七年级数学上册 一元一次方程的解法(一)学案(无答案) 青岛版

合集下载

七年级上册数学一元一次方程的解法(移项法)MicrosoftWord文档

七年级上册数学一元一次方程的解法(移项法)MicrosoftWord文档

教学导案姓名:学习小组:教学过程:一、复习:说一说下面等式变形的根据①从x=y 得到 x+4=y+4;②从a=b 得到 a-10=b-10;③从2x=3x-6得到 2x-3x=3x- 6-3x;④从3x=9得到x=3。

二、探究新知1、利用等式的性质解下列方程3x+20=4x-25归纳:像上面那样把等式一边的某项改变后移到另一边,叫做移项。

移项要,移项的理论依据是等式性质。

2、自学课本91页例1,完成下题。

解方程5x-8=8x解移项,得5x+ =8,合并,得 =8,系数化为1,得x= ,检验:把代入,左边= ,右边= ,左边右边,因此,x= 是原方程的解。

思考:1、在解方程时,移项起到了什么作用?2、解一元一次方程的一般步骤是。

3、比较用等式的性质解方程和用移项法解方程两种不同的方法,哪种方法更简便呢?4、解方程后一定要检验吗?检验过程一定要写出来吗?三、课堂练习1、下面的移项对吗?如不对,请改正。

(1)若x-4=8,则x=8-4;(2)若3s=2s+5,则-3s-2s=5;(3)若5w-2=4w+1,则5w-4w=1+2;(4) 若8+x=2x,则8-2x=2x-x。

2、用移项的方法解下列方程,并检验。

(1)3x=2x+7 (2)5x-2=8(3)13y+8=12y;(4)7u-3=6u-4。

思考:以上4个题中,都经历了移项,合并,系数化为1这三个步骤了吗?为什么?四、课堂小结本节课主要学习了;1、移项的依据是;2、移项时要注意;3、移项法解方程的一般步骤是;注意:要根据题目特征,选择合适的方法与解题步骤。

五、作业布置作业本:课本96页习题3.3A组第1题。

基础训练:第32页六、教学反思备课教师宋福建学科数学备课时间2017-10-28授课班级及人数七年级98班 54人授课时间2017-10-29课题一元一次方程的解法——移项三维目标知识与技能1、通过学生观察、独立思考等过程,学习移项法解方程,培养学生归纳、概括的能力。

青岛版(新)数学七年级上册 7.4一元一次方程的应用

青岛版(新)数学七年级上册 7.4一元一次方程的应用

青岛版(新)数学七年级上册 7.4 一元一次方程的应用1. 引言一元一次方程是数学中常见的一种方程类型,它是由一次项和常数项组成的一元多项式方程。

在实际生活中,一元一次方程的应用非常广泛,可以用来解决各种问题。

本文将介绍在青岛版(新)数学七年级上册第7.4章节中涉及到的一元一次方程的应用。

2. 一元一次方程的基本概念回顾在介绍一元一次方程的应用之前,我们先来回顾一下一元一次方程的基本概念。

一元一次方程的一般形式为:ax+b=c,其中a、b、c为已知数,x为未知数。

解一元一次方程的基本步骤是通过逆运算把未知数x的系数变为1,然后将常数项移到等号的左边,得到形如x=的方程,即解方程。

3. 一元一次方程的实际应用在我们的日常生活中,一元一次方程可以应用于各种实际问题,例如:3.1 问题一小明买了一些饮料,每瓶饮料的价格是5元,他一共花了25元,问他买了多少瓶饮料?解法:设小明买了x瓶饮料,则花费的总金额可以表示为5x元。

根据题意,花费的总金额为25元,所以可以得到方程5x=25。

通过解方程,可以得到x=5。

所以小明一共买了5瓶饮料。

3.2 问题二甲、乙两人在一次长跑比赛中,甲跑得快,用时t分钟,乙跑得慢,用时t+3分钟。

如果甲比乙跑得快10分钟,求甲跑该段长跑的时间。

解法:设甲跑该段长跑的时间为x分钟,则乙跑该段长跑的时间为x+10分钟。

根据题意,甲的用时比乙快10分钟,所以可以得到方程x+10=t。

另外,已知乙的用时比甲慢3分钟,所以可以得到方程x=t+3。

通过解方程,可以得到x= 13,即甲跑该段长跑的时间为13分钟。

3.3 问题三某电话卡的资费标准如下:月租10元,国内长途市话每分钟0.2元。

某人使用该电话卡在一个月内共计通话210分钟,问他的费用是多少?解法:设该人通话的分钟数为x分钟,则通话费用可以表示为0.2x元。

另外,每个月还需支付10元的月租费用。

根据题意,通话费用加上月租费用等于总费用,所以可以得到方程0.2x+10=c。

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项(教学设计)七年级数学上册(人教版)

