原子发射光谱定性和定量分析
(仪器分析)11.1原子发射光谱分析法

11.1.3 原子发射光谱分析的应用
1. 元素的分析线、最后线、灵敏线
分析线:复杂元素的谱线可能多至数千条,只选择其中几 条特征谱线检验,称其为分析线; 最后线:浓度减小,谱线强度减小,最后消失的谱线; 灵敏线:最易激发的能级所产生的谱线,每种元素有一条 或几条谱线最强的线,即灵敏线。最后线也是最灵敏线; 共振线:由第一激发态回到基态所产生的谱线;通常也是 最灵敏线、最后线。
nmgmex pE(m/kT)
N
Z
2020/10/24
nmgmex pE(m/kT)
N
Z
Z 为温度 T 的函数,分析中的温度通常在2000~7000 K ,Z 变化很小,谱线强度为
I hc4g πm Z AN exE pm(/kT )
式中:Φ 是考虑在 4 球面角度上发射各向同性的常数。 Z 可视为常数,对于某待测元素,选定分析线后,T一定
2020/10/24
原子发射光谱分析法的特点:
(1) 可多元素同时检测:发射各自的特征光谱; (2) 分析速度快:试样不需处理,同时对几十种元素进行定 量分析。 (3) 选择性高 各元素具有不同的特征光谱; (4) 检出限较低:10~0.1gg-1(一般); ngg-1(ICP)。 (5) 准确度较高:5%~10% (一般光源);<1% (ICP) 。 (6) ICP-AES性能优越 线性范围4~6数量级,可测高、中 、低不同含量试样。 缺点:非金属元素不能检测或灵敏度低。
常见光源的种类和特点是什么?
2020/10/24
(1)直流电弧
电弧是指在两个电极间施加高电流密度和低燃点电压 的稳定放电。
石墨电极,试样放置凹槽内。试样量10~20mg。
两电极接触通电后,尖端被烧热,点 燃电弧,再使电极相距4 ~ 6mm。
第五章原子发射光谱

• 处于高能级的电子经过几个中间能级跃 迁回到原能级,可产生几种不同波长的 光,在光谱中形成几条谱线。一种元素 可以产生不同波长的谱线,它们组成该 元素的原子光谱。 • 不同元素的电子结构不同,其原子光谱 也不同,具有明显的特征。
原子发射光谱技术的发展历程
原子发射光谱在50年代发展缓慢; 1960年,工程热物理学家 Reed ,设计了环形放电感耦等 离子体炬,指出可用于原子发射光谱分析中的激发光源;
电极,每转动180度,对接一次, 转动频率(50转/s),接通100次/s, 保证每半周电流最大值瞬间放电 一次;
高压火花的特点:
(1)放电瞬间能量很大,产生的温度高,激发能力强, 某些难激发元素可被激发,且多为离子线; (2)放电间隔长,使得电极温度低,蒸发能力稍低,适 于低熔点金属与合金的分析; (3)稳定性好,重现性好,适用定量分析;
原子发射光谱仪通常由三部分构成: 光源、分光、检测;
原子发射光谱激发光源
• 激发光源的基本功能是提供使试样中被 测元素原子化和原子激发发光所需要的 能量。对激发光源的要求是: 灵敏度高,稳定性好,光谱背景小,结 构简单,操作安全。
常用的激发光源: • 电弧光源。(交流电弧、直流电弧) • 电火花光源。 • 电感耦合高频等离子体光源(ICP光源) 等。
检测器
ICP形成原理
ICP火焰温度分布
缺点:出射狭缝固定,各通道检测的元素谱线一定;
改进型: n+1型ICP光谱仪
在多道仪器的基础上,设置一个扫描单色器,增加一个 可变通道;
2. 全谱直读等离子体光谱仪
采用CID阵列检测器,可同时检测165 ~800nm波长范围内出现的全部谱线; 中阶梯光栅分光系统,仪器结 构紧凑,体积大大缩小; 兼具多道型和扫描型特点; CID :电荷注入式检测器 (charge injection detector,CID), 28×28mm半导体芯片上,26万个感 光点点阵( 每个相当于一个光电倍 增管);
化学实验报告原子发射光谱法

