湖北省襄阳市襄州区2016年中考适应性考试数学试卷含答案
湖北省襄阳市 2016年中考数学真题试卷附解析

2016年湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.(2016·湖北襄阳)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.(2016·湖北襄阳)如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C 的度数为()A.50° B.40° C.30° D.20°【考点】平行线的性质;角平分线的定义;三角形的外角性质.【分析】由AD∥BC,∠B=30°利用平行线的性质即可得出∠EAD的度数,再根据角平分线的定义即可求出∠EAC的度数,最后由三角形的外角的性质即可得出∠EAC=∠B+∠C,代入数据即可得出结论.【解答】解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.又∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.∵∠EAC=∠B+∠C,∴∠C=∠EAC﹣∠B=30°.故选C.3.(2016·湖北襄阳)﹣8的立方根是()A.2 B.﹣2 C.±2 D.﹣【考点】立方根.【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.4.(2016·湖北襄阳)一个几何体的三视图如图所示,则这个几何体是()A.球体B.圆锥C.棱柱D.圆柱【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选D.5.(2016·湖北襄阳)不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个【考点】一元一次不等式组的整数解.【分析】先根据一元一次不等式组的解法求出x的取值范围,然后找出整数解的个数.【解答】解:解不等式2x﹣1≤1得:x≤1,解不等式﹣x<1得:x>﹣2,则不等式组的解集为:﹣2<x≤1,整数解为:﹣1,0,1,共3个.故选C.6.(2016·湖北襄阳)一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是()A.3,3,0.4 B.2,3,2 C.3,2,0.4 D.3,3,2【考点】方差;算术平均数;中位数;众数.【分析】先根据平均数的定义求出x的值,再根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:根据题意,=3,解得:x=3,∴这组数据从小到大排列为:2,3,3,3,4;则这组数据的中位数为3,这组数据3出现的次数最多,出现了3次,故众数为3;其方差是:×[(2﹣3)2+3×(3﹣3)2+(4﹣3)2]=0.4,故选A.7.(2016·湖北襄阳)如图,在▱ABCD中,AB>AD,按以下步骤作图:以点A为圆心,小于AD的长为半径画弧,分别交AB、AD于点E、F;再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是()A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH【考点】平行四边形的性质.【分析】根据作图过程可得得AG平分∠DAB,再根据角平分线的性质和平行四边形的性质可证明∠DAH=∠DHA,进而得到AD=DH,【解答】解:根据作图的方法可得AG平分∠DAB,∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴BC=DH,故选D.8.(2016·湖北襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合【考点】三角形的内切圆与内心;三角形的外接圆与外心;旋转的性质.【分析】根据I是△ABC的内心,得到AI平分∠BAC,BI平分∠ABC,由角平分线的定义得到∠BAD=∠CAD,∠ABI=∠CBI根据三角形外角的性质得到∠BDI=∠DIB,根据等腰三角形的性质得到BD=DI.【解答】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,故C正确,不符合题意;∠ABI=∠CBI,∴=,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC,∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠BDI=∠DIB,∴BD=DI,故B正确,不符合题意;故选D.9.(2016·湖北襄阳)如图,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C.D.【考点】勾股定理;锐角三角函数的定义.【分析】直接根据题意构造直角三角形,进而利用勾股定理得出DC,AC的长,再利用锐角三角函数关系求出答案.【解答】解:如图所示:连接DC,由网格可得出∠CDA=90°,则DC=,AC=,故sinA===.故选:B.10.(2016·湖北襄阳)一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据一次函数的图象的性质先确定出a、b的取值范围,然后根据反比例函数的性质确定出c的取值范围,最后根据二次函数的性质即可做出判断.【解答】解:∵一次函数y=ax+b经过一、二、四象限,∴a<0,b>0,∵反比例函数y=的图象在一、三象限,∴c>0,∵a<0,∴二次函数y=ax2+bx+c的图象的开口向下,∵b>0,∴>0,∵c>0,∴与y轴的正半轴相交,故选C.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡的相应位置上.11.(2016·湖北襄阳)分解因式:2a2﹣2=2(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).12.(2016·湖北襄阳)关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,则m的值为2.【考点】根的判别式.【分析】由于关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m﹣1=0有两个相等的实数根,∴△=b2﹣4ac=0,即:22﹣4(m﹣1)=0,解得:m=2,故答案为2.13.(2016·湖北襄阳)一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.14.(2016·湖北襄阳)王经理到襄阳出差带回襄阳特产﹣﹣孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜33袋.【考点】一元一次方程的应用.【分析】可设有x个朋友,根据“如果每人分5袋,还余3袋;如果每人分6袋,还差3袋”可列出一元一次方程,求解即可.【解答】解:设有x个朋友,则5x+3=6x﹣3解得x=6∴5x+3=33(袋)故答案为:3315.(2016·湖北襄阳)如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为π.【考点】扇形面积的计算.【分析】首先证明OC∥BD,得到S△B DC=S△B DO,所以S阴=S扇形OB D,由此即可计算.【解答】解:如图连接OC、OD、BD.∵点C、D是半圆O的三等分点,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD=OB,∴△COD、△OBD是等边三角形,∴∠COD=∠ODB=60°,OD=CD=2,∴OC ∥BD ,∴S △B DC =S △B DO ,∴S 阴=S 扇形OB D ==.16.(2016·湖北襄阳)如图,正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,E 是OC 的中点,连接BE ,过点A 作AM ⊥BE 于点M ,交BD 于点F ,则FM 的长为 .【考点】正方形的性质.【分析】先根据ASA 判定△AFO ≌△BEO ,并根据勾股定理求得BE 的长,再判定△BFM ∽△BEO ,最后根据对应边成比例,列出比例式求解即可.【解答】解:∵正方形ABCD∴AO=BO ,∠AOF=∠BOE=90°∵AM ⊥BE ,∠AFO=∠BFM∴∠FAO=∠EBO在△AFO 和△BEO 中∴△AFO ≌△BEO (ASA )∴FO=EO∵正方形ABCD 的边长为2,E 是OC 的中点 ∴FO=EO=1=BF ,BO=2∴直角三角形BOE 中,BE==由∠FBM=∠EBO ,∠FMB=∠EOB ,可得△BFM ∽△BEO∴,即∴FM=故答案为:三、解答题:本大题共9小题,共72分,解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17.(2016·湖北襄阳)先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x=.【考点】整式的混合运算—化简求值.【分析】首先利用整式乘法运算法则化简,进而去括号合并同类项,再将已知代入求出答案.【解答】解:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),=4x2﹣1﹣(3x2+3x﹣2x﹣2)=4x2﹣1﹣3x2﹣x+2=x2﹣x+1把x=代入得:原式=(﹣1)2﹣(﹣1)+1=3﹣2﹣+2=5﹣3.18.(2016·湖北襄阳)襄阳市文化底蕴深厚,旅游资源丰富,古隆中、习家池、鹿门寺三个景区是人们节假日玩的热点景区,张老师对八(1)班学生“五•一”小长假随父母到这三个景区游玩的计划做了全面调查,调查分四个类别:A、游三个景区;B、游两个景区;C、游一个景区;D、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1)八(1)班共有学生50人,在扇形统计图中,表示“B类别”的扇形的圆心角的度数为72°;(2)请将条形统计图补充完整;(3)若张华、李刚两名同学,各自从三个景区中随机选一个作为5月1日游玩的景区,则他们同时选中古隆中的概率为.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由A类5人,占10%,可求得总人数,继而求得B类别占的百分数,则可求得“B类别”的扇形的圆心角的度数;(2)首先求得D类别的人数,则可将条形统计图补充完整;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们同时选中古隆中的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵A类5人,占10%,∴八(1)班共有学生有:5÷10%=50(人);∴在扇形统计图中,表示“B类别”的扇形的圆心角的度数为:×360°=72°;故答案为:50,72°;(2)D类:50﹣5﹣10﹣15=25(人),如图:(3)分别用1,2,3表示古隆中、习家池、鹿门寺,画树状图得:∵共有9种等可能的结果,他们同时选中古隆中的只有1种情况,∴他们同时选中古隆中的概率为:.故答案为:.19.(2016·湖北襄阳)如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB 于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.【考点】全等三角形的判定与性质.【分析】(1)先证明△DEB≌△DFC得∠B=∠C由此即可证明.(2)先证明AD⊥BC,再在RT△ADC中,利用30°角性质设CD=a,AC=2a,根据勾股定理列出方程即可解决问题.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠DEB=∠DFC=90°,在RT△DEB和RT△DFC中,,∴△DEB≌△DFC,∴∠B=∠C,∴AB=AC.(2)∵AB=AC,BD=DC,∴AD⊥BC,在RT△ADC中,∵∠ADC=90°,AD=2,∠DAC=30°,∴AC=2CD,设CD=a,则AC=2a,∵AC2=AD2+CD2,∴4a2=a2+(2)2,∵a>0,∴a=2,∴AC=2a=4.20.(2016·湖北襄阳)如图,直线y=ax+b与反比例函数y=(x>0)的图象交于A(1,4),B(4,n)两点,与x轴、y轴分别交于C、D两点.(1)m=4,n=1;若M(x1,y1),N(x2,y2)是反比例函数图象上两点,且0<x1<x2,则y1>y2(填“<”或“=”或“>”);(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标.【考点】反比例函数与一次函数的交点问题;反比例函数的性质;反比例函数图象上点的坐标特征.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可得出m 的值,再由点B也在反比例函数图象上即可得出n的值,由反比例函数系数m的值结合反比例函数的性质即可得出反比例函数的增减性,由此即可得出结论;(2)设过C、D点的直线解析式为y=kx+b,由点A、B的坐标利用待定系数法即可求出直线CD的解析式,设出点P的坐标为(t,﹣t+5),由点P到x 轴、y轴的距离相等即可得出关于t的含绝对值符号的一元一次方程,解方程即可得出t的值,从而得出点P的坐标.【解答】解:(1)∵反比例函数y=(x>0)的图象过点A(1,4),∴m=1×4=4.∵点B(4,n)在反比例函数y=的图象上,∴m=4n=4,解得:n=1.∵在反比例函数y=(x>0)中,m=4>0,∴反比例函数y=的图象单调递减,∵0<x1<x2,∴y1>y2.故答案为:4;1;>.(2)设过C、D点的直线解析式为y=kx+b,∵直线CD过点A(1,4)、B(4,1)两点,∴,解得:,∴直线CD的解析式为y=﹣x+5.设点P的坐标为(t,﹣t+5),∴|t|=|﹣t+5|,解得:t=.∴点P的坐标为(,).21.(2016·湖北襄阳)“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)直接利用队单独施工30天完成该项工程的,这时乙队加入,两队还需同时施工15天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过36天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工30天完成该项工程的,∴甲队单独施工90天完成该项工程,根据题意可得:+15(+)=1,解得:x=30,检验得:x=30是原方程的根,答:乙队单独施工,需要30天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×36+y×≥1,解得:y≥18,答:乙队至少施工18天才能完成该项工程.22.