3.2.2 一元一次方程的解法(一)移项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章“一元一次方程”3.2.2 一元一次方程的解法(一)移项,内容包括:运用移项解形如“ax+b=cx+d”的一元一次方程.2.内容解析本节课的教学内容是新人教版七年级上册第三章《解一元一次方程(一)》的第2课时一移项.方程是现实世界中一类具有等量关系问题的重要的数学模型,是解决问题的重要工县之一,它既与现实生活密切联系,又贯穿于整个初中阶段数学的学习,它在义务教育阶段的数学课程中占重要地位;求属标准中的“数与代数”领域。

解方程是方程中最基本而且重要的初步知识.本章的主要内容是解一元一次方程,以及用方程解决实际问题这些知识是今后学习其它方程、不等式及函数的重要基础.为了使学生牢固掌握解方程的方法,体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法.并通过练习归纳掌握解方程的基本步骤和技能。

在解决实际问题的过程中使学生了解到数学的价值,发展学生“用数学”的信心,提高学生的数学素养.本节课不管是在知识的运用上,还是在对学生技能形成、思维训练、能力发展、智能提升、应用意识培养上,都有着举足轻重的作用.另外,其中蕴涵的类比、归纳、化归的数学思想方法,对学生今后研究问题、解决问题以及终身的发展都是非常有益:在教学时尤其要注重对这些数学思想方法的渗透.基于以上分析,确定本节课的教学重点为:运用移项解形如“ax+b=cx+d”的一元一次方程.二、目标和目标解析1.目标(1)理解移项的意义,掌握移项的方法.(2)学会运用移项解形如“ax+b=cx+d”的一元一次方程.(3)能够抓住实际问题中的数量关系列一元一次方程解决实际问题.2.目标解析知道移项的依据和移项的必要性;给定一个方程,能够准确地进行移项解方程,知道移项的作用可以简化方程,使方程向x-a 的形式转化,在此过程中体会化归思想;通过对图书分配问题的研究,建立axtb=cx+d类型的方程观察与分析方程的特征,进而能够讨论出通过移项解这类方程;在“列方程”“解方程”的过程中,能够体会方程思想的应用价值.三、教学问题诊断分析七年级学生性格开朗活泼,对新鲜事物特别敏感,且较易接受,因此,教学过程中创设的问题情境应较生动活泼、直观形象,且贴近学生的生活,从而引起学生的有意注意;七年级学生的概括能力较弱,推理能力还有待发展,所以在教学时,可让学生充分探讨、分析,帮助他们直观形象地感知;七年级学生已经具备了一定的学习能力,所以本节课中,应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究.基于以上学情分析,确定本节课的教学难点为:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.四、教学过程设计(一)复习回顾解下列方程:(1)4x -9x=10; (2)-52y+32y=5; (3)x 2+x+2x=210; (4)x 2-x 3=-5. (1)解:合并同类项,得-5x=10系数化为1,得 x=-2(2)解:合并同类项,得 -y=5系数化为1,得y=-5(3)解:合并同类项,得 72x=210 系数化为1,得 x=60(4)解:合并同类项,得 x 6=-5 系数化为1,得 x=-30(二)自学导航问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少名学生?这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢? 解:设这个班有x 名学生.每人分3本,共分出____本,加上剩余的20本,这批书共____________本.每人分4本,需要______本,减去缺的25本,这批书共______________本.这批书的总数是一个定值,表示它的两个式子应相等,即表示同一个量的两个不同的式子相等.根据这一相等关系列方程得:+=-3x204x25思考:方程3x+20=4x-25的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25),怎样才能使它向x=a(常数)的形式转化呢?3x+20=4x-253x-4x+20=4x-4x-253x-4x+20=-253x-4x+20-20=-25-203x-4x=-25-20思考:比较下面的两个方程,你发现了什么?移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号由上可知,这个班有45名学生.思考:上面解方程中“移项”起了什么作用?解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”. 