y =f (x )的图象有交点,则b 在函数y =f (x )的值域内;当直线y =b 与函数y =f (x )的图象没有交点,则b 不在函数y =f (x )的值域内.答案 [-3,0]∪[2,3] [1,5] [1,2)∪(4,5]考向一 求函数的定义域【例1】►求下列函数的定义域: (1)f (x )=|x -2|-1log 2x -;(2)f (x )=x +-x 2-3x +4.[审题视点] 理解各代数式有意义的前提,列不等式解得.解(1)要使函数f (x )有意义,必须且只须⎩⎨⎧|x -2|-1≥0,x -1>0,x -1≠1.解不等式组得x ≥3,因此函数f (x )的定义域为[3,+∞). (2)要使函数有意义,必须且只须⎩⎨⎧x +1>0,-x 2-3x +4>0,即⎩⎨⎧x >-1,x +x -,解得:-1<x <1.因此f (x )的定义域为(-1,1).求函数定义域的主要依据是(1)分式的分母不能为零;(2)偶次方根的被开方式其值非负;(3)对数式中真数大于零,底数大于零且不等于1.【训练1】 (2012·天津耀华中学月考)(1)已知f (x )的定义域为⎣⎢⎡⎦⎥⎤-12,12,求函数y =f ⎝⎛⎭⎪⎫x 2-x -12的定义域;(2)已知函数f (3-2x )的定义域为[-1,2],求f (x )的定义域. 解 (1)令x 2-x -12=t ,知f (t )的定义域为⎩⎨⎧⎭⎬⎫t ⎪⎪⎪-12≤t ≤12,∴-12≤x 2-x -12≤12,整理得⎩⎨⎧x 2-x ≥0,x 2-x -1≤0⇒⎩⎨⎧x ≤0或x ≥1,1-52≤x ≤1+52,∴所求函数的定义域为⎣⎢⎡⎦⎥⎤1-52,0∪⎣⎢⎡⎦⎥⎤1,1+52. (2)用换元思想,令3-2x =t ,f (t )的定义域即为f (x )的定义域, ∵t =3-2x (x ∈[-1,2]),∴-1≤t ≤5, 故f (x )的定义域为[-1,5].考向二 求函数的解析式【例2】►(1)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x );(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.[审题视点] (1)用代换法求解;(2)构造方程组求解. 解 (1)令t =2x +1,则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1. (2)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).求函数解析式的方法主要有:(1)代入法;(2)换元法;(3)待定系数法;(4)解函数方程等.【训练2】 (1)已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,试求f (x )的表达式.(2)已知f (x )+2f (1x)=2x +1,求f (x ).解 (1)由题意可设f (x )=ax 2+bx (a ≠0),则a (x +1)2+b (x +1)=ax 2+bx +x +1 ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1 ∴⎩⎨⎧2a +b =b +1,a +b =1,解得a =12,b =12.因此f (x )=12x 2+12x .(2)由已知得⎩⎪⎨⎪⎧f x +2f ⎝ ⎛⎭⎪⎫1x =2x +1,f ⎝ ⎛⎭⎪⎫1x +2f x =2x +1,消去f ⎝ ⎛⎭⎪⎫1x ,得f (x )=4+x -2x 23x.考向三 分段函数【例3】►(2011·辽宁)设函数f (x )=⎩⎨⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( ).A .[-1,2]B .[0,2]C .[1,+∞) D.[0,+∞) [审题视点] 对于分段函数应分段求解,最后再求其并集. 解析 f (x )≤2⇔⎩⎨⎧x ≤1,21-x≤2或⎩⎨⎧x >1,1-log 2x ≤2⇔0≤x ≤1或x >1,故选D.答案 D分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题,如本例中,需分x ≤1和x >1时分别解得x 的范围,再求其并集.【训练3】 (2011·江苏)已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________. 解析 分类讨论:(1)当a >0时,1-a <1,1+a >1. 这时f (1-a )=2(1-a )+a =2-a ;f (1+a )=-(1+a )-2a =-1-3a . 由f (1-a )=f (1+a ),得2-a =-1-3a , 解得a =-32,不符合题意,舍去.(2)当a <0时,1-a >1,1+a <1, 这时f (1-a )=-(1-a )-2a =-1-a ;f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a ),得-1-a =2+3a , 解得a =-34.综合(1),(2)知a 的值为-34.答案 -34阅卷报告1——忽视函数的定义域【问题诊断】 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.如果是复合函数,应该根据复合函数单调性的判断方法,首先判断两个简单函数的单调性,根据同增异减的法则求解函数的单调区间.由于思维定势的原因,考生容易忽视定义域,导致错误.【防范措施】 研究函数的任何问题时,把求函数的定义域放在首位,即遵循“定义域优先”的原则.【示例】► 求函数y =log 13(x 2-3x )的单调区间.错因 忽视函数的定义域,把函数y =log 13t 的定义域误认为R 导致出错.实录 设t =x 2-3x .∵函数t 的对称轴为直线x =32,故t 在⎝ ⎛⎭⎪⎫-∞,32上单调递减,在⎝ ⎛⎭⎪⎫32,+∞上单调递增.∴函数y =log 13(x 2-3x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,32,单调递减区间是⎝ ⎛⎭⎪⎫32,+∞.正解 设t =x 2-3x ,由t >0,得x <0或x >3,即函数的定义域为(-∞,0)∪(3,+∞).函数t 的对称轴为直线x =32,故t 在(-∞,0)上单调递减,在()3,+∞上单调递增.而函数y =log 13t 为单调递减函数,由复合函数的单调性可知,函数y =log 13(x 2-3x )的单调递增区间是(-∞,0),单调递减区间是(3,+∞).【试一试】 求函数f (x )=log 2(x 2-2x -3)的单调区间. [尝试解答] 由x 2-2x -3>0,得x <-1或x >3, 即函数的定义域为(-∞,-1)∪(3,+∞).令t =x 2-2x -3,则其对称轴为x =1,故t 在(-∞,-1)上是减函数,在(3,+∞)上是增函数. 又y =log 2t 为单调增函数.故函数y =log 2(x 2-2x -3)的单调增区间为(3,+∞),单调减区间为(-∞,-1).第2讲函数的单调性与最值【高考会这样考】1.考查求函数单调性和最值的基本方法.2.利用函数的单调性求单调区间.3.利用函数的单调性求最值和参数的取值范围.【复习指导】本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握.基础梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M满足条件 .①对于任意x ∈I ,都有f (x )≤M ; ①对于任意x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M②存在x 0∈I ,使得f (x 0)=M .结论M 为最大值 M 为最小值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数.(3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ).A .(-2,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)答案 C2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ). A .[2-2,2+2] B .(2-2,2+2) C .[1,3]D .(1,3)解析 函数f (x )的值域是(-1,+∞),要使得f (a )=g (b ),必须使得-x 2+4x -3>-1.即x 2-4x +2<0,解得2-2<x <2+ 2. 答案 B3.