七年级数学平面图形的认识6
第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直

初一数学讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。
射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。
射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。
例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。
ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。
其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。
(2)两点之间线段的长度叫做这两点之间的距离。
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。
例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。
其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短例4、如图3,CD ⊥OB 于D ,EF ⊥OA 于F ,则C 到OB 的距离是______,E 到OA 的距离是______,O 到CD 的距离是______,O到EF 的距离是______.例5、直线l 外一点P 与直线l 上三点的连线段长分别为cm cm cm 654,,, 则点P 到直线l 的距离是( )A 、cm 4B 、cm 5C 、不超过cm 4D 、大于cm 63、知识点3 :(1)过一个点可以画无数条直线(2)经过两点有一条直线,并且只有一条直线(3)过同一平面上的三个点可以画一或三条直线(不在一直线上可画3条直线,在一直线上可画1条直线)例 1、如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了____________________________________。
苏科版数学七年级上册第六章 平面图形的认识教教学设计

苏科版数学七年级上册第六章平面图形的认识教教学设计一. 教材分析苏科版数学七年级上册第六章《平面图形的认识》主要包括了平面图形的性质和判定,以及图形的对称性、中心对称和轴对称的概念。
本章内容是学生进一步认识和理解几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经初步掌握了平面图形的知识,但对于一些概念和性质的深入理解还需加强。
此外,学生对于图形的直观感知能力较强,但逻辑推理和证明能力有待提高。
因此,在教学过程中,需要注重引导学生从直观到抽象的思维转变,培养他们的逻辑推理能力。
三. 教学目标1.理解平面图形的性质和判定,掌握图形的对称性、中心对称和轴对称的概念。
2.培养学生空间想象能力和逻辑思维能力,提高他们运用几何知识解决实际问题的能力。
3.培养学生合作交流、归纳总结的能力,提高他们的数学素养。
四. 教学重难点1.教学重点:平面图形的性质和判定,图形的对称性、中心对称和轴对称的概念。
2.教学难点:图形的对称性、中心对称和轴对称的判断和应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究平面图形的性质和判定。
2.运用直观教学法,通过实物模型、图形软件等辅助教学,提高学生的空间想象能力。
3.采用合作交流法,鼓励学生分组讨论,培养学生的团队协作能力。
4.运用归纳总结法,引导学生自主总结平面图形的性质和判定方法。
六. 教学准备1.准备相关的教学PPT,包括平面图形的性质和判定,以及对称性的概念和判定。
2.准备实物模型、几何画板等教学辅助工具,以便进行直观教学。
3.准备一些相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际生活中的图形,如教室的黑板、衣服上的图案等,引导学生关注平面图形的对称性,激发他们的学习兴趣。
2.呈现(10分钟)利用PPT呈现平面图形的性质和判定,对称性的概念和判定。
通过讲解和示范,让学生初步理解平面图形的性质和判定方法。
七年级数学课件-平面图形的认识

2.如图,已知
B
∠COB=2∠AOC,OD平分
∠AOB,且∠COD=19°,
求∠AOB的度数。 O
D C
A
题组练习二:
1、已知线段AB、BC在同一条直线上, M、 N分别是AC、BC的中点,AB=12cm, BC=3cm。求线段MN的长。
平面图形的认识
1.线段的中点;2.角;3.角的平分线;4.余角
重要概念 补角;5.对顶角;6.平行线;7.垂直;8.垂线
段;9.两点间的距离;10.点到直线的距离.
表示方法
直线、射线、线段、角、线段的中点、角 平分线、平行、垂直。
基本性质
直线的性质、线段的性质、余角补角的性质、 平行线的两条性质、垂线的两条性质。
A
M B NC
●
●
●
●
●
A
M
●
●
C NB
●
●
●
2.已知,如图,B、C两点把线段AD分 成2:4:3三部分,M是AD的中点,CD=6,
求线段MC的长
AB
MC
D
3.一个角余角比它的补角的 1 还少200,
求这个角.