(2016·湖北襄阳)如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.【考点】切线的判定.【分析】(1)①欲证明直线AB是⊙O的切线,只要证明OC⊥AB即可.②首先证明OC∥DF,再证明∠FDC=∠OCD,∠EDC=∠OCD即可.(2)作ON⊥DF于N,延长DF交AB于M,在RT△CDM中,求出DM、CM即可解决问题.【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.23.(2016·湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【考点】二次函数的应用.【分析】(1)根据:年利润=(售价﹣成本)×年销售量,结合x的取值范围可列函数关系式;(2)将(1)中两个二次函数配方后依据二次函数的性质可得其最值情况,比较后可得答案;(3)根据题意知W≥750,可列关于x的不等式,求解可得x的范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x ﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.24.(2016·湖北襄阳)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG、GF、AF之间的数量关系,并说明理由;(3)若AG=6,EG=2,求BE的长.【考点】四边形综合题.【分析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF=GF,接下来,证明△DOF∽△ADF,由相似三角形的性质可证明DF2=FO•AF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FGH∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.【解答】解:(1)证明:∵GE∥DF,∴∠EGF=∠DFG.∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,∴∠DGF=∠DFG.∴GD=DF.∴DG=GE=DF=EF.∴四边形EFDG为菱形.(2)EG2=GF•AF.理由:如图1所示:连接DE,交AF于点O.∵四边形EFDG为菱形,∴GF⊥DE,OG=OF=GF.∵∠DOF=∠ADF=90°,∠OFD=∠DFA,∴△DOF∽△ADF.∴,即DF2=FO•AF.∵FO=GF,DF=EG,∴EG2=GF•AF.(3)如图2所示:过点G作GH⊥DC,垂足为H.∵EG2=GF•AF,AG=6,EG=2,∴20=FG(FG+6),整理得:FG2+6FG﹣40=0.解得:FG=4,FG=﹣10(舍去).∵DF=GE=2,AF=10,∴AD==4.∵GH⊥DC,AD⊥DC,∴GH∥AD.∴△FGH∽△FAD.∴,即=.∴GH=.∴BE=AD﹣GH=4﹣=.25.(2016·湖北襄阳)如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c 过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN为等腰直角三角形?【考点】二次函数综合题.【分析】(1)分别令y=0和x=0代入y=﹣x+3即可求出B和C的坐标,然后设抛物线的交点式为y=a(x+2)(x﹣4),最后把C的坐标代入抛物线解析式即可求出a的值和顶点D的坐标;(2)若四边形DEFP为平行四边形时,则DP∥BC,设直线DP的解析式为y=mx+n,则m=﹣,求出直线DP的解析式后,联立抛物线解析式和直线DP的解析式即可求出P的坐标;(3)由题意可知,0≤t≤6,若△QMN为等腰直角三角形,则共有三种情况,①∠NMQ=90°;②∠MNQ=90°;③∠NQM=90°.【解答】解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2 C.2:3 D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S,正方形ABCD∴S1=x2,∵=,∴=,∴S2=S,正方形ABCD∴S2=x2,∴S1:S2=x2:x2=4:9;故选D.【点评】此题考查了正方形的性质,用到的知识点是正方形的性质、相似三角形的性质、正方形的面积公式,关键是根据题意求出S1、S2与正方形面积的关系.12.(2016·广西南宁)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x2,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>0,∴a+b>0.故选C.【点评】本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(2016·广西南宁)若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.(2016·广西南宁)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=50°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等可得∠1=∠A.【解答】解:∵AB∥CD,∴∠A=∠1,∵∠1=50°,∴∠A=50°,故答案为50°.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.(2016·广西南宁)分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.。
湖北省襄阳市2016年中考适应性考试数学试卷含答案 (2)

2016年九年级适应性考试数学试卷一、选择题(每小题3分,共计30分) ( )1.2016-的倒数的绝对值为:A. 2016-B.20161-C.2016D. 20161,结果如下表: A.众数是2元 B.中位数是2元 C.极差是5元 D.平均数是2.45元 ( )3.下列运算正确的是:A.532a a a =+B.ab b a 624=+C.1)11(02=+a D.10)52(2= ( )4.如图,AB ∥DE,AC ⊥CD,并且∠A=35º,则∠D 的度数为:A.55ºB.45ºC.30ºD.60º( )5.已知函数44)1(2+--=x x k y 与x 轴只有一个交点,则k 的取值范围是:A.2≤k 且1≠kB. 2<k 且1≠kC.2=kD. 2=k 或1( )6. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为 A. 7105.2-⨯米 B.6105.2-⨯ 米 C. 7105.2⨯米 D. 6105.2⨯米 ( )7.如图所示的是由一些正方体小木块搭成的几何体的主视图与俯视图,它最多需要小木块的块数是:A.8B. 7C.6D.5( )8.如图,在△ABC 中,分别以点A 和点B 为圆心,大于21AB 的长为半径画弧,两弧相交于点M,N,作直线MN,交BC 于点D,连接AD,若△ADC 的周长为8,AB=6, 则△ABC 的周长为:A.20B.22C.14D.16 ( )9.已知抛物线c bx ax y ++=2的图像如图所示, 则直线b ax y -=一定不经过:A.第一象限B. 第二象限C. 第三象限D. 第四象限( )10.如图,在矩形ABCD 中,点E 是AD 的中点,∠EBC 的平分线交CD 于点F,将△DEF 沿EF 折叠,点D 恰好落在BE 上M 点处,延长BC,EF 交于点N.有下列四个结论: ①BF 垂直平分EN;②BF 平分∠MFC;③△DEF ∽△FEB;④tan ∠N=3.其中,将正确结论的序号全部选对的是:ABCDE第4题图主视图俯视图AB C DMN Ox yA. ①②③B. ①②④C. ②③④D. ①②③④二、填空题(每小题3分,共计18分)11.计算: 6)272483(÷-=________________.12.如图,点P 是反比例函数在第二象限上的一点,且矩形PEOF 的面积为5,则反比例函数的表达式为_____________. 13.若关于x 的不等式组⎩⎨⎧>+≥-0630x x m 的整数解恰好有三个,则m 的取值范围是____________.14.盒子里装有大小形状相同,质地均匀的4个白球和3个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则两次取出的均是红球的概率是___________.15. 如图四边形ABCD 是⊙O 的内接四边形,已知∠BOD=120°则∠BCD 的度数为___________16.已知□ABCD 的周长为40㎝,AE ⊥BC 于点E,AF ⊥CD 于点F,若AE=4㎝,AF=6㎝,则CE+CF=_________㎝. 三、解答题(共72分) 17.(6分)先化简,再求值:222)11(yxy x yy x y x +-÷+-- 其中145sin 21-︒=x ,230sin 2-︒=y18. (6分)从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需54分钟, 从乙地到甲地需42分钟.甲地到乙地全程是多少千米?19. (6分)如图,点E 是□ABCD 的边AD 上一点,连接CE 并延长交BA 的延长线于点F,若BG=DE,并且∠AEF=70º.求∠AGB 的度数.A BCDE F G20. (7分)为响应襄阳市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A,B,C,D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,解答下列问题:A BCD O(1)被抽取的学生总数是_____人,C 等在样本中所占的百分比是_____; (2) D 等在扇形统计图所对应的圆心角是多少度?并补全左侧的条形图; (3)估计全校校生成绩为A 等的大约有多少人?21. (6分)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B 两个凉亭之间的距离.现测得AC=50m,BC=100m, ∠CAB=120º,请计算A,B 两个凉亭之间的距离.22. (7分)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于E. (1)求证:AC 平分∠DAB ; (2)连接CE ,若CE=6,AC=8,求⊙O 的直径的长.23. (10分)为了拉动内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x (元)之间大致满足如图所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益p (元)会相应降低且满足:11051+-=x p(0≥x ).(1)在政府补贴政策实施后,求出该商场销售彩电台数y 与政府补贴款额x 之间的函数关系式;(2)在政府未出台补贴措施之前,该商场销售彩电的总收益额为多少元?(3)要使该商场销售彩电的总收益最大,政府应将每台补贴款额x 定为多少?并求出总收益的最大值.100014000100200y(台)x(元)24. (12分)已知:将一副三角板(Rt △ABC 和Rt △DEF)如图①摆放,点E,A,D,B 在一条直线上,且D 是AB 的中点.将Rt △DEF 绕点D 顺时针方向旋转角α(︒<<︒900α),在旋转过程中,直线DE,AC 相交于点M,直线DF,BC 相交于点N,分别过点M,N 作直线AB 的垂线,垂足为G ,H.(1)当︒=30α时(如图②),求证:AG=DH;(2) 当︒=60α时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由; (3)当︒<<︒900α(如图④)时,求证:DH GD HB AG ⋅=⋅.25. (12分)如图,抛物线与直线相交于A,B 两点,若点A 在x 轴上,点B 的坐标是(2,4),抛物线与x 轴另一交点为D,并且△ABD 的面积为6,直线AB 与y 轴的交点的坐标为(0,2).点P 是线段AB(不与A,B 重合)上的一个动点,过点P 作x 轴的垂线,交抛物线与点Q. (1)分别求出抛物线与直线的解析式; (2)求线段PQ 长度的最大值;(3)当PQ 取得最大值时, 在抛物线上是否存在M 、N 两点(点M 的横坐标小于N 的横坐标),使得P 、D 、M 、N 为顶点的四边形是平行四边形?若存在,求出MN 的坐标;若不存在,请说明理由.参考答案一.选择题二.填空题11.23 12.x y 5-= 13.21<≤m 14.499 15.120º 16.31020+或324+ 三.解答题17.yx y x y y x y x y x y y y x y x y x y x y x y x y x +-=-⋅-+=-⋅-+---++=)(2)())((2)(]))(())(([:22原式解 ……………………3分由1212112221145sin 21+=-=-⨯=-︒=x ,212212230sin 2-=-⨯=-︒=y 得: 2,22=+=-y x y x ……………………5分∴原式=222222=⨯ ……………………6分 18.解:设从甲地到乙地时上坡段的路程为x 千米,平路段的路程为y 千米,根据题意,得:⎪⎪⎩⎪⎪⎨⎧=+=+604245605443y x y x ……………………3分解得⎩⎨⎧==6.15.1y x ……………………4分1.36.15.1=+=+y x ……………………5分答:甲地到乙地的全程是3.1千米. ……………………6分19.解: ∵四边形ABCD 是平行四边形∴AB=CD, ∠B=∠D ……………………2分 又∵BG=DE∴△ABG ≌△CDE ……………………3分 ∴∠AGB=∠CED ……………………4分 ∵∠CED=∠AEF=70º ……………………5分 ∴∠AGB=70º ……………………6分20.解:(1)200,10% ……………………………………………………2分 (2)36º (补全图略)………………………………………………………………4分 (3)9002001201500=⨯……………………………………………………6分 答:全校学生成绩为A 等的大约有900人. ……………………………7分 21.解: 过点C 作CD ⊥AB 于D在Rt △CDA 中∠CAD=180º-∠CAB=180º-120º =60º…………………………………1分 ∵ACCDCAD =∠sin ∴325235060sin =⨯=︒⋅=AC CD ………………………………………………2分 同理:25215060cos =⨯=︒⋅=AC AD ………………………………………………3分 在Rt △CBD 中,1325)325(1002222=-=-=CD BC BD ………………4分∴AB=BD-AD=251325- ………………………………………………5分 答:AB 之间的距离是(251325-)m. ………………………………………………6分 22.