给定机构极限位置和最小传动角的铰链四杆机构运动设计
四杆机构设计ppt课件

自测试题
一、 判断题(正确:T,错误:F)
1.平面连杆机构是低副机构,其接触处压强较小,因 此适用于受力较大的场合。
2.铰链四杆机构通过机架的转换,就一定可以得到曲 柄摇杆机构、双曲柄机构和双摇杆机构。
3.铰链四杆机构如有曲柄存在,则曲柄必为最短构 件。
4.在曲柄滑块机构中,当曲柄为主动件时,机构没
21
5.平行四边形机构的极位夹角=___ ,它的行程速比系 数K____。 6.铰链四杆机构演化成其它形式的四杆机构常有三种 方法,它们是______、________和_______。 7.一对心曲柄滑块机构,若以滑块为机架,则将演化 成___________机构。 8.曲柄为主动件的曲柄摇杆机构中,当从动摇杆处于 两极限位置时,________在该位置所夹的锐角,称 为极位夹角。
14
2)用作图法按两连架杆预定的对应位置 设计四杆机构 设计方法是:此类问题刚固反转法进行设计 (重点)
15
3)按预定的连杆位置设计四杆机构:
已知:连杆BC的三个预定位置B1C1、B2C2和B3C3 设计的实质是:求固定铰链中心的位置 设计方法是:此类问题可用求圆心法来解决,即作 铰链B各位置点连线B1B2 、B2B3的中垂线,两中 垂线的交点即为固定铰链中心A。同理,作铰链C 各位置点连线C1C2、 C2C3的中垂线,两中垂线的 交点即为固定铰链中心D。
9.铰链四杆机构中,_____角越大,对机构的传动越 有利。
22
10.死点是指不计摩擦时机构所处的特殊位置,可借 助_____或采用_____的方法使机构能顺利通过死点 位置而正常运转。
三、选择题
1.下面
不是平面连杆机构的优点。
A. 运动副是面接触,故压强小、耐磨损;
平面四杆机构-例题

b lCD lAD a
bea
a
机架LAB不为最短杆,曲柄为LBC杆
2)按双摇杆机构演化
b lCD a lAD
A
b lCD lAD a
bea
曲柄摇杆机构
3)机构演化原型 双摇杆机构
bC e
P
D∞
D∞
机械设计系
例6 接上题.设b杆为主动构件求该位置时机构的压力角和传 动 角。
设计此四铰链机构
D
B1
B2
C2
C1 A
机械设计系
例9 试设计一铰链四杆机构,要求满足AB1 、 AB2与DE1 、 DE2 两组对应位置,并要求满足摇杆CD在第二位置为极限位置。 已知和LAB和LAD (在图中已按比例画出),试用作图法确定 铰链C 的位置。要求注明四杆机构ABCD。
E
C B1
E1 E2
A
D
2)当取CD杆为机架时,机构演化为双摇杆机构
机械设计系
3)在图上标出极位夹角θ,;最小传动角γmin ;
4)AB杆的转向;
以A为圆心,以:
C B
为半径画圆弧交C 轨迹线 得出:
以A为圆心,以:
A
D 为半径画圆弧交C 轨迹线
得出:
机械设计系
3)在图上标出极位夹角θ,;最小传动角γmin ;
比较
B2
D
A
D
机械设计系
摇杆CD在第二位置为极限位置
B1 A
C2 B2
E1 E2
D
机械设计系
机械设计系
a lAD b lCD
D∞ A
最长杆: AD∞杆 次长杆:CD∞杆
a lAD lCD b
武汉科技大学819机械原理-2019(B卷)参考答案