3
4.如图.直线AB与CD相交 于点O,OE⊥CD,OF⊥AB, ∠DOF=650,
求∠BOE与∠AOC的度数.
秒;
(3)37度27分42秒÷3= 度 分 秒;
(4)28度16分24秒×4 = 度 分 秒
8.请动手做一做: 已知线段AB,阅读下列语句,分别画出相 应的图形。
⑴延长线段AB到C,使BC=2AB; ⑵在AB所在的直线外取一点D; ⑶连接BD; ⑷画射线DA; (5)过点D画DE⊥AB,垂足为E; (6)过点D画DF∥AB
数学七年级苏教版平面图形的认识教案

数学七年级苏教版平面图形的认识教案数学七年级苏教版平面图形的认识教案1教学目标:1.通过拼、摆、画各种图形,使学生直观感受各种图形的特征。
2.培养学生初步的观察能力、动手操作能力和用数学交流的能力。
3.能辨认各种图形,并能把这些图形分类。
教学重点:认识平面图形讲课教案:初步认识长方形、正方形、圆形和三角形的实物与图形。
教学难点:初步认识长方形、正方形、圆形和三角形的实物与图形。
教学准备:图形卡纸、实物、学具等。
教学过程:认识平面图形讲课教案一.复习,探究新知:1.小朋友们还记得这些图形朋友吗? (长方体正方体球圆柱)2.你能把这些图形平平的面画下来吗?学生在纸上画一画3.你们画下的图形有什么特点?学生小组讨论并且小组小结最后派代表全班交流不同点:共同点:长方形对边相等4个角都是直直的平面的正方形4边相等4个角都是直直的不断开的圆没有角即封闭的)三角形有三条边三个角二.巩固发展:1.说一说,你身边哪些物体的面是你学过的图形?2.用圆、正方形、长方形、三角形画一画自身喜欢的图形?小组内评一评,各小组展示作品。
3.练习一第1题请小朋友涂一涂圆、正方形、长方形、三角形知道各涂什么颜色吗?小组讨论合作,反馈汇报哪些涂成黄色,哪些涂成蓝色,哪些涂成紫色,哪些涂成红色?4.用圆、正方形、长方形、三角形拼一拼图形。
同桌合作比一比哪一桌拼的?全班交流展示。
5.第2题:数一数有几个圆、正方形、长方形、三角形?独立完成,说说你是怎么数的?有什么好方法?小结方法。
三.提升练习:取长方形纸一张,对折再对折取正方形纸一张,对折再对折取正方形纸一张,对角折再对角折观察结果四.总结:今天你们学到了什么?长方形、正方形、三角形、圆个有什么特点?你有什么想问的?课后小记:_数学七年级苏教版平面图形的认识教案2教学内容:教科书27页例1.例2,28页做一做。
教学目标:1.通过操作活动,使学生体会所学平面图形的特征,并能用自身的语言描述长方形、正方形边的特征。
2024秋七年级数学上册第6章平面图形的认识(一)6.3余角补角对顶角1余角和补角教案(新版)苏科版

结合余角、补角、对顶角内容,引导学生思考数学与生活的联系,培养学生的社会责任感。鼓励学生分享学习心得和体会,增进师生之间的情感交流。
(六)课堂小结(预计用时:2分钟)
简要回顾本节课学习的余角、补角、对顶角内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
-及时反馈:教师应及时将作业的批改结果反馈给学生,让学生了解自己的学习效果。对于表现优秀的学生,教师可以给予表扬和奖励,以激发他们的学习动力。对于表现一般或较差的学生,教师应给予鼓励和指导,帮助他们提高学习成绩。
-鼓励学生继续努力:在作业评价中,教师应鼓励学生继续努力,不断提高自己的学习能力。教师可以提供一些学习方法和技巧,帮助学生提高学习效果。同时,教师还可以鼓励学生之间的合作和互助,让他们相互学习,共同进步。
-材料三:《生活中的几何图形》
本材料通过生活中的实例,如建筑设计、艺术作品等,展示了余角、补角、对顶角在实际生活中的应用,增强学生对几何知识实用性的认识。
2.课后自主学习和探究
-探究一:余角和补角在实际图形中的应用
鼓励学生在家中或学校周围寻找含有余角和补角的图形,如窗户的角、墙角等,并进行测量和计算,观察余角和补角的实际效果。
-难点四:解决含有多个余角、补角的复合问题。在复杂问题中,学生需要能够理清角度之间的关系,正确求解。
举例:设计一些综合性的问题,如一个多边形内多个角的余角和补角的计算,训练学生综合运用所学知识。
教学方法与手段
1.教学方法
-方法一:讲授法。对于余角、补角、对顶角的基本概念和性质,采用讲授法进行教学。通过生动的语言、具体的例子,引导学生理解和掌握这些基本知识。
(新版)苏科版七年级数学上册第6章平面图形的认识(一)6.2角的表示及度、分、秒的换算

【讲解]A、B、D中以点C为顶点的角不止一个,如果都用∠C表示,就不知道它具 体表示哪一个角,因此遇到这种情况,常改成另外两种表示方法.则选C.