早在一千多年前,数学家阿尔-花拉子米就已经对“合并同类项”和“移项”非常重视了.(三)考点解析例1.解下列方程:(1)2x -6=4x -1; (2)13x -6=-12x+4.解:(1)移项,得2x -4x=-1+6.合并同类项,得-2x=5.系数化为1,得x=-52. (2)移项,得13x+12x=4+6. 合并同类项,得56x=10.系数化为1,得x=12.【迁移应用】1.解方程5x -3=2x+2,移项正确的是( )A.5x -2x=2+3B.5x+2x=2+3C.5x -2x=2-3D.5x+2x=2-32.若x 的2倍与8的和等于6与x 的2倍的差,则x=_____.3.当:x=_____时,2x -3与3x+1的值互为相反数.4.若单项式-2a 3b 2n-1与a m -1b 3n+2的和仍是单项式,则m+n=_____. 5.解下列方程:(1)4-3x=6-5x ; (2)2.5m+10m -15=6m -21.5; (3)13x -2=x+14. 解:(1)移项,得-3x+5x=6-4.合并同类项,得2x=2.系数化为1,得x=1.(2)移项,得2.5m+10m -6m=-21.5+15.合并同类项,得6.5m=-6.5.系数化为1,得m=-1.(3)移项,得13x -x=14+2.合并同类项,得-23x=94. 系数化为1,得x=-278.例2.七年级(2)班全班同学去郊游,需要一定费用,如果每位同学付5元,那么还差5.6元;如果每位同学付5.5元,那么就多出10.4元.这个班有多少名同学?总费用是多少元?解:设这个班有x名同学.根据题意,得5x+5.6=5.5x-10.4.移项,得5x-5.5x=-10.4-5.6.合并同类项,得-0.5x=-16.系数化为1 ,得x=32.所以5x+5.6=165.6.答:这个班有32名同学,总费用为165.6元.【迁移应用】1.甲仓库有200t煤,乙仓库有80t煤,若甲仓库每天运出15t煤,乙仓库每天运进25t煤,则_____天后两仓库存煤量相等.2.《九章算术》中有一个“盈不足术”的问题,其大意是:若干人共同出资买羊,每人出5钱,则差45钱;每人出7钱,则差3钱.问:人数和羊价各是多少?解:设人数为x.根据题意,有5x+45=7x+3.移项,得5x-7x=3-45.合并同类项,得-2x=-42.系数化为1, 得x=21.所以5x+45=150.答:人数为21,羊价为150钱.例3.一个两位数,个位上的数是十位上的数的2倍,如果把十位上的数与个位上的数交换位置,所得的新两位数比原两位数大27,求原两位数的大小.分析:设原两位数十位,上的数为x.相等关系:新两位数=原两位数+27.解:设原两位数十位上的数为x,则个位上的数为2x.根据题意,得10×2x+x=10x+2x+27.移项,得20x+x-10x-2x=27.合并同类项,得9x=27.系数化为1,得x=3.所以2x=6.答:原两位数为36.【迁移应用】1.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内的数字为x.则列出的方程正确的是( )A.3×2x+5=2xB.3×20x+5=10x×2C.3×20+x+5=20xD.3(20+x)+5=10x+22.有一个两位数,个位上的数比十位上的数大4,且个位上的数与十位上的数的和比这个两位数小9.求这个两位数.解:设这个两位数十位上的数为x,则个位上的数为x+4.根据题意,得x+4+x=10x+x+4-9,解得x=1.所以x+4=5.答:这个两位数为15.例4.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A.28B.54C.65D.75月历中数的关系:同一行中,相邻两数相差1;同一列中,相邻两数相差7.另外,月历上的日期数最小为1,日期数的最大值(不超过31)与月份有关,且日期数都是正整数.解析:设三个数中中间的数为2x,则最小的数为x-7,最大的数为x+7,所以三个数的和为(x-7)+x+(x+7)=3x.故三个数的和是3的倍数.【迁移应用】1.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排列位置不可能是( )2.如图,规定:上方相邻两数之和等于这两数下方箭头共同指向的数.(1)用含有x的式子表示:m=_____,n=________;(2)若y=-2,求x的值.解:由题意得m=3x,n=2x+3,y=m+n,因为y=-2,所以3x+2x+3=-2.解得x=-1.(四)小结梳理移项的定义一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.移项的依据及注意事项移项实际上是利用等式的性质1.注意:移项一定要变号五、教学反思。