原子发射光谱法-摄谱和译谱一、实验目的和要求1、熟悉光谱定性分析的原理;2、了解石英棱镜摄谱仪的工作原理和基本结构;3、学习电极的制作摄谱仪的使用方法及暗室处理技术;4、学会用标准铁光谱比较法定性判断试样中所含未知元素的分析方法;5、根据特征谱线的强度及最后线出现的情况对元素含量进行粗略的估计;6、掌握映谱仪的原理和使用方法。
二、实验内容和原理1、摄谱原子在受到一定能量的激发后,其电子在由高能级向低能级跃迁时将能量以光辐射的形式释放,各种元素因其原子结构的不同而有不同的能级,因此每一种元素的原子都只能辐射出特定波长的光谱线,它代表了元素的特征,这是发射光谱定性分析的依据。
一个元素可以有许多条谱线,各条谱线的强度也不同。
在进行光谱定性分析时,并不需要找出元素的所有谱线,一般只要检查它的几条(2~3条)灵敏线或最后线,根据最后线(灵敏线)是否出现,它们的强度比是否与谱线所表示的相符,就可以判断该元素存在与否。
经典电光源的试样处理:1)固体金属及合金等导电材料的处理棒状金属表面用金刚砂纸除氧化层后,可直接激发。
碎金属屑用酸或丙酮洗去表面污物,烘干后磨成粉末状后,最好以1:1与碳粉混合,在玛瑙研钵中磨匀后装入下电极孔内再激发。
2)非导体固体试样及植物试样非金属氧化物、陶瓷、土壤、植物等试样经灼烧处理后,磨细,加入缓冲剂及内标,置于石墨电极孔中用电弧激发。
3)液体试样处理液体样品经稀释后,滴到用液体石蜡涂过的平头石墨电极上,在红外灯下烘干后进行光谱分析。
摄谱法是用感光板记录光谱。
将光谱感光板置于摄谱仪焦面上,接受被分析试样的光谱作用而感光,再经过显影、定影等过程后,制得光谱底片,其上有许多黑度不同的光谱线。
然后用影谱仪观察谱线位置及大致强度,进行光谱定性及半定量分析。
用测微光度计测量谱线的黑度,进行光谱定量分析。
用发射光谱进行定性分析通常采用在同一块感光板上并列地摄取试样光谱和铁光谱,然后借助光谱投影仪使摄得的铁光谱与“元素标准光谱图”上的铁光谱重合,从“元素标准光谱图”上标记的谱线来辨认摄得的试样谱线。
分析化学二第3章原子发射光谱法PPT

轨道符号: s p d
二、能级图与光谱项——光谱项
基本原理
(1)核外单电子运动状态的描述
磁量子数(m ) 描述电子云在空间的不同取向
m = 0, ±1, ±2, …… ±l (即 m 共有2l ±1个取值)
自旋量子数(s ) 描述电子的自旋情况
s= 1
2
或
共有2L+1个值
二、能级图与光谱项——光谱项
(3)光谱项符号 作 用: 用来表示原子中电子特定的能级
一个光谱项符号代表原子的一个能级
基本原理
表示方法:
谱线多重性符号
主量子数
n 2S 1LJ
总角量子数(用S、P、D…表示) 内量子数, 代表不同的光谱支项
二、能级图与光谱项——光谱项
基本原理
写出基态Na的光谱项符号
2、理想的光源条件
() () () () () ()
二、AES中的光源
3、AES中常用的光源
经典光源
原子发射光谱仪
现代光源
原子发射光谱仪
二、AES中的光源
与光源相关的几个重要概念
击穿电压:使电极间击穿而发生自持放电的最小电压。 自持放电:电极间的气体被击穿后,即使没有外界的
电离作用,仍能继续保持电离,使放电持 续的现象。
1.988 10 23 J cm 5893 10 8 cm
3.37 10 19 J
(2)求gJ 和g0
Na的基态3s的光谱项为 32 S1/ 2
g0
(2J 1) 2 1 1 2
2
Na的激发态3p的光谱项为 32 P1/ 2 和 32 P3/ 2
gi
(2J 1) (2 1 1) (2 3 1) 6
第七章 原子发射光谱分析 (Atomic Emission Spectrometry知识分享