知识梳理
知识点3:角的度量单位及换算
【例】计算:(1)把16.32º用度、分、秒表示. (2)把42º25¹12″用度表示.
【讲解】 (1)先保留原整数度,再把小数度化成分,保留整数分,再把小数分化成秒; (2)先保留原整数度,把秒化成分,与原来的分相加,再化成度. 【答案】 (1)16.32º=16º+0.32×60¹=16º+19.2¹=16º+19¹+0.2×60″=16º19¹12″. (2)42º25¹12″=42º+25¹+12÷60¹=42º+25.2¹=42º+25.2÷60º=42.42º.
还应指出的是,我们平时画角的时候,只能将边画成 两条线段,这是因为只能用角的一部分来研究角,而角 的定义中边是两条射线,也就是说这两条边可以无限延 伸。
教学新知
2.我们都见过钟表,钟表的指针是怎样形成角的?
【结论】OA叫做角的始边,OB叫做角的终边,而且始边可以与终 边重合,还可以在重合以后继续旋转,从而得到几种特殊的角.
②角的大小与边的长度无关.
③角的两边可以一样长,也可以一长一短.
④角的两边是两条射线.
A.①②
B.②④ C.②③ D.③④
知识梳理
【案例解析】
有公共端点的两条射线所组成的图形叫角,没有公共端点的两条射线所组成的图形不是角; 角的两边是射线,不可以度量,因此不存在长短之分,因此①③说法是错误的. 角的大小只与两 边叉开的程度有关,与其两边的长短无关,构成角的两边是两条射线,因此②④说法是正确的。
七年级上册几何初步知识点
七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。
在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。
本文旨在介绍七年级上册几何初步知识点,供学生参考。
一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。
线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。
面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。
1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。
四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。
多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。
多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。
二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。
一个角包含两个部分,即顶点和两条边。
角可以分为锐角、直角、钝角等。
2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。
线段是由两个端点和这两个端点之间的线段组成的线。
射线是由一个端点和一个方向组成的线段。
直线图形具有平移不变性、旋转不变性、翻转不变性等特点。
线段与射线也具有相似的性质。
2.3 物体的转动物体的转动分为旋转和翻折。
旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。
翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。
三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。
坐标系原点是两条直线的交点。
3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。
苏教版数学七年级上册第六章平面图形的认识单元试卷及答案