(2012·保定一中质检)已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ). A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 由已知条件:⎪⎪⎪⎪⎪⎪1x >1,不等式等价于⎩⎨⎧|x |<1,x ≠0,解得-1<x <1,且x ≠0.答案 C4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______.解析 要使y =log 5(2x +1)有意义,则2x +1>0,即x >-12,而y =log 5u 为(0,+∞)上的增函数,当x >-12时,u =2x +1也为增函数,故原函数的单调增区间是⎝ ⎛⎭⎪⎫-12,+∞. 答案 ⎝ ⎛⎭⎪⎫-12,+∞5.若x >0,则x +2x的最小值为________.解析 ∵x >0,则x +2x≥2x ·2x=2 2 当且仅当x =2x,即x = 2时,等号成立,因此x +2x的最小值为2 2.答案 2 2考向一 函数的单调性的判断【例1】►试讨论函数f (x )=x x 2+1的单调性.[审题视点] 可采用定义法或导数法判断.解 法一 f (x )的定义域为R ,在定义域内任取x 1<x 2,都有f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1-x 2-x 1x 2x 21+x 22+,其中x 1-x 2<0,x 21+1>0,x 22+1>0.①当x 1,x 2∈(-1,1)时,即|x 1|<1,|x 2|<1,∴|x 1x 2|<1,则x 1x 2<1,1-x 1x 2>0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2),∴f (x )为增函数. ②当x 1,x 2∈(-∞,-1]或[1,+∞)时, 1-x 1x 2<0,f (x 1)>f (x 2),∴f (x )为减函数.综上所述,f (x )在[-1,1]上是增函数,在(-∞,-1]和[1,+∞)上是减函数.法二 ∵f ′(x )=⎝ ⎛⎭⎪⎫x x 2+1′=x 2+1-x x 2+x 2+2=x 2+1-2x 2x 2+2=1-x 2x 2+2,∴由f ′(x )>0解得-1<x <1.由f ′(x )<0解得x <-1或x >1,∴f (x )在[-1,1]上是增函数,在(-∞,-1]和[1,+∞)上是减函数.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等. 【训练1】 讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =ax 2-x 1x 1-x 2-当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.考向二 利用已知函数的单调区间求参数的值(或范围)【例2】►已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,求实数a 的取值范围.[审题视点] 求参数的范围转化为不等式恒成时要注意转化的等价性.解 法一 设2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+ax 2-x 1x 1x 2=(x 1-x 2)x 1x 2-ax 1x 2<0恒成立.即当2<x 1<x 2时,x 1x 2>a 恒成立.又x 1x 2>4,则0<a ≤4.法二 f (x )=x +ax,f ′(x )=1-a x2>0得f (x )的递增区间是(-∞,-a ),(a ,+∞),根据已知条件a ≤2,解得0<a ≤4.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解.【训练2】 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .a =-3B .a <3C .a ≤-3D .a ≥-3解析 y =x -5x -a -2=1+a -3x -a +,需⎩⎨⎧a -3<0,a +2≤-1,即⎩⎨⎧a <3,a ≤-3,∴a ≤-3.答案 C考向三 利用函数的单调性求最值【例3】►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23. (1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.[审题视点] 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形. (1)证明 法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数. 法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在[0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.规范解答2——如何解不等式恒成立问题【问题研究】 在恒成立的条件下,如何确定参数的范围是历年来高考考查的重点内容,近年来在新课标地区的高考命题中,由于三角函数、数列、导数知识的渗透,使原来的分离参数法、根的分布法增添了思维难度,因而含参数不等式的恒成立问题常出现在综合题的位置.【解决方案】 解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等.【示例】►(本题满分12分)已知函数f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.利用函数性质求f (x )的最值,从而解不等式f (x )min ≥a ,得a 的取值范围.解题过程中要注意a 的范围的讨论.[解答示范] ∵f (x )=(x -a )2+2-a 2,∴此二次函数图象的对称轴为x =a (1分) (1)当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, ∴f (x )min =f (-1)=2a +3.(3分)要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a , 解得a ≥-3,即-3≤a <-1.(6分)(2)当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2.(8分) 要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2-a 2≥a (10分)解得-2≤a ≤1,即-1≤a ≤1.(11分)综上所述,实数a 的取值范围为[-3,1](12分)本题是利用函数的性质求解恒成立问题,主要的解题步骤是研究函数的性质,由于导数知识的运用,拓展了这类问题深度和思维的广度,因此,解答问题时,一般的解题思路是先通过对函数求导,判断导函数的符号,从而确定函数在所给区间上的单调性,得到区间上对应的函数最值.【试一试】 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.解析 法一 当x ∈(1,2)时,不等式x 2+mx +4<0可化为:m <-⎝ ⎛⎭⎪⎫x +4x ,又函数f (x )=-⎝ ⎛⎭⎪⎫x +4x 在(1,2)上递增,则f (x )>-5, 则m ≤-5.法二 设g (x )=x 2+mx +4当-m 2≤32,即m ≥-3时,g (x )<g (2)=8+2m , 当-m 2>32,即m <-3时,g (x )<g (1)=5+m 由已知条件可得: ⎩⎨⎧m ≥-3,8+2m ≤0,或⎩⎨⎧m <-3,5+m ≤0.解得m ≤-5 答案 (-∞,-5]第3讲 函数的奇偶性与周期性【高考会这样考】 1.判断函数的奇偶性.2.利用函数奇偶性、周期性求函数值及求参数值. 3.考查函数的单调性与奇偶性的综合应用. 【复习指导】本讲复习时应结合具体实例和函数的图象,理解函数的奇偶性、周期性的概念,明确它们在研究函数中的作用和功能.重点解决综合利用函数的性质解决有关问题.基础梳理1.奇、偶函数的概念一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数.一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y轴对称.2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数,一个偶函数的积是奇函数.3.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.一条规律奇、偶函数的定义域关于原点对称.函数的定义域关于原点对称是函数具有奇偶性的必要不充分条件.