Ei—激发电位(J或eV)。
Iij
gi g0
AijhijN0ekEiT
原子发射光谱 法定量的依据
基态原子密度(N0):Iij正比于N0,N0正比于浓度。
激发电位(Excitation potential)
谱线强度与激发电位成负指数关系。在温度一定时,激发 电位越高,处于该能量状态的原子数越少,谱线强度越小。 激发电位最低的共振线通常是强度最大的线。
目前常用的光源有直流电弧(DC arc)、交流电 弧(AC arc)、高压火花(electric spark)及电感耦合等离 子体(ICP)。
1. 直流电弧
优点:电极头温度相对比较高(4000至7000K,与 其它光源比),蒸发能力强、绝对灵敏度高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严重,故 不适宜用于高含量定量分析,但可很好地应用于矿石 等的定性、半定量及痕量元素的定量分析。
微波光谱法
4×10-7~4×10-10 核磁共振波谱法
高能辐射区
γ射线 能量最高,核能级跃迁 X射线 内层电子能级的跃迁
光学光谱区
(10nm-1000 μm)
紫外光 可见光
原子和分子外层电子能级的跃迁
红外光 分子振动能级和转动能级的跃迁
波谱区
微波 分子转动能级及电子自旋能级跃迁 无线电波 原子核自旋能级的跃迁
2.电磁波谱:电磁辐射按波长顺序排列就称光谱。
光谱区域 γ射线 X射线 远紫外光 近紫外光
光 可见光 学 近红外光 区 中红外光
远红外光
微波
无线电波
波长 5~140pm 10-3~10nm 10~200nm 200~380nm 380~780nm 0.78~2.5μm 2.5~50μm
原子发射光谱法要点

电极间电压 电流 气体放电中电压和电流曲线
电弧放电具有下降的伏安特性,这是因为气体的
电阻和固体的不同,气体的电阻值是变化的,当通
过气体电阻的电流增大时,会使气体的温度增高, 气体的电离度增大,从而使气体的导电性增加,即
电阻变小,使气体电阻两端的电压降反而减少。
1. 直流电弧 电源一般为可控硅整流器。常用高频电 压引燃直流电弧。
性、半定量和定量分析。
在一般情况下,用于1%以下含量 的组份测定,检出限可达ppm,精密
度为±10%左右,线性范围约2个数
量级。
但如采用电感耦合等离子体 (ICP)作为光源,则可使某些元素 的检出限降低至10-3 - 10-4ppm,精
密度达到±1%以下,线性范围可延
长至7个数量级。这种方法可有效地
金属合金试样的分析及高含量元
(5)基态原子数
谱线强度与基态原子数成正比。 在一定的条件下,基态原子数与试 样中该元素浓度成正比。因此,在 一定的条件下谱线强度与被测元素 浓度成正比,这是光谱定量分析的 依据。
浓度越大, 基态原子数N0也越大, 基态原子数N0大, 激发态原子数Ni也大 激发态原子数Ni大, 光强度I也大。
原子发射光谱分析过程
射、电子轰击、电子或离子对中性原子 碰撞以及金属灼热时发射电子等。
当气体电离后,还需在电极间加以足 够的电压,才能维持放电。通常,当电极 间的电压增大,电流也随之增大,当电极 间的电压增大到某一定值时,电流突然增 大到差不多只受外电路中电阻的限制,即 电极间的电阻突然变得很小,这种现象称 为击穿。
在这种情况下,低频低压 交流电就能不断地流过,维 持电弧的燃烧。这种高频高 压引火、低频低压燃弧的装 置就是普通的交流电弧。
第7章 原子发射光谱分析

光栅的参数
光栅的特性可用色散率和分辨率来表征。
光栅的角色散率可通过对光栅公式求导得到:
d n d d cos
其中dθ/dλ:入射角对波长的变化率,即光栅的角色散率; d:光栅常数; n:光谱级数。
当θ很小且变化不大时,cosθ≈1,光栅的角色散率决定于
光栅常数d和光谱级数n,为常数。因此光栅光谱是均排光
凹面光栅与罗兰圆
多道型光电直读光度仪多采用凹面光栅。凹面光栅既具有
色散作用也起聚焦作用(凹面反射镜将色散后的光聚焦)。
罗兰圆:Rowland发现在曲率半
径为R 的凹面反射光栅上存在着 一个直径为R的圆,不同波长的
光都成像在圆上,即在圆上形成 一个光谱带. 因此,将直读光谱 仪的出射狭缝做在凹面光栅的罗 兰圆上。
达到一定值时,放电盘G1击穿;G1-C1-L1构成振荡回路,产 生高频振荡;
(2) 振荡电压经B2的次级线圈升压到10kV,通过电容器C2 将电极间隙G的空气击穿,产生高频振荡放电;
(3) 当G被击穿时,电源的低压部
分沿着已造成的电离气体通道,通
过G进行电弧放电;
(4) 在放电的短暂瞬间,电压降
低直至电弧熄灭,在下半周高频再
ICP-AES
光电直读是利用光电法直接测定光谱线的强度。 两种类型:多道固定狭缝式和单道扫描式。
单道扫描式是转动光栅进行 扫描,在不同时间检测不同 谱线; 多道固定狭缝式则是安装多 个出射狭缝和光电倍增管, 同时测定多个元素的谱线; 全谱直读光谱仪可同时测定 试样中165-800nm波长范围 内的元素的所有谱线,对其 进行分析。
(3) 光电流∝原子光谱的强度,与基态原子浓度成正比。
7.4 光谱定性分析 定性依据: E = hν = h c /λ
原子发射光谱法的主要特点