(1)证明:如图,连接OC∵CD 是⊙O 的切线 ∴OC ⊥CD ∴∠OCF=90º ∵AD ⊥CD∴∠D=∠OCF=90º (2)分∴OC ∥AD∴∠1=∠3 ……………………………………3分 ∵OA=OC ∴∠2=∠3 ∴∠1=∠2即AC 平分∠DAB ……………………………………4分 (2)如右图,连接OE∵∠1=∠2, ∠1=EOC ∠21,∠2=BOC ∠21∴BOC EOC ∠=∠∴BC=CE=6 …………………………5分 ∵AB 是⊙O 的直径 ∴∠ACB=90º 在Rt △ABC 中10682222=+=+=BC AC AB …………………………6分∴⊙O 的直径的长为10. …………………………7分 23.(1)解:根据题意,可设b kx y += 将(100,1000),(200,1400)代入上式,得:⎩⎨⎧=+=+14002001000100b k b k ………………………2分 解得⎩⎨⎧==6004b k ………………………3分∴所求作的函数关系式为:6004+=x y . ………………………4分 (2) ∵在6004+=x y 中,当0=x 时,600=y在11051+-=x p 中,当0=x 时,110=p ………………5分 ∴66000110600=⨯答: 在政府未出台补贴措施之前,该商场销售彩电的总收益额为66000元. ……6分 (3)设总收益为W 元,则W=)11051)(6004(+-+x x ………………7分 =66000320542++-x x =98000)200(542+--x ………………8分∵ 054<-=a∴W 存在最大值∴当x=200时W 有最大值98000. ………………9分答: 政府应将每台补贴款额定为200元时,可获得最大利润98000元. ………………10分 24、(1)∵∠A=∠MDA=α=30º∴MA=MD 又∵MG ⊥AD∴AG=21AD ………………1分 ∵∠FDB=90º -α=90º -30º =60º ,∠B=60º ∴△CDB 是等边三角形 又∵CH ⊥BD ∴DH=21BD ………………2分 ∵D 为AD 的中点∴AD=BD ………………3分 ∴AG=DH ………………4分 (2)∵∠A=∠NDB ,AD=BD ,∠B=∠MDA=α=60º∴△AMD ≌△DNB ………………5分 ∴AM=DN又∵∠A=∠NDH=90º -α=90º -60º =30º,∠AGM=∠DHN=90º ∴△AGM ≌△DHN ………………7分 ∴AG=DH ………………8分 (3)在Rt △AGM 中,∠A=30º∴∠AMG=90º -30º =60º =∠B又∵∠AGM=∠NHB=90º∴△AGM ∽△NHB ………………9分∴NHHBAG MG =∴MG ·NH=AG ·HB ………………10分 ∵∠GMD+∠GDM=90º,∠HDN+∠GDM=90º ∴∠GMD=∠HDN又∵∠MGD=∠DHN=90º ∴△MGD ∽△DHN ∴DHHNMG GD =∴MG ·NH=GD ·DH ………………11分 ∴AG ·HB=GD ·GH ………………12分25、(1)解:设直线的解析式为: b kx y += 将点B(2,4),点(0,2)代入上式得:⎩⎨⎧==+242b b k 解得⎩⎨⎧==21b k ∴所求直线的解析式为:2+=x y . ………………2分当0=y 时,2-=x ,即点A 的坐标为(-2,0) ∵S △ABD =64)]2([21||21=⨯--⨯=⋅D B x y AD ∴1=D x∴点D 的坐标(1,0)设抛物线的解析式为:)1)(2(-+=x x a y 将点B(2,4)代入上式得:1=a∴所求抛物线的解析式为:)1)(2(-+=x x y即22-+=x x y ………………4分(2)设点P 的横坐标为t ,则点P 为(t ,t+2),点Q 为(t ,22-+t t )………………5分 ∴PQ=t+2-(22-+t t )=42+-t ………………7分 ∵a=-1<0∴PQ 有最大值4 ………………8分 (3)由(2)知点P 坐标为(0,2) ………………9分 ①以PD 为平行四边形的边时,设点M 坐标为(m ,n )则点N 为(m+1,n-2) ∵点M 、N 均在抛物线上∴ n=m 2+m-2n-2=(m+1)2+m+1-2 解得 m=-2n=0∴M(-2,0),N (-1,-2) …………10分 ②以PD 为平行四边形的对角线时,设点M 为(m,n )则点N 为(1-m,2-n )同(1)理得M (-1,-2)N (2,4) …………11分 综上所述存在M (-2,2),N (-1,-2)和M (-1,-2),N (2,4)满足题意。
2016年湖北省中考适应性考试数学试卷(附答案)

湖北省中考适应性考试数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只 有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-5的绝对值是 ( ) A .51 B . 5 C .51- D . -5 2.下列各图中,不是中心对称图形的是 ( )3.下列计算正确的是( ) A .()623a a -=- B .222)(b a b a -=- C .235325a a a += D .336a a a =÷ 4.分解因式2m ma -的结果是( )A.(1)(1)m a a +-B.2(1)m a +C.2(1)m a - D.(1)(1)a a -+5.如图,能判定EC ∥AB 的条件是( )A .∠B=∠ACEB .∠A=∠ECDC .∠B=∠ACBD .∠A=∠ACE6.已知m 10x =,n 10y =,则2310x y +等于( )A .n 3m 2+B .22n m +C .mn 6D .32n m7.如图,已知△ABC 中,∠C=090,若沿图中虚线剪去∠C ,则 ∠1+∠2等于 ( ) A .90° B .135° C .270° D .315°8.已知一元二次方程2x 2+mx-7=0的一个根为x=1,则另一根为( ) A .1 B .2 C .-3.5 D .-59.在函数31-=x y 中,自变量x 的取值范围是( ) A .x ≠3 B .x ≠0 C .x >3 D .x ≠-310.已知抛一枚均匀硬币正面朝上的概率为21,下列说法错误..的是( ) A .连续抛一枚均匀硬币2次,必有1次正面朝上. B .连续抛一枚均匀硬币10次,都可能正面朝上.C .大量反复抛一枚均匀硬币,平均100次出现正面朝上50次.D .通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的.11.如图,线段AB 两个端点的坐标分别为A(6,6)、B(8,2),以原点O 为位似中心,在第 一象限内将线段AB 缩小为原来的21后得到线段CD ,则端点C 的坐标为( ) A .(3,3) B .(4,3) C .(3,1) D .(4,1)12.如图,P 为⊙O 的直径BA 延长线上的一点,PC 与⊙O 相切,切点为C ,点D 是⊙O 上一点,连接P D .已知PC =PD =B C .下列结论:(1)PD 与⊙O 相切;(2)四边形PCBD 是菱形;(3)PO =CD ;(4)弧AC=弧AD .其中正确的个数为( )A .1个B . 2个C .3个D .4个二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上.13.计算:)3223)(3223(-+=__________________.14.央视报道,中国人每年在餐桌上浪费的粮食价值高达2000亿元,被倒掉的食物相当于 200000000多人一年的口粮,把200000000用科学计数法表示为___________________.15.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:那么这些运动员跳高成绩的众数是( )A .4B .1.75C .1.70D .1.6516.一艘观光游船从港口A 以北偏东60°的方向出港观光,航行60海里至C 处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测 得事故船在它的北偏东30°方向,马上以40海里每小时的速度前往救援,海警船到达事 故船C 处所需的时间大约为________小时(用根号表示).17. 在Rt △ABC 中,∠A =90°,有一个锐角为60°,BC=6.若P 在线段CA 的延长线上, 且∠ABP =30°,则CP 的长为_______.43和6成绩(m )1.501.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2 A B C 30O60O(港口)(海警船)(游船)三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内. 18.已知15-=x ,求代数式652-+x x 的值.19.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.20.如图,直径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD . 已知DE=3,∠BAC+∠EAD=180°,求点A 到BC 的距离.21.如图,已知在平面直角坐标系xOy 中,O 是坐标原点,双曲线1y =xm与直线2y =b x +-交于A ,D 两点,直线2y =b x +-交x 轴于点C ,交y 轴于 点B ,点B 的坐标为(0,3),3==∆∆D O C AO B s s .(1)求m 和b 的值;(2)求21y y >时x 的取值范围.22.下图是某校未制作完整的三个年级假期义工(不计报酬,为他人提供服务的人)的统计 图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有假期义工_______名; (2)将两幅统计图补充完整;(3)要求从七年级、九年级义工中各推荐一名队长候选人,八年级义工中推荐两名队长候选人,再从四名候选人中先后选出两人任队长,用列表法或树形图,求出两名队长都是八年级义工的概率是多少?23.如图,四边形ABCD 为菱形,E为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1) 求证:∠AFD=∠EBC ;(2) 若∠DAB=90°,当∆BEF 为等腰三角形时,求∠EFB 的度数.24.响应政府“节能”号召,我市华强照明公司减少了白炽灯的生产数量,引进新工艺生产一种新型节能灯.已知这种节能灯的出厂价为每个10元.某商场试销发现:销售单价定为15元/个,每月销售量为350个;每涨价1元,每月少卖10个.(1)求出每月销售量y (个)与销售单价x (元)之间的函数关系,并写出自变量的取值范围;(2)设该商场每月销售这种节能灯获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(3)如果物价部门规定,这种节能灯的销售单价不得高于25元.商场根据公司生产调拨计划得知,每月商场最多可销售这种节能灯300个,在这种情况下,商场每月销售这种节能灯最多可获得多少利润?A B CD E F ABC D E F (备用图)25.如图,AB为⊙O的直径,C,E为⊙O上的两点,AC平分∠EAB,CD⊥AE于D.(1)求证:CD为⊙O的切线;(2)过点C作CF⊥AB于F,如图2,判断CF和AF,DE之间的数量关系,并证明之;3,求图中阴影部分的面积.(3)若AD-OA=1.5,AC=326.如图,矩形OABC的顶点O,A,C都在坐标轴上,点B的坐标为(8,3),M是BC 边的中点.(1)求出点M的坐标和△COM的周长;(2)若点P是矩形OABC的对称轴MN上的一点,使以O,M,C,P为顶点的四边形是平行四边形,求出符合条件的点P的坐标;(3)若P是OA边上一个动点,它以每秒1个单位长度的速度从A点出发,沿AO方向向点O匀速运动,设运动时间为t秒.是否存在在某一时刻t,使以P,O,M为顶点的三角形与△C OM 相似?若存在,求出此时t的值;若不存在,请说明理由.参考答案评分说明:1.若与参考答案有不用的解法而解答过程正确者,请参照本评分标准分步给分。
2016年湖北省襄阳市襄州区中考数学模拟试卷

2016年湖北省襄阳市襄州区中考数学模拟试卷一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项序号在答题卡上涂黑作答.1.(3分)(2016•湖北模拟)﹣2的相反数是()A.﹣2 B.2 C.02.(3分)(2016•湖北模拟)下列运算正确的是()A.B.C.D.3.(3分)(2013•泉州)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.4.(3分)(2016•永泰县模拟)如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.(3分)(2014•益阳)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤16.(3分)(2012•日照)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是()A.B.C.D.7.(3分)(2013•兰州)某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统8.(3分)(2015•包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sinA>sinB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m2+1)>b(m2+1);④若|﹣x|=﹣x,则x≥0.其中原命题与逆命题均为真命题的是()A.①②③ B.①②④ C.①③④ D.②③④9.(3分)(2016•湖北模拟)如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF等于()A.50°B.80°C.65°D.115°10.(3分)(2016•湖北模拟)如图,AB是⊙O的直径,点D、E是半圆的三等分点,AE、BD的延长线交于点C,若CE=2,则图中阴影部分的面积是()A.π﹣B.πC.π﹣D.π二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在答题卡上对应的横线上.11.(3分)(2015•黄石)分解因式:3x2﹣27=.12.(3分)(2016•湖北模拟)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大.2.5μm用科学记数法可表示为m.13.(3分)(2016•湖北模拟)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=度.14.