两个性质(1)若奇函数f(x)在x=0处有定义,则f(0)=0.(2)设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.三种方法判断函数的奇偶性,一般有三种方法:(1)定义法;(2)图象法;(3)性质法. 三条结论(1)若对于R 上的任意的x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x ),且f (2b -x )=f (x )(其中a <b ),则:y =f (x )是以2(b -a )为周期的周期函数. (3)若f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x,那么函数f (x )是周期函数,其中一个周期为T =2a ;(3)若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =2|a -b |.双基自测1.(2011·全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ).A.-12B.-14C.14D.12解析 因为f (x )是周期为2的奇函数,所以f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫12=-12.故选A. 答案 A2.(2012·福州一中月考)f (x )=1x-x 的图象关于( ).A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称解析 f (x )的定义域为(-∞,0)∪(0,+∞),又f (-x )=1-x -(-x )=-⎝ ⎛⎭⎪⎫1x -x =-f (x ),则f (x )为奇函数,图象关于原点对称. 答案 C3.(2011·广东)设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ).A .f (x )+|g (x )|是偶函数B .f (x )-|g (x )|是奇函数C .|f (x )|+g (x )是偶函数D .|f (x )|-g (x )是奇函数解析 由题意知f (x )与|g (x )|均为偶函数,A 项:偶+偶=偶;B 项:偶-偶=偶,B 错;C 项与D 项:分别为偶+奇=偶,偶-奇=奇均不恒成立,故选A. 答案 A4.(2011·福建)对于函数f (x )=a sin x +bx +c (其中,a ,b ∈R ,c ∈Z ),选取a ,b ,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是( ). A .4和6 B .3和1 C .2和4D .1和2解析 ∵f (1)=a sin 1+b +c ,f (-1)=-a sin 1-b +c 且c ∈Z ,∴f (1)+f (-1)=2c 是偶数,只有D 项中两数和为奇数,故不可能是D. 答案 D5.(2011·浙江)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 解析 法一 ∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0对于x ∈R 恒成立,故a =0. 法二 由f (-1)=f (1), 得|a -1|=|a +1|,得a =0. 答案0考向一 判断函数的奇偶性【例1】►下列函数:①f (x )= 1-x 2+ x 2-1;②f (x )=x 3-x ;③f (x )=ln(x +x 2+1);④f (x )=3x -3-x 2;⑤f (x )=lg 1-x 1+x .其中奇函数的个数是( ).A .2B .3C .4D .5[审题视点] 利用函数奇偶性的定义判断.解析 ①f (x )=1-x 2+x 2-1的定义域为{-1,1},又f (-x )=±f (x )=0, 则f (x )=1-x 2+x 2-1是奇函数,也是偶函数; ②f (x )=x 3-x 的定义域为R ,又f (-x )=(-x )3-(-x )=-(x 3-x )=-f (x ), 则f (x )=x 3-x 是奇函数;③由x +x 2+1>x +|x |≥0知f (x )=ln(x +x 2+1)的定义域为R , 又f (-x )=ln(-x +-x2+1)=ln1x +x 2+1=-ln(x +x 2+1)=-f (x ), 则f (x )为奇函数;④f (x )=3x -3-x2的定义域为R ,又f (-x )=3-x -3x 2=-3x -3-x2=-f (x ),则f (x )为奇函数; ⑤由1-x 1+x >0得-1<x <1,f (x )=ln 1-x 1+x的定义域为(-1,1), 又f (-x )=ln1+x 1-x =ln ⎝ ⎛⎭⎪⎫1-x 1+x -1=-ln 1-x 1+x =-f (x ), 则f (x )为奇函数. 答案 D判断函数的奇偶性的一般方法是:(1)求函数的定义域;(2)证明f (-x )=f (x )或f (-x )=-f (x )成立;或者通过举反例证明以上两式不成立.如果二者皆未做到是不能下任何结论的,切忌主观臆断. 【训练1】 判断下列函数的奇偶性: (1)f (x )=4-x 2|x +3|-3;(2)f (x )=x 2-|x -a |+2.解 (1)解不等式组⎩⎨⎧4-x 2≥0,|x +3|-3≠0,得-2≤x <0,或0<x ≤2,因此函数f (x )的定义域是[-2,0)∪(0,2], 则f (x )=4-x 2x.f (-x )=4--x2-x =-4-x 2x=-f (x ),所以f (x )是奇函数.(2)f (x )的定义域是(-∞,+∞). 当a =0时,f (x )=x 2-|x |+2,f (-x )=x 2-|-x |+2=x 2-|x |+2=f (x ). 因此f (x )是偶函数; 当a ≠0时,f (a )=a 2+2,f (-a )=a 2-|2a |+2,f (-a )≠f (a ),且f (-a )≠-f (a ). 因此f (x )既不是偶函数也不是奇函数.考向二 函数奇偶性的应用【例2】►已知f (x )=x ⎝ ⎛⎭⎪⎫12x-1+12(x ≠0). (1)判断f (x )的奇偶性;(2)证明:f (x )>0.[审题视点] (1)用定义判断或用特值法否定;(2)由奇偶性知只须求对称区间上的函数值大于0.(1)解 法一 f (x )的定义域是(-∞,0)∪(0,+∞) ∵f (x )=x ⎝ ⎛⎭⎪⎫12x -1+12=x 2·2x +12x -1.∴f (-x )=-x 2·2-x +12-x -1=x 2·2x +12x -1=f (x ).故f (x )是偶函数.法二 f (x )的定义域是(-∞,0)∪(0,+∞), ∵f (1)=32,f (-1)=32,∴f (x )不是奇函数.∵f (x )-f (-x )=x ⎝ ⎛⎭⎪⎫12x-1+12+x ⎝ ⎛⎭⎪⎫12-x -1+12=x ⎝ ⎛⎭⎪⎫12x -1+2x 1-2x +1=x ⎝ ⎛⎭⎪⎫1-2x2x-1+1=x (-1+1)=0, ∴f (-x )=f (x ),∴f (x )是偶函数. (2)证明 当x >0时,2x >1,2x -1>0, 所以f (x )=x ⎝ ⎛⎭⎪⎫12x-1+12>0. 当x <0时,-x >0,所以f (-x )>0,又f (x )是偶函数, ∴f (-x )=f (x ),所以f (x )>0. 综上,均有f (x )>0.根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可.【训练2】 已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]内递减,求满足:f (1-m )+f (1-m 2)<0的实数m 的取值范围. 解 ∵f (x )的定义域为[-2,2], ∴有⎩⎨⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1)⇒1-m >m 2-1, 即-2<m <1.②综合①②可知,-1≤m <1.考向三 函数的奇偶性与周期性【例3】►已知函数f (x )是(-∞,+∞)上的奇函数,且f (x )的图象关于x =1对称,当x ∈[0,1]时,f (x )=2x -1, (1)求证:f (x )是周期函数;(2)当x ∈[1,2]时,求f (x )的解析式;(3)计算f (0)+f (1)+f (2)+…+f (2013)的值.[审题视点] (1)只需证明f (x +T )=f (x ),即可说明f (x )为周期函数;(2)由f(x)在[0,1]上的解析式及f(x)图象关于x=1对称求得f(x)在[1,2]上的解析式;(3)由周期性求和的值.