人教版七年级数学上册5.2.4 一元一次方程的解法 去分母(导学案)

人教版七年级数学上册5.2.4 一元一次方程的解法 去分母(导学案)

5.2.4 一元一次方程的解法去分母导学案一、学习目标:1.掌握含有分数系数的一元一次方程的解法.2.熟练利用解一元一次方程的步骤解各种类型的方程.重点:含有分数系数的一元一次方程的解法.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程解决.二、学习过程:自学导航英国伦敦博物馆保存着一部极其珍贵的文物--纸草书.这是古代埃及人用象形文字写在一种用纸莎草压制成的草片上的著作,它于公元前1700年左右写成.这部书中记载了许多有关数学的问题,下面的问题就是书中一道著名的求未知数的问题.问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数.你能解出这道方程吗?把你的解法与其他同学交流一下,看谁的解法好.尝试解一解:解方程:3132232. 2105+-+-=-x x x思考:1. 若使方程的系数变成整系数方程,方程两边应该同乘以什么数?2. 去分母时要注意什么问题?学习笔记【归纳】解一元一次方程的一般步骤包括:___________、___________、__________、________________、_____________等.通过这些步骤可以使以x 为未知数的方程逐步向着x=a 的形式转化,这个过程主要依据等式的基本性质和运算律等.考点解析考点1:利用去分母解一元一次方程★★★例1.解下列方程:【迁移应用】1.在解方程3y−14-1=2y+76时,为了去分母,最好将方程两边同乘( )A.4B.6C.12D.162.将方程x 2-x+14=1去分母,下列变形正确的是( )A.2x -x+1=1B.2x -(x+1)=1C.2x -x+1=4D.2x -(x+1)=43.解下列方程:(1)3x−12=4x+25; (2)1-3x−14=3+x 2; (3)2x−13-x=2x+14; (4)3x−22-(2-x)=x.考点2:构造一元一次方程求值★★例2.已知式子x+33-1与2x−17,当3x 取何值时,它们的值互为相反数.【迁移应用】1.如果13a+1与2a−73的值互为相反数,那么a 的值为( )A.43B.10C.-43D.-102.若式子x+13与2−x 2的值的和等于2,则x 的值为______.3.已知a+34比2a−37的值大1,求2-a 的值.考点3:解分母含小数的一元一次方程★★★例3.解方程:0.4x+10.5=0.02x+0.030.03+2.【迁移应用】依据下列解方程0.3x+0.50.2 = 2x−13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x+52=2x−13.(______________)去分母,得3(3x+5)=2(2x -1)(_____________)去括号,得9x+15=4x -2(_________).(______),得9x -4x=-2-15(_______________).合并同类项,得5x=-17(________________). (___________),得x=-175.(_______________) 考点4:利用整体思想解一元一次方程★★★★例4.阅读下列材料:请参照这种方法解方程3(x+1)-13(x -1)= 2(x -1)-12(x+1).【迁移应用】解下列方程:(1)3(7x -5)-13(5-7x)+17(7x -5)=7(5-7x); (2)5(2x+3)-34(x -2)=2 (x -2)-12(2x+3).考点5:一元一次方程的错解问题★★★★例5.下面是小贝同学解方程x−13-3x−24=1的过程,请认真阅读并完成相应问题.解:去分母,得4(x -1)-3(3x -2)=12.………第一步去括号,得4x -4-9x+6=12. ………………第二步移项,得4x -9x=12+6-4.……………………第三步合并同类项,得-5x=14.……………………第四步系数化为1,得x=-145…………………………第五步 (1)以上解题过程中,第一步是依据____________进行变形的; 第二步是依据________进行变形的;(2)第______步开始出现错误,这一步错误的原因是_______________;(3)请写出该方程的正确解答过程.【迁移应用】王老师给同学们出了一道解方程的题目:x+13-x−16=1.小明同学的解题过程如下:去分母,得2(x+1)-x -1=6. ①去括号,得2x+1-x -1=6. ①移项,得2x -x=6-1+1. ①合并同类项,得x=6. ① 请你指出小明的解题过程从哪步开始出现错误?并将正确的解题过程写下来.。