(3分)(2016•湖北模拟)分式方程的解是.15.(3分)(2016•湖北模拟)如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为cm2.16.(3分)(2016•湖北模拟)⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.三.解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在答题卡上对应的答题区域内.17.(6分)(2016•湖北模拟)先化简:,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x的值代入求值.18.(6分)(2016•湖北模拟)为响应习总书记“足球进校园”的号召,我区在各中学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数为;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(7分)(2016•湖北模拟)如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)20.(7分)(2016•湖北模拟)如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)当通道宽a为10米时,花圃的面积=;(2)通道的面积与花圃的面积之比能否恰好等于3:5?如果可以,试求出此时通道的宽.21.(7分)(2016•湖北模拟)如图,一次函数y=kx﹣1的图象与反比例函数的图象相交于A、B两点.已知点A的坐标是(﹣2,1),△AOB的面积为.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.22.(8分)(2016•湖北模拟)如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D.(1)过D作DE⊥MN于E(保留作图痕迹);(2)证明:DE是⊙O的切线;(3)若DE=6,AE=3,求弦AB的长.23.(9分)(2016•湖北模拟)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/kg)的变化而变化,具体(1)请根据上表,写出y与x之间的函数关系式(不必写出自变量x的取值范围);(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w 的值最大?(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?24.(10分)(2016•湖北模拟)如图,在三角形ABC中,点O是AC边上一动点,过点O 作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1)求证:OE=OF;(2)当点O运动到何处时,四边形AECF会变成矩形?并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,AB与EC相交于点P,与EF相交于点D,若BC=2,AE=,求BP的长.25.(11分)(2016•湖北模拟)综合与探究:如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,过点B作线段BC⊥x轴,交直线y=﹣2x于点C.(1)求该抛物线的解析式;(2)求点B关于直线y=﹣2x的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2016年湖北省襄阳市襄州区中考数学模拟试卷参考答案一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项序号在答题卡上涂黑作答.1.B;2.D;3.A;4.D;5.D;6.B;7.A;8.A;9.D;10.A;二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在答题卡上对应的横线上.11.3(x+3)(x-3);12.2.5×10-6;13.120;14.x=-2;15.40;16.2或8;三.解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在答题卡上对应的答题区域内.17.;18.30人;19.;20.800;21.;22.;23.;24.;25.;。
襄阳市襄城区2016年中考数学模拟试卷含答案

襄阳市襄城区2016年中考数学模拟试卷含答案湖北省襄阳市襄城区2016年中考数学模拟试卷(解析版)参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣2016的倒数的绝对值为()A.﹣2016 B.C.2016 D.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数,根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣2016的倒数为﹣,﹣的绝对值为.故选;D.【点评】本题考查了倒数、绝对值的性质,掌握倒数的定义和绝对值的性质是解题的关键.2.为了解九(3)班学生每天零花钱的使用情况,小明随机调查了20名同学,结果如表:关于这20名同学每天使用的零花钱,下列说法错误的是()每天使用零花钱(单位:元) 0 1 2 3 4 5人数 2 5 6 4 2 1A.众数是2元B.中位数是2元C.极差是5元D.平均数是2.45元【分析】分别计算该组数据的众数、平均数、极差及中位数后找到正确答案即可.【解答】解:A、∵2出现了6次,出现的次数最多,∴众数是2元,故本选项正确;B、把这些数从小到大排列,最中间的数是第10、11个数的平均数,则中位数是=2元,故本选项正确;C、极差是5﹣0=5元,故本选项正确;D、平均数是=2.1元,故本选项错误;故选D.【点评】本题考查了极差、加权平均数、中位数及众数,在解决此类题目的时候一定要细心,特别是求中位数的时候,首先排序,然后确定数据总个数.3.下列运算正确的是()A.a2+a3=a5B.4a+2b=6ab C.D.【分析】直接利用合并同类项法则以及零指数幂的性质和二次根式乘法运算法则化简求出答案.【解答】解:A、a2+a3无法计算,故此选项错误;B、4a+2b无法计算,故此选项错误;C、=1,正确;D、(2)2=4×5=20,故此选项错误;故选:C.【点评】此题主要考查了二次根式的乘法运算以及零指数幂的性质、合并同类项法则等知识,正确运用相关法则是解题关键.4.如图,AB∥DE,AC⊥CD,并且∠A=35°,则∠D的度数为()A.55° B.45° C.30° D.60°【分析】延长AC交DE于点K.根据∠ACD=∠D+∠DKC即可解决问题.【解答】解:如图延长AC交DE于点K.∵AB∥DE,∴∠A=∠DKC=35°,∵AC⊥CD,∴∠ACD=90°=∠D+∠DKC,∴∠D=90°﹣∠DKC=90°﹣35°=55°.故选A.【点评】本题考查平行线的性质、三角形的外角的性质,解题的关键是添加辅助线,利用三角形的外角等于不相邻的两个内角和解决问题,属于中考常考题型.5.已知函数y=(k﹣1)x2﹣4x+4与x轴只有一个交点,则k的取值范围是()A.k≤2且k≠1 B.k<2且k≠1 C.k=2 D.k=2或1【分析】当k+1=0时,函数为一次函数必与x轴有一个交点;当k+1≠0时,令y=0可得到关于x的一元二次方程,根据条件可知其判别式为0,可求得k的值.【解答】解:当k﹣1=0,即k=1时,函数为y=﹣4x+4,与x轴只有一个交点;当k﹣1≠0,即k≠1时,令y=0可得(k﹣1)x2﹣4x+4=0,由函数与x轴只有一个交点可知该方程有两个相等的实数根,∴△=0,即(﹣4)2﹣4(k﹣1)×4=0,解得k=2,综上可知k的值为1或2,故选D.【点评】本题主要考查函数与x轴的交点,掌握二次函数与x轴只有一个交点的条件是解题的关键,注意分类讨论.6.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为()A.2.5×10﹣7米B.2.5×10﹣6米C.2.5×107米D.2.5×106米【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5微米用科学记数可表示为2.5×10﹣6米.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.如图所示的是由一些正方体小木块搭成的几何体的主视图与俯视图,它最多需要小木块的块数是()A.8 B.7 C.6 D.5【分析】易得这个几何体共有3层,由俯视图可得第一层小正方体的个数,由主视图可得第二层小正方体的最多个数,由主视图可得第三层小正方体的最多个数,相加即可.【解答】解:由俯视图易得最底层有4个小正方体,第二层最多有3个小正方体,第三层最多有1个小正方体,那么搭成这个几何体的小正方体最多为4+3+1=8个.故选A.【点评】考查学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC 的周长为()A.20 B.22 C.14 D.16【分析】由在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M、N,作直线MN,可得MN是AB的垂直平分线,根据线段垂直平分线的性质,由△ADC的周长为8,即可得AC+BC=8,继而求得答案.【解答】解:根据题意得:MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为8,∴AC+CD+AD=AC+CD+BD=AC+BC=8,∵AB=6,∴△ABC的周长为:AC+BC+AB=14.故选C.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握数形结合思想的应用.9.已知抛物线y=ax2+bx+c的图象如图所示,则直线y=ax﹣b一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据二次函数的图象判断出a、b的符号,进而可得出结论.【解答】解:∵二次函数的图象开口向下,∴a<0.∵函数的对称轴在x轴的负半轴,∴﹣<0,∴b<0,∴﹣b>0,∴直线y=ax﹣b经过一二四象限,不经过第三象限.故选C.【点评】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.10.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF折叠,点D恰好落在BE上M点处,延长BC,EF交于点N.有下列四个结论:①BF垂直平分EN;②BF平分∠MFC;③△DEF∽△FEB;④tan∠N=.其中,将正确结论的序号全部选对的是()A.①②③ B.①②④ C.②③④ D.①②③④【分析】由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;易求得∠BFE=∠BFN,则可得BF⊥EN;易证得△BEN是等腰三角形,但无法判定是等边三角形;故正确的结论有3个.【解答】解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF,在△DEF与△CFN中,,∴△DFE≌△CFN,∴EF=FN,∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∴BF平分∠MFC;故②正确;∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,∴BF垂直平分EN,故①正确;∵∠BFE=∠D=∠FME=90°,∴∠EFM+∠FEM=∠FEM+∠FBE=90°,∴∠EFM=∠EBF,∵∠DFE=∠EFM,∴∠DFE=∠FBE,∴△DEF∽△FEB;故③正确;∵△DFE≌△CFN,∴BE=BN,∴△EBN是等腰三角形,∴∠N不一定等于60°,故④错误.故选:A.【点评】此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,证得△DFE≌△CFN是解题的关键.二、填空题(每小题3分,共计18分)11.计算:=.【分析】先对括号内的式子化简再根据二次根式的除法进行计算即可解答本题.【解答】解:===3,故答案为:3.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.12.如图,点P是反比例函数在第二象限上的一点,且矩形PEOF的面积为5,则反比例函数的表达式为y=﹣.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,再根据反比例函数的图象所在的象限确定k的值,即可求出反比例函数的解析式.【解答】解:由图象上的点所构成的矩形面积为10可知,S=|k|=5,k=±5.又由于反比例函数的图象在第二、四象限,k<0,则k=﹣10,所以反比例函数的解析式为y=﹣,故答案为:y=﹣.【点评】本题考主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x 轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.13.若关于x的不等式组的整数解恰好有三个,则m的取值范围是1≤m<2.【分析】先求出不等式组的解集,再根据不等式组有且只有三个整数解求出整数解,即可得到m的取值范围.【解答】解:解不等式m﹣x≥0,得:x≤m,解不等式3x+6>0,得:x>﹣2,∵不等式组的整数解恰好有三个,∴不等式组的整数解为﹣1、0、1,∴1≤m<2,故答案为:1≤m<2.【点评】此题考查了一元一出不等式组的整数解,根据题意不等式组只有3个整数解列出关于m的不等式是解本题的关键.14.盒子里装有大小形状相同,质地均匀的4个白球和3个红球,搅匀后从中摸出一个球,放回搅匀后,再摸出第二个球,则两次取出的均是红球的概率是.【分析】根据题意可以求得每次摸到红球的概率,两次都摸到红球的概率就是两次的概率的乘积,本题得以解决.【解答】解:由题意可得,第一次摸到红球的概率是:,第二次摸到红球的概率是:,故两次取出的均是红球的概率是:.故答案为:.【点评】本题考查列表法与树状图法,解题的关键是明确题意,可以求出每次摸到的概率,明确两次都发生的概率就是两次发生的概率的乘积.15.如图,四边形ABCD是⊙O的内接四边形,已知∠BOD=120°,则∠BCD的度数为120°.【分析】根据圆周角定理求出∠A的度数,根据圆内接四边形的对角互补计算即可.【解答】解:由圆周角定理得,∠A=∠BOD=60°,则∠BCD=180°﹣∠A=120°,故答案为:120°.【点评】本题考查的是圆内接三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.16.已知▱ABCD的周长为40cm,AE⊥BC于点E,AF⊥CD于点F,若AE=4cm,AF=6cm,则CE+CF=或cm.