(1)证明函数f(x)为奇函数,则f(-x)=-f(x),函数f(x)的图象关于x=1对称,则f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2)解当x∈[1,2]时,2-x∈[0,1],又f(x)的图象关于x=1对称,则f(x)=f(2-x)=22-x-1,x∈[1,2].(3)解∵f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.∴f(0)+f(1)+f(2)+…+f(2013)=f(2 012)+f(2 013)=f(0)+f(1)=1.判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.【训练3】已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2 013)+f(2 015)的值为( ).A.-1 B.1 C.0 D.无法计算解析由题意,得g(-x)=f(-x-1),又∵f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,∴g(-x)=-g(x),f(-x)=f(x),∴f(x-1)=-f(x+1),∴f(x)=-f(x+2),∴f(x)=f(x+4),∴f(x)的周期为4,∴f(2 013)=f(1),f(2 015)=f(3)=f(-1),又∵f(1)=f(-1)=g(0)=0,∴f(2 013)+f(2 015)=0.答案 C规范解答3——如何解决奇偶性、单调性、周期性的交汇问题【问题研究】函数的奇偶性、单调性、周期性是函数的三大性质,它们之间既有区别又有联系,高考作为考查学生综合能力的选拔性考试,在命题时,常常将它们综合在一起命制试题.【解决方案】根据奇偶性的定义知,函数的奇偶性主要体现为f-x与f x 的相等或相反关系,而根据周期函数的定义知,函数的周期性主要体现为f x +T与f x的关系,它们都与f x有关,因此,在一些题目中,函数的周期性常常通过函数的奇偶性得到.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律,因此,在解题时,往往需借助函数的奇偶性或周期性来确定函数在另一区间上的单调性,即实现区间的转换,再利用单调性来解决相关问题.【示例】►(本题满分12分)(2011·沈阳模拟)设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值;(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调增(或减)区间.第(1)问先求函数f(x)的周期,再求f(π);第(2)问,推断函数y=f(x)的图象关于直线x=1对称,再结合周期画出图象,由图象易求面积;第(3)问,由图象观察写出.[解答示范] (1)由f(x+2)=-f(x)得,f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),所以f(x)是以4为周期的周期函数,(2分)∴f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.(4分)(2)由f(x)是奇函数与f(x+2)=-f(x),得:f[(x-1)+2]=-f(x-1)=f[-(x-1)],即f(1+x)=f(1-x).故知函数y=f(x)的图象关于直线x=1对称.(6分)又0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.(8分)当-4≤x≤4时,f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB =4×⎝⎛⎭⎪⎫12×2×1=4.(10分)(3)函数f(x)的单调递增区间为[4k-1,4k+1](k∈Z),单调递减区间[4k+1,4k +3](k∈Z).(12分)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.【试一试】已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( ).A.f(-25)<f(11)<f(80) B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25) D.f(-25)<f(80)<f(11)[尝试解答] 由函数f(x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递增,又f(x-4)=-f(x)⇒f(x-8)=-f(x-4)=f(x),故函数f(x)以8为周期,f(-25)=f(-1),f(11)=f(3)=-f(3-4)=f(1),f(80)=f(0),故f(-25)<f(80)<f(11).故选D.答案 D第4讲指数与指数函数【高考会这样考】1.考查指数函数的图象与性质及其应用.2.以指数与指数函数为知识载体,考查指数的运算和函数图象的应用.3.以指数或指数型函数为命题背景,重点考查参数的计算或比较大小.【复习指导】1.熟练掌握指数的运算是学好该部分知识的基础,较高的运算能力是高考得分的保障,所以熟练掌握这一基本技能是重中之重.2.本讲复习,还应结合具体实例了解指数函数的模型,利用图象掌握指数函数的性质.重点解决:(1)指数幂的运算;(2)指数函数的图象与性质.基础梳理1.根式 (1)根式的概念如果一个数的n 次方等于a (n >1且,n ∈N *),那么这个数叫做a 的n 次方根.也就是,若x n=a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)根式的性质①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n 次方根用符号na 表示.②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数的正的n 次方根用符号n a 表示,负的n 次方根用符号-na 表示.正负两个n 次方根可以合写为±na (a >0). ③⎝ ⎛⎭⎪⎫n a n =a . ④当n 为奇数时,na n =a ;当n 为偶数时,na n= |a |=⎩⎨⎧a a-a a <.⑤负数没有偶次方根. 2.有理数指数幂 (1)幂的有关概念①正整数指数幂:a n =a ·a ·…·a n 个 (n ∈N *);②零指数幂:a 0=1(a ≠0);③负整数指数幂:a -p =1ap (a ≠0,p ∈N *);④正分数指数幂:a m n=na m (a >0,m 、n ∈ N *,且n >1); ⑤负分数指数幂:a -m n=1am n=1na m(a >0,m 、n ∈N *且n >1).⑥0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①a r a s=ar +s(a >0,r 、s ∈Q )②(a r )s =a rs (a >0,r 、s ∈Q ) ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质y=a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)x <0时,0<y <1x <0时,y >1. 在(-∞,+∞)上是减函数当x >0时,0<y <1; 当x >0时,y >1; 在(-∞,+∞)上是增函数一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算. 两个防范(1)指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论. (2)换元时注意换元后“新元”的范围. 三个关键点画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎪⎫-1,1a .双基自测1.(2011·山东)若点(a,9)在函数y =3x 的图象上,则tan a π6的值为( ).A .0 B.33C .1 D. 3解析 由题意有3a =9,则a =2,∴tan a π6=tanπ3= 3. 答案 D2.(2012·郴州五校联考)函数f (x )=2|x -1|的图象是( ).解析f (x )=⎩⎨⎧2x -1,x ≥1,⎝ ⎛⎭⎪⎫12x -1,x <1,故选B.答案 B 3.若函数f (x )=12x +1,则该函数在(-∞,+∞)上是( ). A .单调递减无最小值 B .单调递减有最小值 C .单调递增无最大值 D .单调递增有最大值解析 设y =f (x ),t =2x +1, 则y =1t,t =2x +1,x ∈(-∞,+∞)t =2x +1在(-∞,+∞)上递增,值域为(1,+∞).。