姓名: 报考专业: 准考证号码:密封线内不要写题2019年全国硕士研究生招生考试初试自命题试题科目名称:机械原理(□A 卷 ■B 卷)科目代码:819 (参考答案)考试时间: 3小时 满分150分可使用的常用工具:□无 √计算器 √直尺 √圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
一、单项选择题(本大题10小题,每题2分,共20分,错选、多选均无分)1. 以下关于机构的说法错误的是 D 。
A .一个机构中有且仅有一个机架B .平面机构中,移动副引入了2个约束,齿轮副引入了1个约束C .任何机构都可以看成是由若干个基本杆组依次联接于原动件和机架上而构成的D .机构具有确定运动时所必须给定的运动参数的数目,称为机构的自由度 2.以下关于速度瞬心的说法错误的是: A 。
A .一个平面机构有6个构件,则共有12个瞬心B .机构中某个构件和机架构成的瞬心一定是绝对瞬心C .两个互相啮合传动的齿轮的瞬心在过接触点的齿廓公法线上D .一个平面四杆机构中,绝对瞬心和相对瞬心的数目是一样的 3.铰链四杆机构的最小传动角出现在 A 的两个位置之一。
A .曲柄和机架共线B .曲柄和连杆共线C .曲柄和摇杆共线D .曲柄与机架垂直 4. 对心曲柄滑块机构有曲柄的条件是 B 。
A .曲柄大于连杆长度B .曲柄小于连杆长度C .曲柄等于连杆长度D .曲柄等于连杆长度的二分之一 5.在凸轮机构中,当从动件采用等加速等减速运动规律时, B 。
A . 存在速度突变点而不存在加速度突变点 B . 存在加速度突变点而不存在速度突变点C . 不存在速度突变点也不存在加速度突变点D . 不会产生柔性冲击也不会产生刚性冲击6.一对互相啮合的齿轮由于装配误差,使得实际中心距相比标准中心距略有增大,则此时该对齿轮的 A 。
A .传动比不变,啮合角变大B .传动比不变,啮合角不变C .传动比增大,啮合角变大D .传动比增大,啮合角不变7.与标准齿轮相比,正变位齿轮的齿顶高 B 标准值。
机械设计基础——铰链四杆机构

1.急回特性 : 1.急回特性
摇杆的摆角, 极位夹角。 摇杆的摆角 极位夹角 ψ —摇杆的摆角 θ —极位夹角
为描述从动摇杆的急 回特性, 回特性,在此引入行 程速比系数 K,即:
K =
180 180
+ -
θ θ
K值的大小反映了急回运动特性的显著程度。K值的大 值的大小反映了急回运动特性的显著程度。 小取决于极位夹角θ , 角越大,K值越大,急回运动 θ 角越大, 值越大, 特性越明显;反之,则愈不明显。 特性越明显;反之,则愈不明显。当时 θ = 0 ,K=1 , 机构无急回特性。 机构无急回特性。
传动角愈大,机构的传力性能愈好,反之则不利于机构 传动角愈大,机构的传力性能愈好, 中力的传递。机构运转过程中,传动角是变化的, 中力的传递。机构运转过程中,传动角是变化的,机构 出现最小传动角的位置正好是传力效果最差的位置, 出现最小传动角的位置正好是传力效果最差的位置,也 是检验其传力性能的关键位置。 是检验其传力性能的关键位置。 设计要求: 设计要求:
2.按给定的行程速比系数设计四杆机构 2.按给定的行程速比系数设计四杆机构
设计具有 急回特性 的四杆机 构,关键 是要抓住 机构处于 极限位置 时的几何 关系,必 要时还应 考虑其他 辅助条件。
θ θ θ
例:已知摇杆长度L=100,摆角 ψ =50 和行程速比 已知摇杆长度L=100, L=100 系数k=1.4 试设计曲柄摇杆机构。 k=1.4, 系数k=1.4,试设计曲柄摇杆机构。
若在设计机构时 先给定K 先给定K值,则 :
K 1 θ = 180° K +1
在生产实际中,常利用机构的急回运动来缩 短非生产时间,提高生产率,如牛头刨床、 往复式运输机等。
山东理工大学机械原理考试原题目——四杆机构的设计

第三章 平面连杆机构及其设计1、如图示的铰链四杆机构中,AD 为机架,AB a ==35 mm ,CD c ==50 mm ,30==d AD mm ,问BC b =在什么范围内该机构为双摇杆机构;该机构是否有可能成为双曲柄机构?2、试画出图示机构的传动角γ和压力角α,并判断哪些机构在图示位置正处于“死点”?(1) (2)(3) (4)5、在图示铰链四杆机构中,已知各构件的长度25=AB l mm ,55=BC l mm ,40=CD l mm , 50=AD l mm 。
(1)问该机构是否有曲柄,如有,指明哪个构件是曲柄;(2)该机构是否有摇杆,如有,用作图法求出摇杆的摆角范围;(3)以AB 杆为主动件时,该机构有无急回性?用作图法求出其极位夹角θ,并计算行程速度变化系数K ; (4)以AB 杆为主动件,确定机构的αmax 和γmin 。
6、图示为开关的分合闸机构。
已知150=AB l mm ,200=BC l mm ,200=CD l mm , 400=AD l mm 。
试回答:(1)该机构属于何种类型的机构;(2)AB 为主动件时,标出机构在虚线位置时的压力角α 和传动角γ;(3)分析机构在实线位置(合闸)时,在触头接合力Q 作用下机构会不会打开,为什么?7、试设计一曲柄摇杆机构。
设摇杆两极限位置分别为4090,15021===CD l ; ϕϕmm ,50=AD l mm 。
求AB l 、BC l 及行程速比系数K 和最小传动角γmin 。
(用图解法求解用图解法求解,简述作图步骤,并保留作图过程)8、现需设计一铰链四杆机构,已知摇杆CD 的长度l CD =150mm ,摇杆的两极限位置与机架AD 所成的角度 903021==ϕϕ,,机 构的行程速比系数K =1,试确定曲柄AB 和连杆BC 的长度。
10、设计一偏置曲柄滑块机构,已知滑块的行程速度变化系数K =1.5,滑块的行程10021=C C l mm ,导路的偏距20=e mm 。
(整理)四连杆