ABCDO2 1A BCD 苏教版七上数学第六章平面图形的认识测试题班级学号姓名一、选择题1.若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是 ( ) A 、互余 B 、互补 C 、相等 D 、没有关系2.体育课上,老师测量某个同学的跳远成绩的依据是 ( ) A 、平行线间的距离相等 B 、两点之间线段最短 C 、垂线段最短 D 、两点确定一条直线3.点P 是直线l 外一点,A 、B 、C 为直线l 上三点,PA=4cm ,PB=5cm ,PC=2cm ,则点P 到直线l 的距离是 ( ) A 、2cm B 、小于2cm C 、不大于2cm D 、4cm4.某市汽车站A 到火车站F 有四条不同的路线,如图所示,其中路线最短的是 ( )A 、从A 经过 FB 、从A 经过线段BE 到FC 、从A 经过折线BCE 到FD 、从A 经过折线BCDE 到F 5.观察图形,下列说法正确的个数是 ( ) (1)直线BA 和直线AB 是同一条直线;(2)射线AC 和射线AD 是同一条射线;(3)AB + BD >AD ;(4)三条直线两两相交时,一定有三个交点;A 、1个B 、2个C 、3个D 、4个6.若∠1和∠2互余,∠1与∠3互补,∠2与∠3的和等于周角的31,则∠1、 ∠2 ∠3这三个角分别是 ( )A 、50°,30°,130°B 、70°,20°,110°C 、75°,15°,105°D 、60°,30°,120° 7.如图,115∠=,90AO C ∠=,点B 、O 、D 在同一直线上,则∠2的度数为()A 、75°B 、15°C 、105°D 、165° 8.下列说法正确的个数是 ( ) ①过直线上或直线外一点,都能且只能画这条直线的一条垂线;②过直线l 上一点A 和直线l 外一点B 直线,都能画这条直线l 的垂直;③从直线外一点作这条直线的垂线段,叫做这个点到这条直线的距离;④过直线外一点画这条直线的垂线,垂线的长度叫做这点到这条直线的距离. A 、1 B 、2 C 、3D 、4 二、填空题9.下列四个生活、生产的现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定一行树的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能够缩短路程,其中可用“两点之间,线段最短”来解释的现象是_____________(填序号). 10.如图,AB ⊥BC ,BD ⊥AC ,垂足为D ,BC=6 cm ,AB=8 cm ,AC=10 cm , 则点A 到BC 的距离是,点C 到AB 的距离是;ABAC ,ACBC (填 “>”或“<”).11.如图,小明把一块含600的三角板绕600角的顶点A 逆时针旋转到DAE 的位置.若已量出∠CAE=1000,则∠DAB=0;12.如图,OD ⊥BC ,D 是垂足,连接OB ,下列说法中:①线段OB 是O 、B 两点之间的距离;②线段OB 的长度是O 、B 两点之间的距离;③线段OD 是点O 到直线BC 的距离;④线段OD 的长是点O 到直线BC 的距离;其中正确的序号是;B A CD· · B C DE F M A ·.. . A B CB13.计算:①1.5°=°=′;②450″=′=°;③90°- 54°48′6″=. 14.已知一条射线OA ,若从点O 再引两条射线OB 和OC ,使∠AOB=60°,∠BOC=20°,则∠AOC=_______ 15.一个人从A 地出发向北偏东60︒方向走了一段距离到B 地,再从B 地出发,向南偏西15︒方向走了一段距离到C 地,则∠ABC=_____________度16.如图,点A,O,B 在同一条直线上,∠1=35°,∠2=55°,则OC 、OD 的位置关系是。
七年级上册数学知识点整理
第四章图形认识初步第六章平面图形的认识(一)4.1多姿多彩的图形4.1.1几何图形①把实物中抽象出的各种图形统称为几何图形。
②几何图形的各部分不都在同一平面内,是立体图形。
③有些几何图形的各部分都在同一平面内,它们是平面图形。