高考数学知识点总结 第二章函数概念与基本初等函数

第二章函数概念与基本初等函数知识点与方法1.函数解析式的求法主要有换元法和待定系数法等:利用函数的解析式研究问题时要特别注意分析自变量x与函数值y的关系,尤其要注意分段函数各段的自变量所对ƒ的解析式.已知函数解析式,计算有限个函数值的和.fl类问题一般都具有明显的规律,或者函数具有周期性,或者函数具有对称性(自变量具有某种关系,其函数值和fi定值).如£(x)=,求+的值(这$£(x)+£(1—x)=).².确定函数定义域的基本原则.(1)分式函数y=中,满足分母g(x)≠0.(²)偶次式y=(n∈N*)中,满足被开方式£(x)≥0.(3)对数函数y=log£(x)g(x)中,满足且£(x)≠1.(4)幂函数y=[£(x)]0中,满足£(x)≠0.(±)fl切函数y=tanx中,满足x≠kπ+(k∈Z).(6)在实际问题中考虑自变量的实际意义.3.函数值域(最值)的求法.(1)二次型函数——配方法.(²)©曲函数——均值н等式.(3)利用换元法转化fi二次型函数或©曲函数.(4)函数单调性法.(±)导数法.对于н等式恒成立、fl在性问题h要通过求函数最值的方法解决.4.判断函数单调性的方法.(1)定义法:一般地,设函数y=£(x)的定义域fiA,区间W⊆A,∀x1,x²∈W,(x1—x²)[£(x1)—£(x²)]>0⇔>0⇔£(x)在区间W L是增函数.若£(x)在区间W L fi增函数,x1, x²∈W,则有x1<x²⇔£(x1)<£(x²),减函数有类似结论.(注意:在涉þ到н等式的求解、证明等有关问题时可以考虑构造函数,利用函数单调性求解).(²)用已知函数单调性判断(下列函数都在¿共单调区间L): ķ增函数+增函数=增函数:ĸ减函数+减函数=减函数:③复合函数单调性:④奇(偶)函数在对称区间L的单调性相¼(相反).(3)借助图像判断函数单调性.(4)导数法:对可导函数£(x),x∈(a,b ),£′(x)≥0⇔£(x)在(a,b)L是增函数:£′(x)≤0⇔£(x)在(a,b)L 是减函数(其中导致导数fi0的点是孤立的).±.函数的奇偶性.(1)判定函数奇偶性的方法.函数具有奇偶性的必要条fl是定义域fi 关于原点对称的区间.判断函数奇偶性首先确定函数定义域.ķ定义法:∀x∈D£,£(x)±£(—x)=0: ĸ用已知函数奇偶性判定:(i)奇±奇=奇:偶±偶=偶:奇±偶=非奇非偶(非零函数): 奇×偶=奇:奇×奇=偶:偶×偶=偶.(ii)复合函数奇偶性,内偶则偶,两奇fi奇.③借助图像确定奇偶性.(²)奇偶函数的性质.ķ定义域含0的奇函数图像必过原点: ĸ奇函数若fl在最大(小)值,则它们的和fi0:③£(x)是偶函数,则有£(—x)=£(x)=£(|x|):④既奇又偶的函数的解析式必fi£(x)=0:⑤对于奇(偶)函数,已知y轴一侧的图像、解析式、单调性,能够确定y轴另一侧的图像、解析式、单调性.题目中出现x与—x的函数值问题,需考虑函数的奇偶性.(3)奇偶函数性质推广(对称性问题).已知函数£(x),x∈D.ķ满足£(a+x)=£(b—x)⇔£(x)关于直线x=对称, 特别地,£(—x)=£(x)⇔£(x)关于y轴(x=0)对称: ĸ满足£(a+x)=—£(b—x)⇔£(x)关于点,0 对称, 特别地,£(—x)=—£(x)⇔£(x)关于原点(0,0)中心对称:③函数y=£(x)与y=£(—x)的图像关于y轴对称:④函数y=£(x)与y=—£(x)的图像关于x轴对称:⑤函数y=£(a+x)与y=£(b—x)的图像关于x=对称. 6.函数的周期性.(1)定义:已知函数y=£(x),x∈D,若对任意x∈D,fl在非零fl 常数T,满足:ķ£(x+T)=£(x),周期fiT:ĸ£(x+T)=—£(x),周期fi²T:£(x+T)+£(x)=G,周期fi²T:③£(x+T)=±,周期fi²T:£(x+T)·£(x)=G(G≠0),周期FI²T:④£(x+T)=—£(x—T),周期fi4T:⑤£(x+T)+£(x—T)=£(x),周期fi6T.(²)对称性与周期性关系:若函数£(x)具有两个对称性(中心、轴)þ周期性三个性质中的两个,则必定具有第三个性质.例如:ķ若£(x)的图像关于直线x=a和x=b对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.ĸ若£(x)的图像关于点(a,0)和(b,0)对称(a≠b),则£(x)是周期fi²|a—b|的周期函数.③若£(x)的图像关于直线x=aþ点(b,0)对称(a≠b),则£(x)是周期fi4|a—b|的周期函数.7.三个二次(一元二次方程、二次н等式、二次函数)间的问题可相互转化.如二次函数零点是相ƒ二次方程的,二次н等式的求解依赖于二次方程与二次函数的图像等.