2.2.5 平面四杆机构的设计连杆机构的设计方法有作图法、解析法及实验法三种;其中作图法是重点。
用作图法设计四杆机构是根据设计要求及各铰链之间相对运动的几何关系,通过作图来确定四个铰链的位置。
根据不同的设计要求,作图法设计四杆机构可分为三种类型:1)按预定的连杆位置设计四杆机构。
①已知连杆 BC 的三个预定位置B 1 C 1、B 2 C 2、B 3 C 3,设计此四杆机构的实质是求固定铰链中心的位置。
此类问题可用求圆心法来解决,即作铰链 B 的各位置点连线B 1B 2、B 2B 3的中垂线,两中垂线的交点即固定铰链A 的中心。
同样,作铰链C 的各位置点连线C 1C 2、C 2 C 3的中垂线,两中垂线的交点即固定铰链 D 的中心。
若仅给定连杆 BC 的两个预定位置则设计的四杆机构有无穷多解。
②若给定固定铰链中心A 、D 的位置及连杆上标线EF 的三个预定位置,设计此四杆机构的实质是求活动铰链中心B 、C 的位置。
此类问题要用反转法求解,即把机构转化为以原连杆第一位置 E 1 F 1为机架,原机架 AD 为相对连杆,再仿上求得活动铰链 A 的三个相应位置A 、A 2’、A 3’,它们所在圆的圆心就是其相对固定铰链(实际活动铰链)B 的位置B 1,可用前述求圆心法求得。
2)按预定的两连架杆对应位置设计四杆机构。
如已知两连架杆的三组对应位置及机架长度l AD 、原动件长度l AB ,设计此四杆机构的实质是求活动铰链C 的位置。
此问题可用反转法求解,即把从动杆CD 的第一位置C 1D 看做机架,原动件AB 看做连干,求得活动铰链B 的三个相应位置B 、B 2´、B 3´,他们所在圆的圆心就是其相对固定铰链C 的位置C 1,若仅给定两连架杆的两组对应为止,则设计的四杆机构有无穷多解。
3)按给定的行程速比系数K 设计四杆机构已知行程速比系数K 及某些其他条件(如曲柄摇杆机构CD 的长度l CD 、摇杆摆角φ),设计此四杆机构的实质问题是确定曲柄的固定铰链中心A 的位置,进而定出其余三杆长度。
连杆机构-4.铰链四杆机构

9.3平面四杆机构的设计
设计类型 :
1.实现给定的运动规律:给定行程速 比系数以实现预期的急回特性、实现 连杆的几组给定位置等。 2.实现给定的运动轨迹:要求连杆上 某点沿着给定轨迹运动等。
设计目标 :
根据给定的运动条件,选定机构的类 型,确定机构中各构件的尺寸参数。
设计方法 :图解法、实验法和解析法等。
9.2 铰链四杆机构的基本性质
1.急回特性 :
—摇杆的摆角, —极位夹角。
为描述从动摇杆的急 回特性,在此引入行
K = 180 +
程速比系数 K,即:
180 -
K值的大小反映了急回运动特性的显著程度。K值的大
小取决于极位夹角 ,角越大,K值越大,急回运动 特性越明显;反之,则愈不明显。当时 0 ,K=1 ,
2.按给定的行程速比系数设计四杆机构
设计具有
急回特性
的四杆机
构,关键
是要抓住
机构处于
极限位置
时的几何
关系,必
要时还应
考虑其他
辅助条件。
例:已知摇杆长度L=100,摆角 =50 和行程速比
系数k=1.4,试设计曲柄摇杆机构。
解:由给定的行程速比系 数求出极位夹角 :
180 K1
K1
=
30
C1
Fn Fsin Ft Fcos
压力角愈小,机构的传力效果愈好。所以, 衡量机构传力性能,可用压力角作为标志。
Fn
F
Ft vC
在连杆机构中,为度 量方便,常用压力角 的余角即连杆与从动 件间所夹的锐角(传 动角)检验机构的传 力性能。
传动角愈大,机构的传力性能愈好,反之则不利于机构 中力的传递。机构运转过程中,传动角是变化的,机构 出现最小传动角的位置正好是传力效果最差的位置,也 是检验其传力性能的关键位置。
铰链四杆机构