【分析】本题考虑两种情形:①如图1中,当∠BAD是钝角时,设AB=a,BC=b,列方程组求出a、b,再利用勾股定理求出BE、DF,即可解决问题.②如图2中,当∠BAD是锐角时,求出CE、CF即可.【解答】解:①如图1中,当∠BAD是钝角时,设AB=a,BC=b,∵四边形ABCD是平行四边形,∴AB=CD=a,BCAE=CDAF,∴3a=2b ①∵a+b=20 ②由①②解得a=8,b=12,在RT△ABE中,∵∠AEB=90°,AB=8,AE=4,∴BE===4,∴EC=12﹣4,在RT△ADF中,∵∠AFD=90°.AD=12,AF=6.∴DF==6,∵6>8,∴CF=DF﹣CD=6﹣8,∴CE+CF=EC+CF=4+2.②如图2中,当∠BAD是锐角时,由①可知:DF=6,BE=4,∴CF=8+6,CE=12+4,∴CE+CF=20+10.故答案为或【点评】本题考查平行四边形的性质、勾股定理等知识,解题的关键是正确画出图形,注意本题有两个解,通过计算确定高的位置,属于中考常考题型.三、解答题(共72分)17.先化简,再求值:,其中x=,y=2sin30°﹣.【分析】先根据分式混合运算的法则把原式进行化简,再根据特殊角的三角函数求出x、y 的值,进而可得出x﹣y与x+y的值,代入代数式进行计算即可.【解答】解:原式=[﹣]==由x====+1,y=2sin30°﹣=2×﹣=1﹣,得x﹣y=2,x+y=2,故原式==2.【点评】本题考查的是分式的化简求值,分式化简求值时需注意,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.18.从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟,甲地到乙地的全程是多少?【分析】设从甲地到乙地的上坡路为xkm,平路为ykm,根据保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地用54分钟,从乙地到甲地用42分钟即可列出方程组,然后解方程组就可以求出甲地到乙地的全程.【解答】解:设从甲地到乙地的上坡路为xkm,平路为ykm,依题意得,解之得,∴x+y=3.1km,答:甲地到乙地的全程是3.1km.【点评】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.19.如图,点E是▱ABCD的边AD上一点,连接CE并延长交BA的延长线于点F,若BG=DE,并且∠AEF=70°.求∠AGB的度数.【分析】首先证明△ABG≌△CDE,进而得到∠AGB=∠CDE,结合题干条件即可得到答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BG=DE,在△ABG和△CDE中,,∴△ABG≌△CDE,∴∠AGB=∠CED,∵∠CED=∠AEF=70°,∴∠AGB=70°.【点评】本题主要考查了平行四边形的性质,解答本题的关键是证明△ABG≌△CDE,此题难度不大.20.为响应襄阳市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A,B,C,D四等.从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,解答下列问题:(1)被抽取的学生总数是200人,C等在样本中所占的百分比是10%;(2)D等在扇形统计图所对应的圆心角是多少度?并补全左侧的条形图;(3)估计全校校生成绩为A等的大约有多少人?【分析】(1)用B等人数除以B等百分比可得抽查人数,用C等人数除以总人数可得百分比;(2)用1减去A、B、C三等级百分比可得D等百分比,再乘以360°可得D等对应扇形圆心角,用A等百分比乘以总人数可得A等人数,总人数减去其余各组人数可得D等人数,补全图形;(3)用样本中A等级百分比乘以总人数可得.【解答】解:(1)被抽取的学生总数为50÷25%=200(人),C等在样本中所占的百分比为:×100%=10%;(2)D等在扇形统计图所对应的圆心角为:(1﹣60%﹣25%﹣10%)×360°=18°,A等级人数为:200×60%=120(人),D等级人数为:200﹣120﹣50﹣20=10(人),补全条形图如图:(3)1500×60%=900(人),答:估计全校校生成绩为A等的大约有900人.故答案为:(1)200,10%.【点评】本题主要考查了条形统计图,扇形统计图及用样本估计总体,解题的关键是从条形统计图,扇形统计图得出正确的数据.21.在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=50m,BC=100m,∠CAB=120°,请计算A,B两个凉亭之间的距离.【分析】过C点作CD⊥AB于点D.先在Rt△CDA中求得AD、CD的长,再利用勾股定理求得BD的长,AB=BD﹣AD,即可得出结果.【解答】解:过点C作CD⊥AB于D,如图所示:在Rt△CDA中∠CAD=180°﹣∠CAB=180°﹣120°=60°,∵sin∠CAD=,∴CD=ACsin60°=50×=25(m),同理:AD=ACcos60°=50×=25(m),在Rt△CBD中,(m),∴AB=BD﹣AD=(m),答:AB之间的距离是()m.【点评】本题考查了解直角三角形的应用、三角函数、勾股定理;解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB 即可.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,∴=,∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB===10,即⊙O直径的长是10.【点评】本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键.23.为了拉动内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益p(元)会相应降低且满足:p=﹣x+110(x≥0).(1)在政府补贴政策实施后,求出该商场销售彩电台数y与政府补贴款额x之间的函数关系式;(2)在政府未出台补贴措施之前,该商场销售彩电的总收益额为多少元?(3)要使该商场销售彩电的总收益最大,政府应将每台补贴款额x定为多少?并求出总收益的最大值.【分析】(1)根据题意,可设y=kx+b,将(100,1000),(200,1400)代入上式,即可解决问题.(2)分别求出销售台数,每台的利润,即可解决问题.(3)构建二次函数,然后利用配方法确定函数最值问题.【解答】解:(1)根据题意,可设y=kx+b将(100,1000),(200,1400)代入上式,得:,解得,故所求作的函数关系式为:y=4x+600.(2)∵在y=4x+600中,当x=0时,y=600,在中,当x=0时,p=110∴600×110=66000答:在政府未出台补贴措施之前,该商场销售彩电的总收益额为66000元.(3)设总收益为W元,则W===∵,∴W存在最大值,∴当x=200时W有最大值98000.答:政府应将每台补贴款额定为200元时,可获得最大利润98000元.【点评】本题考查二次函数的应用,解题的关键是搞清楚销售量、利润、销售数量之间的关系,学会构建二次函数解决最值问题,属于中考常考题型.24.已知:将一副三角板(Rt△ABC和Rt△DEF)如图①摆放,点E,A,D,B在一条直线上,且D是AB的中点.将Rt△DEF绕点D顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE,AC相交于点M,直线DF,BC相交于点N,分别过点M,N作直线AB的垂线,垂足为G,H.(1)当α=30°时(如图②),求证:AG=DH;(2)当α=60°时(如图③),(1)中的结论是否成立?请写出你的结论,并说明理由;(3)当0°<α<90°(如图④)时,求证:AGHB=GDDH.【分析】(1)由题意确定出∠A=∠MDA,利用等角对等边得到MA=MD,利用三线合一得到AG=GD,再由MG垂直于AD,得到AG垂直于AD,进而确定出三角形CDB为等边三角形,根据CH垂直于BD,利用三线合一得到H为BD中点,再由D为AB中点,等量代换即可得证;(2)AG=DH,理由为:根据题意,利用ASA得到三角形AMD与三角形DNB全等,利用全等三角形对应边相等得到AM=DN,再由两直线平行同位角相等,以及一对直角相等,利用AAS得到三角形AMG与三角形DNH全等,利用全等三角形对应边相等即可得证;(3)利用两对角相等的三角形相似得到三角形AMG与三角形NHB相似,由相似得比例,再利用两对角相等的三角形相似得到三角形MGD与三角形DHN相似,由相似得比例,等量代换即可得证.【解答】(1)证明:∵∠A=∠MDA=α=30°,∴MA=MD,又∵MG⊥AD,∴AG=AD,∵∠FDB=90°﹣α=90°﹣30°=60°,∠B=60°,∴△CDB是等边三角形,又∵CH⊥BD,∴DH=BD,∵D为AD的中点,∴AD=BD,∴AG=DH;(2)解:AG=DH,理由为:在△AMD和△DNB中,,∴△AMD≌△DNB(ASA),∴AM=DN,又∵∠A=∠NDH=90°﹣α=90°﹣60°=30°,∠AGM=∠DHN=90°,∴△AGM≌△DHN(AAS),∴AG=DH;(3)证明:在Rt△AGM中,∠A=30°,∴∠AMG=90°﹣30°=60°=∠B,又∵∠AGM=∠NHB=90°,∴△AGM∽△NHB,∴=,∴MGNH=AGHB,∵∠GMD+∠GDM=90°,∠HDN+∠GDM=90°,∴∠GMD=∠HDN,又∵∠MGD=∠DHN=90°,∴△MGD∽△DHN,∴=,∴MGNH=GDDH,∴AGHB=GDGH.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,等腰三角形的性质,以及等边三角形的性质,熟练掌握相似三角形的判定与性质是解本题的关键.25.如图,抛物线与直线相交于A,B两点,若点A在x轴上,点B的坐标是(2,4),抛物线与x轴另一交点为D,并且△ABD的面积为6,直线AB与y轴的交点的坐标为(0,2).点P是线段AB(不与A,B重合)上的一个动点,过点P作x轴的垂线,交抛物线与点Q.(1)分别求出抛物线与直线的解析式;(2)求线段PQ长度的最大值;(3)当PQ取得最大值时,在抛物线上是否存在M、N两点(点M的横坐标小于N的横坐标),使得P、D、M、N为顶点的四边形是平行四边形?若存在,求出MN的坐标;若不存在,请说明理由.【分析】(1)用待定系数法求出直线解析式,先由面积求出点D坐标橫坐标,再用待定系数法求出抛物线解析式;(2)根据点P,Q的坐标求出PQ的解析式,(3)①以PD为平行四边形的边时和②以PD为平行四边形的对角线,由点M,N在抛物线上,求出其坐标,【解答】(1)解:设直线的解析式为:y=kx+b,将点B(2,4),点(0,2)代入上式得:,解得,∴所求直线的解析式为:y=x+2.当y=0时,x=﹣2,即点A的坐标为(﹣2,0),∵S△ABD=,∴x D=1,∴点D的坐标(1,0),设抛物线的解析式为:y=a(x+2)(x﹣1),将点B(2,4)代入上式得:a=1,∴所求抛物线的解析式为:y=(x+2)(x﹣1),即y=x2+x﹣2,(2)设点P的横坐标为t,则点P为(t,t+2),点Q为(t,t2+t﹣2),∴PQ=t+2﹣(t2+t﹣2)=﹣t2+4,∵a=﹣1<0,∴PQ有最大值4;(3)由(2)知点P坐标为(0,2),①以PD为平行四边形的边时,设点M坐标为(m,n)则点N为(m+1,n﹣2),∵点M、N均在抛物线上,∴n=m2+m﹣2,n﹣2=(m+1)2+m+1﹣2,解得m=﹣2,n=0∴M(﹣2,0),N(﹣1,﹣2),②以PD为平行四边形的对角线时,设点M为(m,n)则点N为(1﹣m,2﹣n),同(1)方法一样,得M(﹣1,﹣2)N(2,4),综上所述存在M(﹣2,2),N(﹣1,﹣2)和M(﹣1,﹣2),N(2,4)满足题意.【点评】此题是二次函数综合题,主要考查了待定系数法求函数解析式,函数的极值,平行四边形的判定和性质,求函数解析式是解本题的关键.参与本试卷答题和审题的老师有:梁宝华;lantin;gbl210;弯弯的。
2016年襄阳市中考数学模拟试题三(含答案)

2016年襄阳市中考数学模拟试题(三)一、选择题:(本大题共10个小题,每小题3分,共30分)1.21的相反数是( )A.2 B. 2 C.21 D.212.如图,将三角尺的直角顶点放在直线a 上,a ∥b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B. 60°C. 70°D. 80°3.下列计算正确的是()A. 532x x xB. 632x x x C.532)(x x D. 235xx x 4.已知关于x 的一元二次方程(a ﹣l )x 2﹣2x +l=0有两个不相等的实数根,则a 的取值范围是()A .a >2B .a <2C .a <2且a ≠lD .a <﹣25.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数1243 32这些运动员跳高成绩的中位数和众数分别是()A.1.65 , 1.70 B.1.70 , 1.70C.1.70 , 1.65D.3 , 46.函数1ax y与12bx axy(0a)的图像可能是:()7.一个几何体是由一些大小相同的小正方体摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方体最多有:( )A.4个B.5个 C. 6个 D. 7个8、如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A →D →C →B →A ,设P 点经过的路线为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是()9.如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是()A . B.C .D .10.如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC =60°.若动点P 以2cm/s 的速度从B 点出发沿着B →A的方向运动,点Q 从A 点出发沿着A →C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t(s),当△APQ 是直角三角形时,t 的值为()A.34 B.33 C.34或33D.34或33或3二、填空题:(本大题共6个小题,每小题3分,共18分)11.计算(348227)3 =.12.已知某种感冒病毒的直径是0.000000012米,那么这个数可用科学记数法表示为米13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为 x -y24121+3,由此可知铅球推出的距离为m .14、襄阳市辖区内旅游景点较多。
湖北省襄阳市襄州区中考适应性测试数学试题及答案