(1)一元二次方程.ķ判别式,求¿式, 与系数关系:ĸ的分布问题,要由判别式、对称轴、端点值三者确定.例如:(i)二次方程ax²+BX+G=0(A>0)两都大于k⇔(ii)一大于k,一小于k⇔£(k)<0.(²)二次函数的三种表现形式. y=ax²+bx+G=a(x—m)²+n=a (x—x1)(x—x²)(a≠0),其中(m,n)是顶点,x1,x²fi零点.对于限定区间L的二次函数最值要注意对称轴与区间的ƒ置关系.(3)一元二次н等式解法依赖于相ƒ方程与二次函数图像.(4)对于二次函数£(x)=ax²+bx+G,若£(x1 )=£(x²), x1≠x²,则x1+x²=—.8.关于幂、指数、对数函数问题.(1)幂函数£(x)=xα在第一象限的图像如图1—3所示,单调性fi:当α>0时,函数£(x)在(0,+∞)Lfi增函数:当α<0时,函数£(x)在(0,+∞)Lfi减函数.图1-3(²)指数与对数.a b=N⇔b=log a N(a>0,a≠1),a log a N=N,log a a b=b,=,log a m b n=log a b.(3)指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0, a≠1).ķ互fi反函数: ĸ定义域、值域之间的关系fl好相反:③单调性:在各自定义域L,当0<a<1时,均fi减函数:当a>1 时,均fi增函数.(4)以各自的䘀算规则fi模型的抽象函数的表示法.ķ幂函数:£(xy)=£(x)£(y),£=(y≠0,£(y)≠0),£(1)=1:ĸ指数函数:£(x+y)=£(x)·£(y),£(x—y)=,£(0)=1:③对数函数:£(x y)=£(x)+£(y),£=£(x)—£(y),£(1)=0.(±)会画y=a|x|,y=log a|x|,y=|log a x|(a>0,a≠1)的图像.9.图像问题.(1)注意以下两个函数图像.ķ形如y=的函数能变fi形如y=n±的函数,其图像是关于点(m,n)对称的反比例函数图像:ĸ形如y=ax+ 的“©曲函数”,若ab>0,则fi“对勾函数”: 若ab<0,则fi单调函数.(²)图像变换.ķᒣ移变换:ĸ伸缩变换:③对称变换:函数y=£(—x)的图像与函数y=£(x)的图像关于y轴对称.函数y=—£(x)的图像与函数y=£(x)的图像关于x轴对称.函数y=—£(—x)的图像与函数y=£(x)的图像关于原点对称.④翻折变换:y=£(|x|)与y=£(x)之间的关系,y=£(x)与y=£(x)之间的关系.(3)研究问题方法.会由图像特征研究函数性质,能用性质描函数图像,养成用图像、性质分析思考问题,即数形结合思想解题的习惯.查漏补缺1. 函数是数集到数集的特殊映射,其对应法则必须满足自变量在定义域内的任意性,函数值的唯一性例8 已知集合A=(1,²,3,…,²3),求证:нfl在这fi的函数£:A→(1,²,3),使得对任意的整数x1,x²∈A,若|x1—x²|∈(1,²,3),则£(x1)≠£(x²).变式1 函数y=£(x)的图像与直线x=a(a∈R)的交点个数fi ().A.0B.1 C.0或 1 D.可多于12. 结合函数图像研究函数性质如图1—4所示,以函数fi核心,其核心内容包括函数的图像与性质,函数的图像包括基本初等函数的图像的作法þ图像变换,函数的性质主要包括函数的定义域、解析式、值域、奇偶性、单调性、周期性, 对称性þ特殊点.函数知识的外延主要体现在函数与方程(函数零点)þ函数与н等式的结合.而函数与方程(函数零点)þ函数与н等式问题可通过转化思想,利用函数图像与性质求解.图1-4例9 关于x的方程(x—a)(x—b)=²(a<b)的两实fiα, β,且α<β,试比较α,β,a,b的大小.变式1 已知函数£(x)=,若£(²—a²)>£(a),则实数a的ᒣ值范围是().(—1,²)A.(—∞,—1)∪(²,+∞) B.C.(—²,1)D.(—∞,—²)∪(1,+∞)3. 已知函数的解析式研究函数的性质给出函数的解析式,常常需要¼学们能够有意识地通过函数的解析式来研究函数的性质,如函数的奇偶性、单调性、周期性þ函数值的分布等,进而解决函数的有关问题.已知函数£(x)=x²—GOSX,对于L的任意x1 ,x²,有如下条fl:ķx1>x²:ĸ>:③|x1|>x²,其中能使£(x1 )>£(x²)恒成立的条fl序号是.4. 构造函数的解析式研究函数的性质看似与函数无关的问题,如果我们能够分析其本质特点,引入变量并根据其模型构造函数,利用函数性质求解.这才是函数的真正魅力例10 若α,β∈,且αsinα—βsinβ>0,则下列结论fl确的是().A.α>βB.α+β>0C.α<βD.α²>β²变式1 比较, ,ln 这三个实数的大小,并说明理由.变式2 比较, , 的大小.。