5.3一元一次方程的解法+课件+-2024-2025学年青岛版(2024)七年级数学上册

5.3一元一次方程的解法+课件+-2024-2025学年青岛版(2024)七年级数学上册
移到另一边,这种变形叫作移项。
3.解一元一次方程一般步骤:去分母,去括号,移项,合并同类
项,系数化为1。
方法总结
来源于生活
认识一元一
次方程和方
程的解
服务于生活
等式的基本性质
求解一元
一次方程
模型应用
解一元一次方程就是一个化繁就简的过程
复杂的方程化“x=c”的形式
思想方法:类比 转化 建模
一元一次方
程的应用
例3.解方程 5x-10=3(x+2)
解:5x-10=3x+6
5x-3x=6+10
2x=16
x=8
总结反思:去括号要注意什么?
跟踪训练3
解方程10-3(x-2)=5x
解:10-3x+6=5x
16-3x=5x
-3x-5x=-16
-8x=-16
x=2
去括号,移项,合并同类项,再把未知数的系数化为1
典例示范4
x 1 x 1
例4.解方程

3
6 2
解:2(x-1)-x=3
2x-2-x=3
x=3+2
x=5
分数线的作用:
①除号②括号
总结反思:去分母要注意什么?
跟踪训练4
x x 1 1
解方程

3
6
2
解:2x-(x-1)=3
2x-x+1=3
x=3-1
x=2
去分母,去括号,移项,合并同类项,再把未知数的系数化为1
课程名称:一元一次方程的解法
学科:数学
年级:七年级
学期:上学期
单元主题:一元一次方程
知识回顾
1.什么是方程?什么是一元一次方程?

人教版七年级数学上册同步备课3.2.1一元一次方程的解法(一)合并同类项(分层作业)【原卷版+解析】

人教版七年级数学上册同步备课3.2.1一元一次方程的解法(一)合并同类项(分层作业)【原卷版+解析】

3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =82.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =84.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=135.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-236.下列各方程合并同类项不正确的是( ) A.由3x-2x=4合并同类项,得x=4 B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x -+=合并同类项,得352x -= 7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x 天才能挖好,则列出的方程为( )A .150x +90x =1200B .150+90x =1200C .150x +90=1200D .150x -90x =12008.解方程8x -3x =10,合并同类项得__________,解得x =_____;若3a -1与1-2a 互为相反数,则a =_____.9.某数的5倍比这个数的8倍少12,则这个数是_________.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 .11.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;12.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有_______个.13.某班学生共40人,外出参加植树活动,根据任务不同,要分成三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲组有________人.14.一个长方体的长、宽、高之比为5:4:3,长比高长4cm ,那么这个长方体的体积是 ;15.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 .16.解下列方程:(1)4x +6x =2+6; (2)23y -y =10-5; (3)2.4x -3x -1.4x =5.2-8;17.同一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16个,现有橙子、梨共 400个而且装梨的箱子的个数是装橙子的箱子的 2 倍请问装橙子和装梨的箱子各有多少个?18.某校为开展乒乓球运动,花钱购买了一些乒兵球运动器材,其中购买球网、球拍和乒兵球的总费用是1320 元,购买这三样器材的费用之比是3:6:2那么购买球网的费用是多少元?19.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2:3:7,现在要配制1440g 这种中药,这3种草药分别需要多少克?20.若x m =是关于x 的方程112x m -=的解,则m 的值为( ) A.0 B.2 C.-2 D.-621.若三个连续偶数的和为24,则它们的积为( )A.48B.480C.240D.12022.小涵在 2020 年某月的月历上圈出了三个数 a ,b ,c ,并求出了它们的和为 30,则这三个数在月历中的排列位置不可能是()23.对任意四个有理数a ,b ,c ,d ,定义新运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x 的值是_____. 24.如图,8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的宽.设每块地砖的宽为x cm ,根据题意,列出的方程为_______________________.25.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?26.某体育场的环形跑道长400 米,二人在跑道练习跑步,已知甲平均每分钟跑250 米,乙平均每分钟跑290米.(1)两人同时从同一地点同向而行,经过多长时间两人才能第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a-1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。