④常常用从不同方向看到的平面图形来表示立体图形。
(主视图,俯视图,,左视图)。
⑤有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。
4.1.2点,线,面,体①几何体也简称体。
②包围着体的是面。
面有平的面和曲的面两种。
③面和面相交的地方形成线。
(线有直线和曲线)④线和线相交的地方是点。
(点无大小之分)⑤点动成线,线动成面,面动成体。
⑥几何图形都是由点,线,面,体组成的,点是构成图形的基本元素。
⑦点,线,面,体经过运动变化,就能组合成各种各样的几何图形,形成多姿多彩的图形世界。
⑧线段的比较:1.目测法 2.叠合法 3.度量法4.2 直线,射线,线①经过两点有一条直线,并且只有一条直线。
②两点确定一条直线。
③当两条不同的直线有一个公共点时,就称这两条直线相交,这个公共点叫做它们的交点。
④射线和线段都是直线的一部分。
⑤把线段分成相等的两部分的点叫做中点。
⑥两点的所有连线中,线段最短。
(两点之间,线段最短)⑦连接两点间的线段的长度,叫做这两点的距离。
4.3 角4.3.1角①角也是一种基本的几何图形。
②有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
角可以看作由一条射线绕着它的端点旋转而形成的图形。
③把一个周角360等分,每一分就是1度的角,记作1°;把1度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1″。
④角的度,分,秒是60进制的,这和计量时间的时,分,秒是一样的。
⑤以度,分,秒为单位的角的度量制,叫做角度制。
4.3.2角的比较与运算①从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
苏科版七年级数学上册《第六章平面图形的认识》练习题-带含有答案
苏科版七年级数学上册《第六章平面图形的认识》练习题-带含有答案一、单选题1.经过同一平面内A、B、C三点可连结直线的条数为()A.只能一条B.只能三条C.三条或一条D.不能确定2.如图所示,能读出的线段共有()A.8条B.10条C.6条D.以上都错3.下列4个生产、生活现象中,可用“两点之间线段最短”来解释的是()A.用两根钉子就可以把木条固定在墙上B.植树时,只要选出两棵树的位置,就能确定同一行树所在的直线C.把弯曲的公路改直,就能缩短路程D.砌墙时,经常在两个墙角的位置分别插一根木桩拉一条直的参照线4.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()A.10cm B.2cm C.10cm或者2cm D.无法确定5.如图,点C在线段AB的延长线上,AC=3AB,D是AC的中点,若AB=5,则BD等于()A.1.5 B.2 C.2.5 D.36.已知平面内有A,B,C三点,且线段AB=3.5cm,BC=2.5cm那么AC两点之间的距离为()A.1cm B.6cm C.1cm或6cm D.无法确定7.某中学七年级二班学生源源家和依依家到学校的直线距离分别是5km和3km.那么源源,依依两家的直线距离不可能是()A.8km B.4 km C.2km D.1km8.如图,点B、C、D在同一条直线上,则下列说法正确的是()A.射线BD和射线DB是同一条射线B.直线BC和直线CD是同一条直线C.图中只有4条线段D.图中有4条直线二、填空题9.已知点A的坐标是A(﹣2,3),线段AB//y轴,且AB=4,则B点的坐标是.10.将一块木板钉在墙上,我们至少需要2个钉子将它固定,这个例子用到的基本事实是.11.已知A,B,C都是直线l上的点,且AB=5 cm,BC=3 cm,那么点A与点C之间的距离是.12.直线l1、l2表示一条笔直公路的两边缘(即l1//l2),点P表示公路旁一村庄所在的位置若公路的宽20m,点P到直线l1的距离30m,则点P到直线l2的距离是m13.经过一点的直线有条;经过两点的直线有条,并且只有条,经过不在同一直线上的三点最多可画条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 2