原子发射光谱法的主要特点
原子发射光谱法(AES)是一种常用的材料分析方法,它具有以下主要特点:
1.精确性高:原子发射光谱法可以提供非常精确的元素定性定量信息。
通过使用复杂的仪器设备和先进的算法,可以准确地测量元素在样品中的浓度和分布。
2.灵敏度高:原子发射光谱法具有很高的灵敏度,可以检测到样品中微量的元素。
这使得该方法可以用于分析痕量元素,如金属杂质或合金成分。
3.选择性强:原子发射光谱法可以选择性地测量特定元素。
通过选择适当的激发条件和光谱线,可以仅对某些元素进行检测,而对其他元素不产生干扰。
4.线性范围宽:原子发射光谱法的线性范围很宽,可以从ppm(百万分之一)到ppb(十亿分之一)的浓度范围进行测量。
这使得该方法可以适应不同浓度的样品分析需求。
5.实验方法简单:原子发射光谱法的实验方法相对简单。
样品经过简单的制备和稀释后,可以直接进行分析。
这使得该方法在实验室中易于操作,并且适用于各种不同类型的样品。
总之,原子发射光谱法具有精确性高、灵敏度高、选择性强的特点,可以提供准确的元素信息,并适用于各种不同类型的样品分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【实验题目】
原子发射光谱定性和定量分析
【实验目的】
1、把握光谱定性分析的一样原理和方式。
2、把握光谱定量分析的一样原理和方式。
3、了解电感耦合等离子体原子发射光谱仪的利用方式。
【实验原理】
但当原子受到能量(如热能、电能等)的作历时,原子由于与高速运动的气态粒子和电子彼此碰撞而取得了能量,使原子中外层的电子从基态跃迁到激发态,处于激发态的原子是十分不稳固的,在极短的时刻内便跃迁至基态或其它较低的能级上。
当原子从较高能级跃迁到基态或其它较低的能级的进程中,将释放出多余的能量,这种能量是以必然波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:
△E=E2-E1=hv
谱线波长:
λ=c/v
每一种元素因其原子结构不同,受激发后都能够产生自己的特点光谱,每一种元素的特点光谱通常包括有很多谱线,谱线的强度各不相同。
一个试样如含有假设干种元素,谱线上就有这假设干种元素的特点光谱,特点光谱的条数多少与各元素含量高低有关。
当某元素含量降低时,其光谱中的弱线接踵消失,而不被检出。
最后消失的几条谱线叫“灵敏线”定性分析一样只需找出某元素的灵敏线即可确信该元素的存在。
光谱分析依照这些元素的特点光谱就能够够准确无误的辨别元素的存在(定性分析),而这些光谱线的强度又与试样中该元素的含量有关,因此又可利用这些谱线的强度来测定元素的含量(定量分析)。
当温度一按时,光谱线的强度与试样中该元素的浓度之间的关系符合以下体会公式:
I=a C b
lgI=blgc+lga
【实验仪器与试剂】
(1)仪器:
IRIS INTREPIDⅡ XSP 高频电感耦合等离子直读仪。
(2)试剂:
氩气;未知样品;钙、镁保准储蓄液:100ug/mL;蒸馏水。
【实验内容与步骤】
1、定性分析
按仪器操作规程,设置仪器参数,点燃等离子体,运行全谱命令,对未知样品进行分析。
仪器要紧参数:高频功率,1150W;冷却气流量,15L/min;辅助气流量,/min;载气压力,25psi;蠕动泵转速,120r/min;溶液提升量,min。
证明自来水中钙和镁元素的存在,选择测定方式,选择相应分析线,运行全谱命令,查看钙、镁特点谱线标记处是不是有光斑,若是有证明有该元素存在。
2、定量分析
测定自来水中Ca、Mg元素含量,通常能够通过两点定线,一点是空白溶液,一点是高于待测元素含量的高标准溶液。
依照仪器操作规程设定测定条件:
a.选择待测元素及分析线:Ca ,Mg ;
b.进行标准化,绘制标准曲线;
c.直接测定自来水中Ca、Mg的含量。
【实验数据记录与分析】
由上数据可知Ca在时测定最优,多次测得浓度平均值为。
Mg在时测定最优,多次测得浓度平均值为。