专题02 函数的概念与基本初等函数(解析版)

专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数概念与基本初等函数题型一、函数解析式:1、【2012高考安徽理2】下列函数中,不满足:(2)2()f x f x =的是( )()A ()f x x = ()B ()f x x x =- ()C ()f x x =+1 ()D ()f x x =-【答案】C 【命题立意】本题考查函数的概念与解析式的判断。

【解析】()f x kx =与()f x k x =均满足:(2)2()f x f x =得:,,A B D 满足条件.2、【2012高考江西理3】若函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10)=( ) A.lg101 B.2 C.1 D.0【答案】B 【命题立意】本题考查分段函数的概念和求值。

【解析】110lg )10(==f ,所以211)1())10((2=+==f f f ,选B.3、【2012高考福建理7】设函数,01)(⎩⎨⎧=为无理数,为有理数,x x x D 则下列结论错误的是A.D (x )的值域为{0,1}B. D (x )是偶函数C. D (x )不是周期函数D. D (x )不是单调函数【答案】C. 【考点】本题考查的知识点为分段函数的定义,单调性、奇偶性和周期性的定义和判定。

解答:A 中,)(x D 由定义直接可得,)(x D 的值域为}1,0{。

B 中,)(x D 定义域为R ,)(,0,1)(x D x x x D =⎩⎨⎧=-为无理数为有理数,所以)(x D 为偶函数。

C 中,)(,0,1)1(xD x x x D =⎩⎨⎧=+为无理数为有理数,所以可以找到1为)(x D 的一个周期。

D 中,......1)2(,0)2(,1)1(===D D D ,所以不是单调函数。

4、(1)已知f (12+x)=lgx ,求f (x );(2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ); 4变、 已知f (x )满足2f (x )+f (x1)=3x ,求f (x ). 解:(1)f (x )=lg12-x ,x∈(1,+∞). (2)f (x )=2x+7. 变1 f (x )=2x-x1.题型二、函数定义域。

值域:5、求下列函数的定义域:(1)y=212)2lg(x x x -+-+(x-1)0; (2)y=)34lg(2+x x +(5x-4)0; (3)y=225x -+lgcosx;解:(1)(-3,1)∪(1,2). (2)).,54()54,21(21,43+∞-⎪⎭⎫ ⎝⎛--(3).5,23)2,2(23,5⎥⎦⎤ ⎝⎛-⎪⎭⎫⎢⎣⎡--ππππ6、求下列函数的值域:(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x .解:(1)⎪⎭⎫⎢⎣⎡-1,31. (2)⎥⎦⎤ ⎝⎛∞-21,. (3){y|-1<y <1}.7、求下列函数的值域:(1)y=4-223x x -+; (2)y=x+x4;(3)y=4)2(122+-++x x . 解:(1)[2,4]. (2)(-∞,-4]∪[4,+∞)(3)将函数式变形为 y=2222)20()2()10()0(++-+-+-x x , [13,+∞)8、【2012高考江苏5】(5分)函数x x f 6log 21)(-=的定义域为 .【答案】(0。