3 4
1.平移改变的是图形的( ) A.位置 B.大小 C.形状 D.形状和 大小 2.经过平移,对应点所连的线段( A.平行 B.相等 C.平行且相等 D.既不平行也不相等 )
3.有以下现象:①温度计中,液柱的上升 或下降;②打气筒打气时,活塞的运动;③ 钟摆的摆动;④传送带上,瓶装饮料的移 动.其中属于平移的是( ) A.① ② B.① ③ C.② ③ D.② ④
活动策划得好坏,还要求有一定的可信度,在大多数情况下,可信度源自方案的执行力。特别是专业从事活动策划的公司,活动策划的再好, 没有足够的资源实施也是不行的,长年的活动举办经验,不但能为活动策划者提供丰富的经验,更重要的是能累积足够的执行资源。 ; / 活动策划公司 活动策划 lgh35neh 对目标受众的吸引力大小是活动推广策划成功与否的根本。在一个活动推广策划中,要充分吸引用户的注意,就要捉住地点用户集体十分重视 的热门,对用户晓之以情,晓之以利,激起用户的热心,促进用户十分活跃的参加。提高活动的吸引力,需要有构思,策划主题的要可以满足 用户的好奇心、价值表现、荣誉感、责任感、利益等各方面的需求,还给予恰当的许物质鼓励,这将会大大的提高目标受众的重视度以及参加 认识。 嬷嬷、宫女们鱼贯而入,净面、开脸、上妆,梳头,穿衣……,众人紧张有序、壹丝不苟地进行着所有的繁缛的程序。原本已经有宫里的嬷嬷、 宫女侍候,又有年府的丫环们,可是玉盈还是不放心,围在冰凝的周围,大事小事,亲力亲为。两人分别了五年,才好不容易团聚在壹起,从 今以后,又要长久地别离,长久到不知道什么时候才能再见面,玉盈壹想到这里就止不住地泪如雨下。当她看到妆扮成新嫁娘模样的妹妹,头 上戴着她爹娘留给她的嫁妆,不久就要与王爷手牵手共拜天地,她的心更是痛彻心扉,几欲站立不稳。冰凝就像壹个木人布偶,任凭别人在她 的脸上、头上、身上做着各种各样的妆扮,面无表情,心似刀割。按照规制,只有嫡福晋大婚可以用正红色,侧福晋的婚服颜色是桃红色。也 好,不至于红得这么刺目。早早起来,冰凝就像个木头人壹样,任由宫里的嬷嬷们里里外外地给她穿上壹层又壹层的新嫁衣。嫁衣是宫里按照 冰凝的身材,早早就订做好送来的。嬷嬷为冰凝开了脸,梳上小两把头,从今天开始,冰凝就算是嫁作他人妇。那高高的发髻上,插满了金步 摇、碧玉簪,翠珠花,可是,再多的荣华富贵,抵得上两心相悦、比翼双飞吗?第壹次梳旗头,本就不适应,又因为发丝连根狠狠地被揪起, 又插了满头的金银首饰,连日做荷包也没有休息好,昨夜又是整夜未眠,此时此刻,冰凝的头,炸炸的、突突的,她痛得恨不能直接泼壹盆冷 水,去浇灭心中的满腔怨恨。第壹卷 第五十五章 嘱托头痛,还是抵不上心痛。是啊!身为女儿,这壹辈子就是要嫁人的,这世上又有几个 人能嫁得如意,过得幸福?既然嫁给谁都壹样,那现在还有什么可想的呢。明知道都是些个有的没的,似有似无,虚无缥缈的东西,根本就是 胡思乱想,可她就是止不住这些念头拼命地占据了心间。虽然道理她全都明白,可是心中的那份企盼牢牢地占据了她的心扉,她企盼那萧音仙 曲在耳畔再度响起,解救自己于水火。她不需要王府的锦衣玉食,也不需要王爷给予的荣华富贵,她只想与知音相伴壹生,朝饮晨露,晚看夕 阳,采菊东篱,手做羮汤。她是平凡的小诸人,不是贪慕虚荣的世俗女。可是,就是这么壹点点小小的梦想,已经那么真切地来到了自己的眼 前,为什么,壹步错过了,就再也无法追寻?玉盈心痛,冰凝心疼,此时此刻,还有壹个更心痛的,那就是在王府中等待成亲的王爷。冰凝心 痛,是对当侧福晋的失落与不甘,是对似有影似无踪的琴瑟合鸣、神仙眷属的无限向往。那根本就是还没有开始,就无疾而终的壹段虚幻的感 觉,连人影都没有见过呢!因此,即使是痛,也仅仅是隐隐而痛。玉盈心痛,是对那可望而遥不可及的爱之无奈的痛。但相对而言,毕竟是壹 段才刚刚萌芽
F D
B
2
1
C
E
如图,AD是∠CAE的平分 线, ∠B=25°,∠DAE=50 °, 求∠ ACD的度数.