襄州区中考适应性测试一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.0.2的倒数是( ) A .51 B .51- C .5 D .﹣5 2.下列计算正确的是( )A .ab b a 532=+B .842)(a a =C .623a a a =•D .22212aa =- 3.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克, 那么0.000037毫克可用科学记数法表示为( ) A .3.7×10﹣5克 B .3.7×10﹣6克 C .37×10﹣7克 D . 3.7×10﹣8克4.下列各式化简结果为无理数的是( )A .27B .22C .38-D .01-()π5.如图,AB∥CD,BC∥DE,若∠B=40°,则∠D 的度数是( ) A .40° B .140° C .160° D .60° 6.下列几何体中,俯视图相同的是( ) A .① ② ③ B .① ③ ④ C .① ② ④ D .② ③ ④ 7.一个正方形和两个等边三角形的位置如图6所示,若∠3 = 60°,则∠1+∠2 =( )A .80°B .90°C .120°D .180°8.如图,在等边△ABC 中,点D 、E 分别是边AB 、AC 的中点.将△ADE 绕点E 旋转 180°得△CFE ,则四边形ADCF 一定是A .矩形B .菱形C .正方形D .梯形9.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A .当0=k 时,方程无解B .当1-=k 时,方程有两个相等的实数解C .当1=k 时,方程有一个实数解D .当0≠k 时,方程总有两个不相等的实数解ED BC10.我区某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于 这组统计数据,下列说法中正确的是( )A .平均数是60B .中位数是59C .极差是40D .众数是5811.如图,直线y =x +a -5与双曲线y=x4交于A ,B 两点,则当线段AB 的 长度取最小值时, a 的值为( ). A .0B .1C .2D .512.如图,梯形ABCD 中,AD ∥BC ,AB=3,BC=4,连结BD ,∠BAD 的 平分线交BD 于 点E ,且AE ∥CD ,则AD 的长为( ) A .1 B .2 C .3 D .4二、填空题(本大题共5个小题,每小题3分,共15分)请把每小题的答案填在答题卡的相应位置上. 13.计算:2124-=______________. 14.不等式组⎩⎨⎧>+<-x x x 3201的整数解是___________.15.分式方程5113--=-x xx 的解是___________. 16.小明在某风景区的观景台O 处观测到东北方向的P 处有一艘货船, 该船正向南匀速航 行,30分钟后再观察时,该船已航行到O 的南偏东30,且与O 相距6km 的Q 处.如图所示. 货船的航行速度是____________km/h.(结果用根号表示.)17.如图,在矩形ABCD 中,AB=16cm ,AD=6cm ,动点P ,Q 分别从A ,C ,同时出发,点P 以2cm/s 的速度向点B 移动,到达B 点后停止,点Q 以1cm/s 的速度向点D 移动,到达D 点后停止,P ,Q 两点 出发后,经过_____________秒时,线段PQ 的长是10cm .BQ三、解答题(本大题共9个小题,共69分)解答应写出文字说明,证明过程或演算步骤,并将解答过程写在答题卡上每小题对应的答题区域内. 18.(本题5分) 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0232=-+x x 的根.19.(本题6分)某省为解决农村饮用水问题,省门共10亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.,A 市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率,该市计划“改水工程”864万元. (1)求A 市“改水工程”的年平均增长率; (2)从到,A 市三年共“改水工程”多少万元?20.(本题6分)如图,矩形OABC 的顶点,A C 分别在x 轴和y 轴上,点B 的坐标为(2,3).双曲线(0)ky x x=>的图像经过BC 的中点D ,且与AB 交于点E ,连接DE . (1)求k 的值及点E 的坐标;(2)若点F 是边上一点,且ΔFCB ∽ΔDBE , 求直线FB 的解析式21.(本题6分)如图所示,在⊙O 中,=,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.(1)求证:AC2=AB•AF;(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.22.(本题7分)今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的两种统计图表.对雾霾了解程度的统计表:对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)请补全图1所示数的条形统计图;(3)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”等级中的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,记下数字后放回袋中,另一人再从袋中中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.(本题6分)如图,在Rt ΔABC 中,∠BAC =90°,DB ⊥BC ,DA =DB ,点E 是BC 的中点,DE 与AB 相交于点G .(1)求证DE ⊥AB ;(2)如果∠FCB ==∠FBC =∠DAB ,设DF 与BC 交于点H ,求证:DH =FH .24.(本题10分)某市自来水公司为了鼓励市民节约用水,于2014年4月开始采用以用户为单位按月分段收费办法收取水费,新按月分段收费标准如下:标准一:每月用水不超过20吨(包括20吨)的水量,每吨收费2.45元; 标准二:每月用水超过20吨但不超过30吨的水量,按每吨a 元收费;标准三:超过30吨的部分,按每吨(a +1.62)元收费。
湖北省襄阳市2016年中考卷数学试题(含答案)
2016年襄阳市初中毕业生学业水平考试数学试题一、选择题(本大题共l 0个小题,每小题3分,共30分)在每小题给出的四个选项中, 只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答. 1.-3的相反数是(▲)3.A 3.-B31.C 31.-D2.如图,AD 是ZEAC 的平分线,AD ∥BC ,zfB =300,则么C 的度数为(▲)50.A 40.B 30.C 20.D3.-8的立方根是(▲)2.A 2.-B 2.±C 32.-D4.一个几何体的三视图如图所示,则这个几何体是(▲) A .球体 B .圆锥 C .棱柱 D .圆柱5.不等式组⎩⎨⎧<-≤-⋅1,112γx 的整数解的个数为(▲)A .0个B .2个C .3个D .无数个6.一组数据2,x ,4,3.3的平均数是3,则这组数据的中位数、众数、方差分别是(▲)A .3,3,0.4;B .2,3,2;C .3,2,0.4;D .3,3,27.如图,在□ABCD 中,AB >AD ,按以下步骤作图:以点一为圆心,小 于AD 的长为半径画弧,分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于21EF 的长为半径画弧,两弧交于点G ;作射线 AG 交 CD 于点H ,则下列结论中不能由条件推理得出的是(▲) A .AG 平分∠DAB ;B .AD =DH ;C .DH =BC ; D .CH =DH8.如图,I 是∆ABC 的内心,AI 向延长线和△ABC 的外接圆相交于点D ,连接BI ,BD ,DC 下列说法中错误的一项是(▲)A .线段DB 绕点D 顺时针旋转一定能与线段DC 重合 B .线段DB 绕点D 顺刚针旋转一定能与线段DI 熏合 C .∠CAD 绕点A 顺时针旋转一定能与∠DAB 重合 D .线段ID 绕点I 顺时针旋转一定能与线段膪重合9.如图,△仰C 的顶点是正方形网格的格点,则sinA 的值为(▲)21.A 55.B 1010.C 552.D10.一次函数y =ax +b 和反比例函数y =xc暨同一平面直角坐标系中的 图象如图所示,则二次函数y =ax 2+bx +c 的图象大致为(▲)二、填空题(本大题共6个小题,每小题3分,共l8分)把答案填在答题卡的相应位置上.11.分解因式:2a2-2=▲.12.关于X的一元二次方程,x2-2x-l=O有两个相等的实数根,则m的值为▲。
湖北省襄阳市2016年中考数学试卷(解析版)
湖北省襄阳市2016年中考数学试卷(解析版)2016年湖北省襄阳市中考数学试卷、选择题:本⼤题共 10⼩题,每⼩题3分,共30分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的,请将其序号在答题卡上涂⿊作答. 1 ?- 3的相反数是(A . 50°B . 40°C . 30°D . 20° 3.- 8的⽴⽅根是( )A . 2B . - 2C . ±.D . - ' _4. ⼀个⼏何体的三视图如图所⽰,则这个⼏何体是(A .球体B .圆锥C .棱柱D .圆柱A . 0个B . 2个C . 3个D .⽆数个6. ⼀组数据2, x ,4, 3, 3的平均数是3,则这组数据的中位数、众数、⽅差分别是()A . 3, 3, 0.4B . 2, 3, 2C . 3, 2, 0.4D . 3, 3, 27.如图,在?ABCD 中,AB >AD ,按以下步骤作图:以点 A 为圆⼼,⼩于 AD 的长为半径画弧,分别交 AB 、AD 于点E 、F ;再分别以点E 、F 为圆⼼,⼤于丄EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是(2. 如图,AD 是/ EAC 的平分线,AD // BC , / B=30 ° 则/ C 的度数为(5.不等式组_丄藍”]的整数解的个数为(A ? 3B ? - 3C ?D.G的延长线和 )DC 重合 )CABD2 则⼆次)yCA B DODI 重合10. —次函数y=ax+b 和反⽐例函数在同⼀平⾯直⾓坐标系中的图象如图所⽰ DH=BC D . CH=DHA . AG 平分 / DAB B . AD=DH C△ ABC 的外接圆相交于点 D ,连接BI 、BDDC .下列说法中错误的⼀项是D .线段ID 绕点I 顺时针旋转⼀定能与线段IB 重合函数y=ax 2+bx+c 的图象⼤致为A .线段DB 绕点D 顺时针旋转⼀定能与线段 & 如图,I 是⼛ABC 的内⼼,AI B .线段DB 绕点D 顺时针旋转⼀定能与线段C . / CAD 绕点A 顺时针旋转⼀定能与 / DAB 重合 9.如图,△ ABC 的顶点是正⽅形⽹格的格点,贝U2忑V10r1—I --------- s ~ sV1■I1 ■| i⼘\■■■■■**I i才■■■ - F-H *1 1N1 ? ■.■■⼇V s⼆、填空题:本⼤题共 6⼩题,每⼩题3分,共18分?把答案填在答题卡的相应位置上. 11?分解因式:2a 2-2=_____________ ?12. ___________________________________________________________________________关于x 的⼀元⼆次⽅程x 2- 2x+m - 1=0有两个相等的实数根,则m 的值为 ______________________率稳定于0.4,由此可估计袋中约有红球 _________________ 个.14?王经理到襄阳出差带回襄阳特产--孔明菜若⼲袋,分给朋友们品尝,如果每⼈分 5袋,还余3袋;如果每⼈分 6袋,还差3袋,则王经理带回孔明菜 ________________ 袋. 15. 如图,AB 是半圆0的直径,点C 、D 是半圆0的三等分点,若弦 CD=2,则图中阴影16. ____________________________________________________________________ 如图,正⽅形 ABCD 的边长为2.'=,对⾓线 AC 、BD 相交于点O , E 是0C 的中点, 连接BE ,过点A 作AM 丄BE 于点M ,交BD 于点F ,则FM 的长为____________________________________________ .A3 C三、解答题:本⼤题共 9⼩题,共72分,解答应写出⽂字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.17. 先化简,再求值:(2x+1)( 2x - 1)-( x+1)( 3x - 2),其中 x=18. 襄阳市⽂化底蕴深厚,旅游资源丰富,古隆中、习家池、⿅门寺三个景区是⼈们节假⽇玩的热点景区,张⽼师对⼋(1)班学⽣五?⼀”⼩长假随⽗母到这三个景区游玩的计划做了全⾯调查,调查分四个类别: A 、游三个景区;B 、游两个景区;C 、游⼀个景区;D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,息解答13. —个不透明的袋中装有除颜⾊外均相同的 8个⿊球、4个⽩球和若⼲个红球.每次摇匀后随机摸出⼀个球,记下颜⾊后再放回袋中,通过⼤量重复摸球试验后,发现摸到红球的频请结合图中信下列问题:(1) ____________________________ ⼋( 1)班共有学⽣⼈,在扇形统计图中,表⽰ B 类别"的扇形的圆⼼⾓的度数为 _____________ ; (2) 请将条形统计图补充完整; (3)若张华、李刚两名同学,各⾃从三个景区中随机选⼀个作为5⽉1⽇游玩的景区,则他们同时选中古隆中的概率为 ______________ ?⼈数2519. 如图,在△ ABC 中,AD 平分/ BAC ,且BD=CD , DE 丄AB 于点E , DF 丄AC 于点F . (1) 求证:AB=AC ;(2 )若 AD=2 ⾎,/ DAC=30 ° 求 AC 的长.20.如图,直线y=ax+b 与反⽐例函数 y 丄(x >0)的图象交于 A (1,4),B(4, n )两点,与x 轴、y 轴分别交于C 、D 两点.(1) m= ___________ , n= ___________ ;若 M (X 1, yC , N (X 2, y 2)是反⽐例函数图象上两点,且0 v X 1< X 2,则y 1________________ y 2 (填/ ”或■'或>”; (2) 若线段CD 上的点P 到x 轴、y 轴的距离相等,求点 P 的坐标.I y■⽜ \ ,義别BD CD Mjfl. z 出B(4 r n)21. 