5.3 一元一次方程的解法(课件)青岛版(2024)数学七年级上册


知4-练
感悟新知
知识点 5 解一元一次方程的一般步骤
知5-讲
1. 解一元一次方程的一般步骤 去分母、去括号、移项、合并同类项、系数化为1 . 通 过这些步骤可以使以x 为未知数的方程逐步向着x=a(a 为常数)的形式转化.
感悟新知
知5-讲
2. 解一元一次方程的具体方法、变形依据、注意事项列表
如下:
感悟新知
知1-讲
3. 用合并同类项解一元一次方程的步骤 第一步:合并同类项,即将等号同侧的含未知数的项和 常数项分别合并,把方程转化为ax=b(a ≠ 0)的形式. 第二步:系数化为1,即在方程两边同时除以一次项系
数a,将一次项系数化为1,得到x=ba.
感悟新知
知1-讲
特别解读 解方程中的合并同类项和整式加减中的合并同类
知5-练
感悟新知
(3)x-2 4-(3x+4)=-125; 解:去分母,得 x-4-2(3x+4)=-15.
去括号,得 x-4-6x-8=-15.
移项,得 x-6x=-15+4+8.
合并同类项,得-5x=-3. 系数化为 1,得 x=35.
知5-练
感悟新知
(4)3x+x-2 1=3-2x-3 1; 解:去分母,得 18x+3(x-1)=18-2(2x-1).
(2)两边都乘2,得3x-15(x+1)-2=2x . 两边都乘5,得15x-(x+1)-10=10x. 去括号,得15x-x-1-10=10x . 移项,得15x-x-10x=10+1 . 合并同类项,得4x=11.
系数化为1,得x=141.
知5-练
感5悟-新1. 解知下列方程:
(1)53(1-x+2 3)=-72x+1; 解:方程可化为53-5(x+ 6 3)=-72x+1.

青岛版七年级上数学7.3一元一次方程的解法阶段性练习题(无答案)

解一元一次方程阶段性练习1.已知关于x 的方程234=-m x 的解是m x =,则m 的值是( )A 2B 2- C72 D 72- 2.把方程2133123+-=-+x x x 去分母,正确的是( ) A )1(318)12(218+-=-+x x x B )1(3)12(3+-=-+x x xC )1(18)12(218+-=-+x x xD )1(33)12(3+-=-+x x x3.关于x 的一元一次方程032312=--=+xa x 和的解相同,则a 的值是( ) A 7B 0C 3D 54.若关于x 的方程x k x 32)322(3-=--的解与关于x 的方程)3(226+=-x k 的解相同,则k 的值为( ) A.94 B.94- C.35 D.35- 5.下列变形正确的是( )A.方程1214+=+x x ,移项得024=+x xB.方程121321--=+x x ,去分母得1131--=+x x C.565-=-x ,系数化为1得6-=xD.方程15.710710+=+x x ,合并得5.8780=x 6.下列变形正确的是( )A. 从4x=2x -1可得到4x -2x=1B. 从得15x -5=8x+4-1C. 从1-3(2x -1)=2x 得1-6x -3=2xD. 从-3x -2=2x+3得-3x -2x=3+27.已知18)3(2=--m x m 是关于x 的一元一次方程,则( )A.2=mB.3-=mC.3±=mD.1=m 8.已知3是关于x 的方程12=-a x 的解,则a 的值是( )A.5-B.5C.7D.2 9.解下列方程①-2x=4,x=________. ②-3x=0,x=________ ③3x-4=-1,x=________.10.已知关于x 的方程ax+4=0的解是x=-2,则a=________. 11.当a 时,方程043)1(=-++a x a 是关于x 的一元一次方程. 12.若25+x 与92+-x 互为相反数,则2-x 的值为 . 13.已知关于x 的方程4422-=-bx x a 的解是2=x ,其中0≠a 且0≠b ,则代数式abb a -的值为 .14.如果()01122=+++-y x x ,则21xy -的值是 . 15.当=x ___时,代数式24+x 与93-x 的值互为相反数.16.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= . 17.已知2-=x 是方程042=-+m x 的根,则m = .18.下面的移项对不对?如果不对,应如何改正?(1)从x +5=7,得到x =7+5 (2)从5x =2x -4,得到5x -2x =4 (3)从8+x =-2x -1到x +2x =-1-8 19、请说出下列方程的第一步的解题步骤和依据① x –3=12 ② -3y=-15③ 11x+3=5(2x+1) ④ 13223-=--x x20、下面是某位同学解的一个方程,请你判断一下是否正确.若不正确,请你找出所有错误之处,并说出错误的原因,然后写出正确的解法. 解方程:16110312=+-+x x 解:去分母,得 2(2x+1)-10x+1=1 去括号,得 4x+1-10x+1=1移项,得 4x -10x=1-1-1合并同类项,得-6x=-1系数化为1,得 x=620.解方程:(1)3x=12+2x ; (2)-6x-7=-7x+1(3)3(2x+5)=2(4x+3)–3 (4)x 4352x =+(5))2(2)1(5121+-=-x x (6) -x=-152+x(7)1)23(2151=--x x (8)62x 12x 23x +-=--(9)(10)413)1(2121-=⎥⎦⎤⎢⎣⎡--x x x21.已知y 1=4x+8,y 2=3x –7 (1) 当x 取何值时,y 1=y 2?(2) 当x 取何值时,y 1与y 2 互为相反数?22、已知代数式2166+-x 的值与43614-x 的值互为相反数,求代数式x 的值?23、已知x=2是关于x 的方程7+2(m -x )=2x 的解,那么关于y 的方程m (y -1)=(m+2)(3y -4)的解是多少?24.若关于x 的方程m x m x =+=-2342和有相同的解,求m 的值.25、一名七年级的小学生,一次解方程2121011326x x m x -++-=-去分母时由于忽视了分数线的作用而变形为4x-2-6x+3m=10x+1-6, 从而求得方程的解喂x=0.5求m 的值和方程正确解26. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.。