设计:潘存云
Q
Q A
搅拌机构
E
鹤式起重机 要求连杆上E点的轨 迹为一条水平直线 要求连杆上E点的轨 迹为一条卵形曲线
给定的设计条件: 1)几何条件(给定连架杆或连杆的位置) 2)运动条件(给定K)
3)动力条件(给定γmin)
设计方法:图解法、解析法、实验法
一、按给定的行程速比系数K设计四杆机构 C2 1) 曲柄摇杆机构 已知:CD杆长,摆角φ及K, E 设计此机构。步骤如下: θ φ ①计算θ=180°(K-1)/(K+1); ②任取一点D,作等腰三角形 A 腰长为CD,夹角为φ; ③作C2P⊥C1C2,作C1P使 ∠C2C1P=90°-θ,交于P;
第2章 平面连杆机构
§2-1 铰链四杆机构的基本型式和特性 §2-2 铰链四杆机构有整转副的条件 §2-3 铰链四杆机构的演化 §2-4 平面四杆机构的设计
§2-1 铰链四杆机构的基本型式和特性
应用实例: 内燃机、鹤式吊、火车轮、手动冲床、牛头刨床、椭圆 仪、机械手爪、开窗户支撑、公共汽车开关门、折叠伞、 折叠床、 牙膏筒拔管机、单车制动操作机构等。 定义:由低副(转动、移动)连接组成的平面机构。 特征:有一作平面运动的构件,称为连杆。 特点: ①采用低副。面接触、承载大、便于润滑、不易磨损 形状简单、易加工、容易获得较高的制造精度。 ②改变杆的相对长度,从动件运动规律不同。 ③连杆曲线丰富。可满足不同要求。
设计:潘存云
φ=θ
D
3) 曲柄滑块机构 已知K,滑块行程H,偏 距e,设计此机构 。 ①计算: θ =180°(K-1)/(K+1); ②作C1 C2 =H
H C1
90°-θ
C2
90°-θ
A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
% 给定机构极限位置和最小传动角的铰链四杆机构运动设计(调用qbyg.m)
x0=[50 120 200 0.5];
k=1.25; % 行程速比系数
theta=pi*(k-1)/(k+1); % 极位夹角
yg=250; % 摇杆长度
psi=pi/6; % 摇杆摆角
gamin=2*pi/9; % 最小传动角
x=fsolve(@qbyg,x0);
disp ' ******** 已知条件********'
fprintf (' 行程速比系数k = %3.4f \n',k)
fprintf (' 极位夹角theta = %3.4f °\n',theta*180/pi)
fprintf (' 摇杆长度yg = %3.4f mm \n',yg)
fprintf (' 摇杆摆角psi = %3.4f °\n',psi*180/pi)
fprintf (' 最小传动角gamin = %3.4f °\n',gamin*180/pi)
disp ' ******** 计算结果********'
fprintf (' 曲柄长度 a = %3.4f mm \n',x(1))
fprintf (' 连杆长度 b = %3.4f mm \n',x(2))
fprintf (' 机架长度 d = %3.4f mm \n',x(3))
fprintf (' 摇杆位置角psi0 = %3.4f °\n',x(4)*180/pi)
% 铰链四杆机构非线性参数方程组
function f=qbyg(x)
k=1.25; % 行程速比系数
theta=pi*(k-1)/(k+1); % 极位夹角
yg=250; % 摇杆长度
psi=pi/6; % 摇杆摆角
gamin=2*pi/9; % 最小传动角
% x(1)是曲柄长度;x(2)是连杆长度;x(3)是机架长度;x(4)是摇杆初始位置角
f1=(x(2)+x(1))^2+(x(2)-x(1))^2-2*(x(2)+x(1))*(x(2)-x(1))*cos(theta)-(2*yg*sin(psi/2))^2; f2=yg^2+x(3)^2-2*yg*x(3)*cos(x(4))-(x(2)-x(1))^2;
f3=yg^2+x(3)^2-2*yg*x(3)*cos(x(4)+psi)-(x(2)+x(1))^2;
f4=yg^2+x(2)^2-2*yg*x(2)*cos(gamin)-(x(3)-x(1))^2;
f=[f1;f2;f3;f4];
计算结果:
Optimization terminated: first-order optimality is less than options.TolFun.
******** 已知条件********
行程速比系数k = 1.2500
极位夹角theta = 20.0000 °
摇杆长度yg = 250.0000 mm
摇杆摆角psi = 30.0000 °
最小传动角gamin = 40.0000 °
******** 计算结果********
曲柄长度 a = 62.9934 mm
连杆长度 b = 105.9045 mm
机架长度 d = 245.0702 mm
摇杆位置角psi0 = 9.8794 °。