汉⼗”⾼速铁路襄阳段正在建设中,甲、⼄两个⼯程队计划参与⼀项⼯程建设,甲队单独施⼯30天完成该项⼯程的⼆这时⼄队加⼊,两队还需同时施⼯ 15天,才能完成该项⼯程.(1 )若⼄队单独施⼯,需要多少天才能完成该项⼯程? (2)若甲队参与该项⼯程施⼯的时间不超过 36天,则⼄队⾄少施⼯多少天才能完成该项⼯程?22?如图,直线 AB 经过O O 上的点C ,直线AO 与O O 交于点E 和点D , OB 与O O 交于点 F ,连接 DF 、DC ?已知 OA=OB , CA=CB , DE=10 , DF=6 . (1) 求证:①直线AB 是O O 的切线;②/ FDC= / EDC ; 创新发展”的号召,研发了⼀种新产品.已知研发、⽣产这种产品的成本为30元/件,且年销售量y (万件)关于售价 x (元/件)的函数解析式为: f ― 2it+140 (40=(—汁旳70) ? (1) 若企业销售该产品获得的年利润为 W (万元),请直接写出年利润W (万元)关于售价x (元/件)的函数解析式;(2) 当该产品的售价x (元/件)为多少时,企业销售该产品获得的年利润最⼤?最⼤年利润是多少? (3)若企业销售该产品的年利润不少于 750万元,试确定该产品的售价 x (元/件)的取值范围.24.如图,将矩形 ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG // CD 交 AF 于点G ,连接DG .(1) 求证:四边形 EFDG 是菱形;(2) 探究线段EG 、GF 、AF 之间的数量关系,并说明理由;(2)求CD 的长.23.襄阳市某企业积极响应政府(3)若AG=6 , EG=2.7 求BE 的长.2, 0),直线y -[x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E, P是第⼀象限内抛物线上⼀点,过点P作x 轴的垂线,交线段BC于点F,若四边形DEFP为平⾏四边形,求点P的坐标;(3) 设点M是线段BC上的⼀动点,过点M作MN // AB,交AC于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA向点A运动,运动时间为t (秒),当t (秒)2016年湖北省襄阳市中考数学试卷参考答案与试题解析⼀、选择题:本⼤题共 10⼩题,每⼩题3分,共30分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的,请将其序号在答题卡上涂⿊作答. 1 ?- 3的相反数是()A ? 3B ? - 3C ?-D ?-⼆【考点】相反数. 【专题】常规题型.【分析】根据相反数的概念解答即可. 【解答】解:-3的相反数是3, 故选:A ?【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上 ?”号;⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0 ?A ? 50°B ? 40°C ? 30°D ? 20°【考点】平⾏线的性质;⾓平分线的定义;三⾓形的外⾓性质.【分析】由AD // BC ,/ B=30。
湖北省襄阳市2016年中考数学模拟试题(3)含答案范文
湖北省襄阳市2016年中考数学模拟试题(3)一、选择题(每小题3分,共30分) 1、3-的倒数的相反数为( ) A.3- B.31 C.3 D. 31- 2、下列运算正确的是( )A.623a a a =∙ B. 632)(a a -=- C. 33)(ab ab = D.428a a a =÷3、据统计,到2013年底我国大陆总人口数约为15.6346亿,用科学记数法表示这个数(保留4个有效数字),正确的是( )A 、1.563×109B 、1.564×109C 、1.563×108D 、1.564×1084、某个体商贩在一次买卖中同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件盈利25%,别一件亏本25%,则这次买卖中他( ) A.不赔不赚 B.赔9元 C.赚18元 D.赔18元5、.若代数式32--x x 有意义,则x 的取值范围为( ) A.x >2且x ≠3 B.x ≥2 C.x ≥2且x ≠3 D.x ≥2且x ≤36、下面四个几何体中,主视图与其它几何体的主视图不同的是( )A. B. C. D.7、如图,在矩形MNPQ 中,动点R 从点N 出发,沿N →P →Q →M 方向运动至点M 处停止.设点R 运动的路程为x , 图中阴影部分MNR △的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形PQMN 的面积为( ) A .16 B .20C .36D .458、已知点P 关于x 轴的对称点是P 1,点P 1关于原点O 的对称点是P 2,点P 2的坐标为(3,4),则点P 的坐标是( ) A.(3,4) B.(-3,4) C.(3,-4) D.(-3,-4)9、如图,有一圆心角为120 o 、半径长为6cm 的扇形,若将OA 、OB 重合后围成一圆锥侧面,那么圆锥的高是( )A .24cmB .35cmC .62cmD .32 c10、如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( )二、填空题(每小题3分,共18分) 11、函数yx 的取值范围是________12、分解因式:269mx mx m -+=_____________ 13、16的平方根是14、在平行四边形ABCD 中BC 边上的高是4,AB=5,AC=25,则平行四边形ABCD 的周长是15、 已知二次函数c bx ax y ++=2 (a ≠0)的图象如图所示, 给出以下结论:①0<abc ; ②当1x =时,函数有最大值;③当13x x =-=或时,函数y 的值都等于0; ④024<++c b a ,其中正确结论的序号是___________.16、如图,半圆的直径AB=10,P 为AB 上一点,点C ,D 为半圆的三等分点, 则阴影部分的面积等于______. 三、解答题(共72分) 17、(6分)先化简,再求值: 11)212(2--÷+-+aa a a a a ,其中222-=a . 18、(6分)今年,我市实施新课程改革后,学生的自主学习、合作交流能力有很大提高,李老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A :特别好;B :好;C :一般;D :较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,李老师一共调查了 名同学,其中C 类女生有 名, D 类男生有 名;(2)将条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A 类和D 类学生中分别选取一位同学进行 "一帮一"互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位 男同学和一位女同学的概率.19、(6分) 某校九(1)、九(2)两班的班长交流为某灾区捐款的情况: (Ⅰ)九(1)班的班长说:“我们班捐款总额为1200元,我们班人数比你们班多8人.” (Ⅱ)九(2)班的班长说:“我们班捐款总额也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.A .20、(本题6分)如图,已知A(-4,n),B(1,-4)是一次函数y kx b =+的图象和反比例函数 my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式; (2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求不等式0<-+xmb kx 的解集(请直接写出答案).21、(6分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD ⊥EF 于点D ,∠DAC =∠BAC . (1)试判断EF 与⊙O 的位置关系,并说明理由;(2)求证:AC 2=AD ·AB ;(3)若⊙O 的半径为2,∠ACD =30°,求图中阴影部分的面积. 22、(7分)如图,在矩形纸片ABCD 中,AB=3,BC=4.把△BCD沿对角线BD 折叠,使点C 落在E 处,BE 交AD 于点F ; (1)求证:AF =EF ;(2)求tan ∠ABF 的值;(3)又知A 型卡车每辆的运费为1200元,B 型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.24、(11分)在Rt △ABC 中,∠C =90°,AM 为△ABC 的角平分线,将线段BM 绕点B 顺时针方向旋转使点M 刚好落在AM 的延长线上的点N 处,此时作ND ⊥BC 于点D . (1)求证:∠ABN =90°;(2)求证:CM =BD ;(3)若DM BD 23=,AB =10,求线段BN 的长.25、(13分)如图,已知抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD∥y 轴,交AC 于点D .(1)求该抛物线的函数解析式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.参考答案1—5 BBADC 6—10 CBBAA11、x ≥﹣2且x ≠±2 12、m (x-3)213、±2 14、20或12 15、①②③ 16、π625 17、21+-a 42-N MDC18、(1)20 ; 2 ; 1 (3) 2119、设九(1)班的人均捐款数为x 元,则九(2)班的人均捐款数为(1+20%)x 元, 由题意,得8%)201(12001200=+-xx 解得,x=25, 经检验,x=25是原方程的解.所以(1+20%)x=30(元) 答:这两个班级每班的人均捐款数分别为25元,30元.20、:(1)∵反比例函数过点B (1,-4)∴∴当∴A(﹣4,1)∴ ∴∴(2)在直线中,当时,,∴C(﹣3,0)同理可求直线与轴交点的坐标为(0,-3)∴=(3) ﹣4<<0 ; >121、证明:连接OC∵OA=OC ,∴∠BAC=∠OCA , ∵∠DAC=∠BAC ,∴∠OCA=∠DAC , ∴OC ∥AD ,∵AD ⊥EF , ∴OC ⊥EF ,∵OC 为半径, ∴EF 是⊙O 的切线. (2)证明:连接BC∵AB 为⊙O 直径,AD ⊥EF ,∴∠BCA=∠ADC=90°, ∵∠DAC=∠BAC ,∴△ACB ∽△ADC , ∴AC 2=AD .AB .(3)解:阴影部分的面积是S=S 梯形OCDA -S 三角形OCA = π32233-24、:(1)证明:∵ △EBD 是由△CBD 折叠而得, ∴ED =DC, BE=BC ; ∵四边形ABCD 是矩形,∴AB=CD,∠BAD =∠BED =90°∴ED =AB,而∠EFD=∠AFD ∴△AFD ≌△EFD ∴AF =EF (2)设AF = ∵AB=3,BC=BE=4,AF =EF ∴ BF =4- ∵∠BAF =90° ∴∴ ∴ ∴tan ∠ABF =23、(1)设景区采购长条椅x 条,弧型椅y 条,由题意得,⎩⎨⎧=+=+56000200160130053y x y x 解得⎩⎨⎧==200100y x 故采购了100条长条椅,200条弧型椅. (2)设租用A 型卡车m 辆,则租用B 种卡车(20-m )辆,由题意得⎩⎨⎧≥-+≥-+200)20(711100)20(124m m m m , 解得,15≤m ≤17.5,由题意可知,m 为正整数,∴m 只能取15、16、17.故有三种租车方案可一次性将这批休闲椅运回来,可这样安排: 方案一:A 型卡车15辆,B 型卡车5辆, 方案二:A 型卡车16辆,B 型卡车4辆,方案三:A 型卡车17辆,B 型卡车3辆. (3)设租车总费用为W 元,则W=1200m+1050(20-m)=150m+21000, ∵150>0,∴W 随m 的增大而增大,又∵15≤m ≤17.5, ∴当m=15时,W 有最小值,W 最小=150×15+21000=23250,∴最省钱的租车方案是租用A 型卡车15辆、B 型卡车5辆,最低运费为23250元24、∵线段BM 绕点B 旋转后得线段BN∴BM =BN ∴∠BMN =∠BNM 又 ∵AM 平分∠BA ∴∠CAM =∠BAM ∴△ACM ∽△ABN ∴∠ABN =∠C =90° (2)证明:过点M 作ME ⊥AB 于E , ∵AM 平分∠BAC , ∠C =90°, ME ⊥AB ∴ME =CM ∵ND ⊥BC 于D∴∠MEB =∠NDB =∠ABN =90°∴∠MBE +∠MBN =∠MBN +∠BND =90° ∴∠MBE =∠BND ∵∠MEB =∠NDB , ∠MBE =∠BND ,BM =BN ∴△MEB ≌△BDN ∴ME =BD ∴CM =BD (3)设DM =2x ,则CM =BD =3x ,BN =BM =BD +DM =5x 在Rt △BDN 中,DN =x BD BN 422=- 在Rt △MDN 中,2142tan ===∠x x DN DM MND ∵∠C =∠NDM =90° ∴AC ∥DN∴∠BAM =∠CAM =∠MND ∴21tan tan =∠=∠MND BAM 在Rt △ABN 中,52110tan =⨯=∠⋅=BAM AB BN 25、(1)∵抛物线的顶点为Q (2,-1)∴设y=a(x-2)2-1 将C (0,3)代入上式,得 3=a(0-2)2-1, 解得a=1∴y=(x-2)2-1, 即y=x 2-4x+3 (2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合(如图)令y=0, 得x 2-4x+3=0 解之,得x 1=1,x 2=3 ∵点A 在点B 的右边, ∴B(1,0), A(3,0) ∴P 1(1,0)②当点A 为△APD 2的直角顶点是(如图) ∵OA=OC, ∠AOC=90, ∴∠OAD 2=45当∠D 2AP 2=90时, ∠OAP 2=45, ∴AO 平分∠D 2AP 2又∵P 2D 2∥y 轴, ∴P 2D 2⊥AO, ∴P 2、D 2关于x 轴对称. 设直线AC 的函数关系式为y=kx+b 将A(3,0), C(0,3)代入上式得⎩⎨⎧=+=bb k 330, ∴⎩⎨⎧=-=31b k ∴y=-x+3 ∵D 2在y=-x+3上, P 2在y=x 2-4x+3上, ∴设D 2(x,-x+3), P 2(x, x 2-4x+3) ∴(-x+3)+(342+-x x )=0即x 2-5x+6=0, 解得x 1=2,x 2=3(舍) ∴当x=2时, y=x 2-4x+3=22-4×2+3=-1 ∴P 2的坐标为P 2(2,-1)(即为抛物线顶点)∴P 点坐标为P 1(1,0), P 2(2,-1) (3)由题(2)知,当点P 的坐标为P 1(1,0)时,不能构成平行四边形当点P 的坐标为P 2(2,-1)(即顶点Q)时, 平移直线AP(如图)交x 轴于点E,交抛物线于点F. 当AP=FE 时,四边形PAFE 是平行四边形 ∵P(2,-1), ∴可令F(x,1) ∴x 2-4x+3=1解之,得x 1=2-2, x 2=2+2 ∴F 点有两点,即F 1(2-2,1), F 2(2+2,1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