【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。

【解析】根据二次根式和对数函数有意义的条件,得1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩10、【2012高考江西理2】下列函数中,与函数31xy =定义域相同的函数为 A .x y sin 1=B. xx y ln = C.y=xe x D. x xy sin = 【答案】D 【命题立意】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 【解析】函数31xy =的定义域为}0{≠x x 。

x y sin 1=的定义域为},{}0sin {Z k k x x x x ∈≠=≠π,x xy ln =的定义域为}0{>x x ,函数xxy sin =的定义域为}0{≠x x ,所以定义域相同的是D,选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 题型三、函数的图像和应用 11、【2012高考北京理8】某棵果树前n 前的总产量S 与n 之间的关系如图所示.从目前记录的结果看,前m 年的年平均产量最高。

m 值为( ) A.5 B.7 C.9 D.11【答案】C 【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选C 。

12、【2012高考重庆理10】设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B所表示的平面图形的面积为(A )34π (B )35π (C )47π (D )2π【答案】D【解析】法1:由对称性: 221,,(1)(1)1y x y x y x ≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x ≤≥-+-≤,围成的面积相等 得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤,围成的面积既2122R ππ⨯=。

法2:由0)1)((≥--xy x y 可知⎪⎩⎪⎨⎧≥-≥-010x y x y 或者⎪⎩⎪⎨⎧≤-≤-010x y x y ,在同一坐标系中做出平面区域如图:,由图象可知B A 的区域为阴影部分,根据对称性可知,两部分阴影面积之和为圆面积的一半,所以面积为2π,选D. 13、【2012高考天津理14】已知函数112--=x x y 的图象与函数2-=kx y 的图象恰有两个交点,则实数k 的取值范围是_________. 【答案】10<<k 或41<<k【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围. 【解析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y ,综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,,做出函数的图象(蓝线),要使函数y 与2-=kx y 有两个不同的交点,则直线2-=kx y 必须在四边形区域ABCD 内(和直线1+=x y 平行的直线除外,如图,则此时当直线经过)2,1(B ,401)2(2=---=k ,综上实数的取值范围是40<<k 且1≠k ,即10<<k 或41<<k 。

题型四、函数单调性: 14、【2012高考广东理4】下列函数中,在区间(0,+∞)上为增函数的是A.y=ln (x+2)C.y=(12)x D.y=x+1x【答案】A 【解析】函数y=ln (x+2)在区间(0,+∞)上为增函数;函数0,+∞)上为减函数;函数y=(12)x 在区间(0,+∞)上为减函数;函数y=x+1x在区间(0,+∞)上为先减后增函数.故选A . 15、【2012高考全国卷理9】已知x=ln π,y=log 52,21-=ez ,则(A)x <y <z (B )z <x <y (C)z <y <x (D)y <z <x【答案】D 【命题意图】本试题主要考查了对数、指数的比较大小的运用,采用中间值大小比较方法。

【解析】1ln >=πx ,215log 12log 25<==y ,e e z 121==-,1121<<e ,所以x z y <<,选D. 16、【2012高考四川理5】函数1(0,1)xy a a a a=->≠的图象可能是( )【答案】D 【解析】(可以用特殊点)当1a >时单调递增,10a -<,故A 不正确;因为1x y a a=-恒不过点(1,1),所以B 不正确;当01a <<时单调递减,10a-<,故C 不正确 ;D 正确. 【点评】函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.17、【2012高考上海理7】已知函数||)(a x e x f -=(a 为常数)。

若)(x f 在区间),1[+∞上是增函数,则a 的取值范围是 。

【答案】]1,(-∞【解析】令a x t -=,则a x t -=在区间),[+∞a 上单调递增,而te y =为增函数,所以要是函数ax e x f -=)(在),1[+∞单调递增,则有1≤a ,所以a 的取值范围是]1,(-∞。

【点评】本题主要考查指数函数单调性,复合函数的单调性的判断,分类讨论在求解数学问题中的运用.本题容易产生增根,要注意取舍,切勿随意处理,导致不必要的错误.本题属于中低档题目,难度适中. 18、已知定义在区间(0,+∞)上的函数f(x)满足f()21x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.解:(1)令x 1=x 2>0,代入得f(1)=f(x 1)-f(x 1)=0,故f(1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则21x x >1,由于当x >1时,f(x)<0, 所以f )(21x x <0,即f(x 1)-f(x 2)<0,因此f(x 1)<f(x 2), 所以函数f(x)在区间(0,+∞)上是单调递减函数. (3)由f(21x x )=f(x 1)-f(x 2)得f()39=f(9)-f(3),而f(3)=-1,所以f(9)=-2.由于函数f(x)在区间(0,+∞)上是单调递减函数,由f(|x|)<f(9),得|x|>9,∴x >9或x <-9.因此不等式的解集为{x|x >9或x <-9}. 题型五、函数奇偶性: 19、【2012高考陕西理2】下列函数中,既是奇函数又是增函数的为( )A. 1y x =+B. 2y x =- C. 1y x=D. ||y x x = 【答案】D. 【解析】根据奇偶性的定义和基本初等函数的性质易知A 非奇非偶的增函数;B 是奇函数且是减函数;C 是奇函数且在)0,(-∞,),0(+∞上是减函数;D 中函数可化为⎩⎨⎧<-≥=0,0,22x x x x y 易知是奇函数且是增函数.故选D.20、【2012高考上海理9】已知2)(x x f y +=是奇函数,且1)1(=f ,若2)()(+=x f x g ,则=-)1(g 。

相关文档
最新文档