人教版初一数学上册一元一次方程的解法(去分母)学案

一元一次方程的解法(去分母)学案广西桂平市第二中学邱剑龙一、教材与学生数学现实分析本节课的教学内容是《解一元一次方程》的第3课时,这部分内容是在学生已学习由实际问题抽象出一元一次方程的模型和解一元一次方程的一般步骤(去括号等)的基础上,进而引出去分母解一元一次方程。

本节将使学生的探究能力、计算能力等得到进一步提升,也为学生进一步解决实际问题和不等式、分式方程等知识打下坚实基础。

二、教学目标:(1)知识目标:①掌握解一元一次方程中"去分母"的方法,并能准确、熟练的解这种类型的方程。

②了解一元一次方程解法的一般步骤,并按要求书写解答过程。

(2)能力目标:在具体情景中,通过探究、交流、反思等活动,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,初步培养学生的化归思想,提升学生的计算能力。

(3)情感态度价值观:①通过具体情境引入新问题(如何去分母),激发学生的探究欲望。

②培养学生敢于发表自己观点的学习习惯,体验数学学习成功的快乐。

三、教学重难点教学重点:能准确的"去分母"解一元一次方程教学难点:(1)分子是多项式,去分母时的符号问题。

(2)学生克服漏乘现象。

四、教法与学法分析在前面的学段中,学生已学习了合并同类项、移项,去括号等知识。

去分母解一元一次方程就成为承上启下的重要内容。

因此,它既是重点也是难点。

我根据学生认识水平采用启发式、尝试练习等教学方法,多媒体教学等有效手段,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。

我的教学设计的指导思想是:1、创设以学生为中心,利用学生发挥主体作用的课堂教学环境.2、让学生自己去尝试发现问题,总结方法,而不是被动的回答老师的问题、接受老师的答案。