襄州区2016年中考适应性考试数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项序号在答题卡上涂黑作答.1.-2的相反数是()A.-2 B.2 C.0 D.错误!未找到引用源。
2.下列运算正确的是()A..3)3(2-=-D3.把不等式组x22x<6≥-⎧⎨⎩的解集在数轴上表示出来,正确的是A. B .C .D .4.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()5.一元二次方程220x x m-+=总有实数根,则m应满足的条件是()A.1m> B.1m= C.1m< D.m≤16.在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则BFFD的值是( )A.21B.31C.41D.517.某校九年级开展“绿色出行”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()A.平均数是58 B.中位数是58 C.极差是40 D.众数是608.已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则sinA>sinB;②四条线段a,b,c,d中,若a cb d=,则ad=bc;③若a>b,则22(1)(1)a mb m+>+;ABDE1④若x x -=-,则0x ≥.其中原命题与逆命题均为真命题的是( )A .①②③B .①②④C .①③④D .②③④9.如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于( ) A.50° B.80° C.65° D.115°10.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE 、BD 的延长 线交于点C ,若CE=2,则图中阴影部分的面积是( ) A .π﹣B .πC .π﹣D .π二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题正确答案写在答题卡上对应的横线上.11.分解因式:2327x -= .12.PM2.5是指大气中直径小于或等于2.5m μ(10.000001m m μ=)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大.2.5m μ用科学记数法可表示为____________-m .13.如图所示,直线AB ,CD 相交于点O ,OM ⊥AB , 若∠MOD= 30°, 则∠COB=_____度. 14.分式方程11112=---xx x 的解是___________.15.如图,若□ABCD 的周长为36cm ,过点D 分别作AB ,BC 边上的高DE , DF ,且DE=4cm ,DF=5cm ,□ABCD 的面积为 cm 2.16.⊙O 的半径为5,弦BC=8,点A 是⊙O 上一点,且AB=AC ,直线AO 与BC 交于点D ,则AD 的长为 .三.解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明, 并将答 案写在答题卡上对应的答题区域内. 17.(本题6分)先化简:,然后从﹣2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.18.(本题6分)为响应习总书记“足球进校园”的号召,我区在各中学举行了“足球在身边”知识竞赛活动,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共 50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数为________人;(2)在本次知识竞赛活动中,A ,B ,C ,D 四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.19.(本题7分)如图,九年级一班数学兴趣小组的同学测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)20.(本题7分)如图,为美化环境,某小区计划在一块长为60m,宽为40m的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建同样宽的通道,设通道宽为a m.(1)当a=10m时,花圃的面积=_____________m2;(2)通道的面积与花圃的面积之比能否恰好等于3:5,如果可以,求出此时通道的宽.21.(本题7分)如图,一次函数1-=kx y 的图象与反比例函数xmy =的图象相交于A 、 B 两点. 已知点A 的坐标是(-2,1),△AOB 的面积为23. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.22.(本题8分)如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交 ⊙O 于D.(1)过D 作DE ⊥MN 于E (保留作图痕迹); (2)证明:DE 是⊙O 的切线; (3)若DE=6,AE=3,求弦AB 的长.23.(本题9分)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/ kg)的变化而变化,具体变化规律如下表所示:设该绿茶的月销售利润为w(元)(销售利润=单价×销售量-成本)(1)请根据上表,写出y与x之间的函数关系式(不必写出自变量x的取值范围);(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?24.(本题10分)如图,在三角形ABC中,点O是AC边上一动点,过点O作直线MN//BC,设MN交∠BCA的平分线于点E,交∠ACD的平分线于点F.(1) 求证:OE=OF;(2) 当点O运动到何处时,四边形AECF会变成矩形?并证明你的结论;(3) 若AC 边上存在点O ,使四边形AECF 是正方形,AB 与EC 相交于点P ,与EF 相交于 点D ,若BC=2,AE=6, 求BP 的长.25.(本题11分)如图,抛物线c bx x y ++-=241与x 轴交于A (﹣1,0),B (5,0)两 点,过点B 作线段BC ⊥x 轴,交直线x y 2-=于点C . (1)求该抛物线的解析式;(2)求点B 关于直线x y 2-=的对称点B′的坐标,判定点B′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段B′C于点D,是否存在这样的点P,使四边形PBCD是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.数学参考答案一、选择题(每小题3分,共30分)二、 填空题(每小题3分,共18分)11.)3)(3(3-+x x ;12. 6-105.2⨯;13. 120;14. 2-=x ;15. 40 16. 2或8. 三、解答题(共72分) 17. (本题6分) 解:原式=×﹣1)-1)(x x 1)-x 2+(( ……………………2分=﹣12+x ……………………3分=142+-x x , ……………………4分由题意可知,x 不能等于1,-1,0, ……………………5分 当x=2时,原式=34-4=0. ……………………6分 18.(本小题6分)解:(1)30; ……………………1分 (2)列如下表:……………………4分从表中可以看到等可能的结果共有12种情况,而A B 分到一组的情况有2种, ……………………5分故恰好选到A 、B 两所学校的概率为P==. ……………………6分19.(本小题7分)解:∵A F ⊥A B ,A B ⊥BE ,DE ⊥BE ,∴四边形A BEF 为矩形,∴A F=BE ,EF=A B=2 ……………………1分设DE=x ,在Rt △CDE 中,CE===x , ……………………2分在Rt △A BC 中, ∵=,A B=2, ∴BC=2, ……………………3分在Rt △A FD 中,DF=DE ﹣EF=x ﹣2, ∴A F===(x ﹣2), ……………………4分∵A F=BE=BC+CE .∴(x ﹣2)=2+x , ……………………5分解得x=6. ……………………6分答:树DE 的高度为6米. ……………………7分20.(本小题7分)解:(1)由图可知,花圃的面积为(40-2a )(60-2a );当a =10m 时,面积=(40-2×10)(60-2×10)=800(m 2)………2分 (2)由已知可列式:60×40-(40-2a )(60-2a )=38×60×40,……………………4分 解得:a 1=5,a 2=45(舍去). ……………………6分 答:所以通道的宽为5m . ……………………7分21.(本小题8分)解:(1)据题意,反比例函数xmy =的图象经过点A (﹣2,1), ∴有2-==xy m ∴反比例函数解析式为x y 2-=,………………2分直线1-=kx y 经过点A (﹣2,1),∴112=--k ,得1-=k ,∴一次函数的解析式为1--=x y …………4分 (2)在1-=kx y 中,当10-==y x 时,,设直线与y 轴相较于点C , 则OC=1,……………………5分 设点B 的横坐标为n , 由△AOB 的面积为23,232121=+⨯⨯)(n ,解得n =1, ……………………6分一次函数的值小于反比例函数的值时,02<<-x 或1>x .……………8分22. (本小题8分)解:(1)作图略;……………………2分 证明:连接OD , ∵O A =OD ,∴∠O A D=∠OD A ,∵∠O A D=∠D A E ,∴∠OD A =∠D A E 。
∴DO ∥MN ,……………………3分 ∵DE ⊥MN ,∴∠ODE=∠DEM =90°,即OD ⊥DE , ∵D 在⊙O 上,∴DE 是⊙O 的切线,…………4分 (2)连接CD ,座OF ⊥A B 于点F,∵OF ⊥A B ,OD ⊥DE,DE ⊥A B,∴四边形DEFO 为矩形,∴OF=DE=6,OD=EF,…5分 设AF=x ,则EF=OD=x +3在Rt △AOF 中,2226)3(x x +=+……6分 解之得,x =4.5,∴AF=4.5,……………………7分 ∴A B=2A F=9.……………………8分 23.(本小题9分)解:(1)设b kx y +=w kx b =+,将(70,100),(75,90)代入上式得:701007590k b k b +=⎧⎨+=⎩解得:2240k b =-⎧⎨=⎩,则2402+-=x y ,……………………1分将表中其它对应值代入上式均成立,所以2402+-=x y .………2分 (2)y x w )50(-=………………4分 因此,w 与x 的关系式为22234090002(85)2450y x x x =-+-=--+…… 当85x =时,2450=最大w .………………5分(3)由(2)知,第1个月还有30002450550-=元的投资成本没有收回. 则要想在全部收投资的基础上使第二个月的利润达到1700元, 即2250=w 才可以,可得方程22(85)24502250x --+= 解得:1275,95x x ==………………6分根据题意295x =不合题意,应舍去,90003402)2402)(50(2-+-=+--=x x x x当,240080==y x 时,,………………7分∵-2<0,∴,当85<x 时,w 随x 的增大而增大,当2250≥w ,且销售单价不高于80时,8075≤≤x .………………8分答:当销售单价为8075≤≤x 元时,在全部收回投资的基础上使第二个月的利润不低于1700元.………………9分24.(本小题10分)证明:(1)∵MN ∥BC ,∴∠OEC=∠BCE ,∠OFC=∠GCF ,………………1分又已知CE 平分∠BCO ,CF 平分∠GCO ,∴∠OCE=∠BCE ,∠OCF ═∠GCF ,∴∠OCE=∠OEC ,∠OCF=∠OFC ,∴EO=CO ,FO=CO ,………………2分 ∴EO=FO .………………3分(2)当点O 运动到A C 的中点时,四边形A ECF 是矩形.………………4分 ∵当点O 运动到A C 的中点时,A O=CO ,又∵EO=FO ,∴四边形A ECF 是平行四边形,…………5分∵FO=CO ,∴A O=CO=EO=FO ,∴A O+CO=EO+FO ,即A C=EF ,∴四边形A ECF 是矩形.………………6分(3)设AB 与EF 交于点D ,过点P 作PQ ⊥BC 于点Q ,当四边形AECF 是正方形时, AE=EC=AF=6,∠AEC=∠ECF=90°,∠AOC=90°,AO=OC,∴∠ACE=∠BCE=∠AFE=45°,AC=3266=+,………………7分 所以,∠ACB=90°,OE ∥BC,∴∠ADO=∠ABC,∴△BPC ∽△DAF而BC=2,∴tan ∠B=3232==BC AC ,………………8分 ∴∠B=60°,∠BAC=30°,∴AB=2BC=4,AD=21AB=2 设BQ=x ,则,BP=2x,CQ=PQ =2-x,PC=6x,………………9分 在Rt △PQC 中,222PC CQ PQ =+,10分25.(本小题11分)解:(1)∵y=x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,∴,解得:.………………2分∴抛物线的解析式为y=﹣+x+.………………3分(2)如图,过点B′作B′E⊥x轴于E,BB′与OC交于点F.∵BC⊥x轴,∴点C的横坐标为5.∵点C在直线y=﹣2x上,∴C(5,﹣10).………………4分∵点B和B′关于直线y=﹣2x对称,∴B′F=BF.在Rt△A BC中,由勾股定理可知:OC===5.∵S△OBC=OC•BF=OB•BC,∴5×BF=5×10.∴BF=2.∴BB′=4.………………5分∵∠B′BE+∠B′BC=90°,∠BCF+∠B′BC=90°,∴∠B′BE=∠BCF.又∵∠B′EB=∠OBC=90°,∴Rt△B′EB∽Rt△OBC.∴,即.∴B′E=4,BE=8.∴OE=BE﹣OB=3.∴点B′的坐标为(﹣3,﹣4).………………6分当x=﹣3时,y=﹣×(﹣3)2+=﹣4.所以,点B′在该抛物线上.………………7分(3)存在.理由:如图所示:设直线B′C的解析式为y=kx+b,则,解得:∴直线B′C的解析式为y=.………………8分设点P的坐标为(x,﹣+x+),则点D为(x,﹣).∵PD∥BC,∴要使四边形PBCD是平行四边形,只需PD=BC.又点D在点P的下方,∴﹣(﹣)=10..解得x1=2,x2=5(不合题意,舍去).………………10分当x=2时,=.∴当点P运动到(2,)时,四边形PBCD是平行四边形.………………11分。