E
A B C D
如图,求∠A+∠B+ ∠C+∠D+∠E+∠F的 度数.
F E A N D M O C
B
把一张长方形纸条如图 那样折叠后,测得∠CGO =50 ° ,则∠GOB' 为多少度?
1、下列说法中正确的是(
)
A、一条射线平分三角形的一个内角,那么这 条射线是三角形的角平分线。 B、垂直于三角形一边的直线是三角形的高。
C、过三角形一边的中点的直线叫三角形的中 线。 D、三角形的角平分线、中线、高都是线段
2、已知等腰三角形的两边长分别是4CM与9CM, 则第三边长为_________。 3、四边形的内角和是________,内角和为 1800°的多边形是________边形。
A C O B G D
B' D'
一个多边形的每个 内角都是150°,求 这个多边形的内角和.
若多边行的每个内角都 相等,且每个内角都是其外 角的4倍,求这个多边形的边 数.
1.已知在△ABC中, ∠A=∠B+∠C,则 ∠A=__________. 2.若n边形的内角和是外角和的3倍,则 n=___________. 3.在△ABC中,AD是角平分线, ∠B=70°, ∠C=40 °,则∠DAC= __________.
2 7 3 c 1 5 4 d 6 a b
1.图中的内错角有______对.
2.如图,已知AB//CD, ∠a=125 °, ∠1=∠2,则 ∠B=_________. A
E
D 1
2
C B
a
1
3.如图,已知∠1=90°+a, ∠2= 90°- a(0°<a< 90 °), ∠3 b =β,试用a或β表示∠4的度数. C
AD是△ABC的高,BE平分∠ABC交 AD于E,若∠C=70°,∠BED=64°, 求∠ BAC的度数。
A
E
B D C
在△ABC中,AB=9,BC=2, 若AC的长为偶数,那么△ABC 的周长是多少?
如图,已知BF为△ABC的角平分线, CD为△ABC的外角∠ACE的平分线, 它与BF的延长线交于D,请说明 ∠A=2∠D的理由。 A
如图,三条直线两两相交,写 出图中的同位角、内错角、同旁 内角,并指出它们分别是由哪两 条直线被哪一条直线所截成的。
10 11 9 12 1 4 5 8 b 2 3 6 7
c
a
1.如果两条直线被第三条直线 所截,那么下面的结论:①同位 角相等;②内错角相等;③同旁 内角互补;④一定有内错角.其 中正确的结论有 ( )
如图,△ABC经过平移得到 △DEF,则图中相等的线段有 ___ ,相等的角有____,平行的线 段有________。 A D C B
____
E
F
如图是俄罗斯方块游戏的一个画面, 若使左上面的图形经平移插入到下 面空白处,你是如何平移的?
分析 方法有多 种,可以将左上角 的图形先向右平移 1格,再向下平移 3格。请你说出其 他的方法。
A.1个 B.2个 C.3个 D.4个
2.如图,∠a的同旁内 角有 ( )
A.1个 B.2个 C.3个 D.4个
a
3.如图,有下列四个判断: ①因为∠4=∠6,所以∠2=∠5;②因为 ∠4=∠6,所以∠3=∠5;③因为 ∠5+∠7=180°,所以∠4=∠6;④因为 ∠4=∠6 ,所以∠1+∠7=180°.其中正 确的判断有 ( ) A.1个 B.2个 C.3个 D.4个
4.已知等腰三角形的周长为20,其中一边 长是4,则另外两边长分别为_________.
5.如图,点B、C、D在一条 直线上,则∠1, ∠2, ∠ B 的大小关系是___________.
B
DC1ຫໍສະໝຸດ 2 A6.已知在四边形ABCD 中,∠A+∠C=∠B+ ∠D, ∠A 的外角为120°,求∠C的度数.