3、授课中通过一系列问题,给学生充分的时间尝试和思考,充分表达自己的想法,使学生自主学习真正成为可能,在此基础上解决问题并得出结论。

5.3 一元一次方程的解法(2)+课件-2024—2025学年青岛版数学七年级上册


典型例题
例1.解方程: (1)6x+6(x-2)=13;
去括号,得 解:6x+6x-12=13,
移项,得 6x+6x=13+12,
合并同类项,得 12x=25,
系数化为1,得 x=2.5.
典型例题
例1.解方程: (2)2x-(x+10) =5x+2(x-1).
解:去括号,得 2x -x-10=5x+2x-2, 移项,得 2x-x-5x-2x=-2+10, 合并同类项,得-6x=8, 系数化为1,得x=-43.
将未知数的系数相加,常数项相加. 依据是乘法分配律.
在方程的两边除以未知数的系数. 依据是等式性质二.
本课结束
当堂检测
1. 对于方程 2(2x-1)-(x-3) =1 去括号正确的是( D ) A.4x-1-x-3=1 B.4x-1-x +3=1 C.4x-2-x-3=1 D.4x-2-x +3=1
当堂检测
2.解下列方程: (1)2x= -2(3x-5)-4; 解:去括号,得: 2x=-6x+10-4, 移项,得:2x+6x=10-4, 合并同类项,得:8x=6, 系数化为1,得:x=34.
方程两边同乘各分母的最小公倍数 6 解:去分母,得 2(5x-1)-3(x+2)=6, 去括号,得 10x-2-3x-6=6, 移项,得 10x-3x=6+2+6, 合并同类项,得 7x=14, 系数化为1,得 x=2.
思考:该方程含有分母, 应该怎么办?方程两边应 该同时乘以怎样的数?
典型例题
例2. 解方程:(2) 3x 1 2 3x 2 2x 3 .
课堂总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.4一元一次方程的解法(1)
学习目标:
1、学会解一元一次方程的基本步骤:“移项”、“合并同类项”和“化未知数的系数为1”。

2、会解简单的一元一次方程。

重点:
“移项”和“化未知数的系数为1”。

复习回顾:
1、检验下列各小题括号里的数是否是它前面的方程的解:
(1) x(x+1)=12,(x =3,x =4) (2)2x-3=5x-15 (x=6,x=4).
2、利用等式的基本性质把下列一元一次方程化成“x=a ”的形式.
(1)75=-x (2)25=-x
知识导学:
一、在复习回顾第2题中,我们利用等式的基本性质把一元一次方程化成了“x=a ”的形式,这一过程就是解一元一次方程的过程。

在前面我们还用“估算——检验”的方法求方程的解。

从本节课开始将简化解一元一次方程的过程,系统掌握一元一次方程的解法。

1、自学课本P.165-167,体会解一元一次方程的基本步骤:移项——合并同类项——化未知数的系数为1。

(1)移项:把方程中某一项_______________,从方程的一边移到另一边。

一般的,把含有未知数的项移到方程左边,不含未知数的项(常数项)移到右边。

(2)合并同类项:移项后,把方程左右两边的同类项合并,将方程化为ax=b 的形式
(3)化未知数的系数为1:将方程ax=b 未知数x 的系数x 化成1。

2、尝试解下列方程
(1)75=-x (2) 434-=x x
(3)25=-x (3) 312
3=x
二、问题:解方程要注意“移项”与“化未知数的系数为1”的区别。

求下列方程的解是移项还是化未知数的系数为1?并说明变形的根据。

(1) 35=+x (2) 25-=x
(3) 592=x (4) 5x =3x – 5
三、巩固练习
1、 课本第P.167练习1、
2、3
当堂检测:
1、解方程:
(1) 3 + x = 6 (2) x — 15 = 2
x x x x x -+=+-=+=+2674)3(;312)2(;13 (4)2181=x
(5)433
4=x (6) 7x —5 = —3x
2、解答:当x 取何值时,2x+1 与 — 21
x —2的值,
(1)相等? (2)互为相反数
拓展提升:
1、若412223=+-k x k 是关于x 的一元一次方程,则x 的取值是______________.
2、如果方程3x+2a=12和方程3x-4=2的解相同,那么a=__________.
3、若x=0是方程2002x-a=2003x+3的解,求代数式22+-a 的值。

小结:通过对本节课的学习,你能说出解简单方程的步骤吗?在每一步中有哪些注意事项?
作业:(趣味题)
一只天鹅在天空中飞翔时遇到了一群天鹅,它向群鹅问好:“你们好啊,100只天鹅。

”群鹅回答说:“我们不是100只,但是如果以我们这么多,再加上一个这么多,再加上我们的一半,再加上我们的一半的一半,你也加进来,那么我们就是100只了。

”问天上飞的群鹅有多少只?。

相关文档
最新文档