不同厚度有耗左手材料板中的电磁波研究

合集下载

左手材料的研究进展及应用

左手材料的研究进展及应用

左手材料的研究进展及应用左手材料研究进展及应用左手材料,指的是介电常数(ε)和磁导率(μ)都是负数的材料(物质).在自然界中,所有物质的介电常数(ε)和磁导率(μ)都是正数.左手材料这种新型材料的非常之处,在于其负的介电常数和磁导率使得主导普通材料行为的许多物理特性产生逆变. 左手材料有时也被称作”异向介质”,”负折射系数材料”. 迄今为止,我们在自然界中见到的都是右手材料,右手规则一直被认为是物质世界的常规.但是,在左手材料中,电磁波的电场,磁场和波矢却构成左手关系.这也是这种材料被称为"左手材料"的原因.由于这种材料的介电常数和磁导率都是负数,折射率也是负的,根据电磁学理论,可以推断出它有很多奇异的物理特性.由于这个学期正在学习电磁场,电磁场的数学基础和这种反常自然界物质的神奇特性让我非常感兴趣.虽然阅读了较多的文献,不过很多理论还是不能理解.不过,我理解的那一部分已经受益匪浅了.比如,人的大脑要有创新精神,敢于突破常规,虽然右手规则是统治自然界物质的普遍规律,在我们的脑海中,也根深蒂固的有ε和μ同时>0的概念,不过,只要敢于想,敢于创造,这种突破自然界常规的物质LHM(left hand material)就可以发挥出它巨大的功能.一.左手理论的起源和发展1967年,前苏联物理学家Veselag。

在前苏联一个学术刊物上发表了一篇论文,首次报道了他在理论研究中对物质电磁学性质的新发现,即:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系。

他称这种假想的物质为左手材料,同时指出,电磁波在左手材料中的行为与在右手材料中相反,比如光的负折射、负的切连科夫效应、反多普勒效应等等。

这篇论文引起了一位英国人的关注,1968年被译成英文重新发表在另一个前苏联物理类学术刊物上。

但几乎无人意识到,材料世界从此翻开新的一页。

左手材料的研究发展并不是一帆风顺。

在这一具有颠覆性的概念被提出后的30年里,尽管它有很多新奇的性质,但由于只是停留在理论上,而在自然界中尚未发现实际的左手材料,所以,这一学术假设并没有立刻被人接受,而是处于几乎无人理睬的境地,直到将近本世纪时才开始出现转机。

左手材料简介

左手材料简介




采用微结构单元替代磁性材料中的原子和分子 可实现高频磁响应。 Yen等采用光刻蚀技术(photoproliferated process)加工制备了结构单元为30μm左右的 铜SRRs阵列,制备的不同系列的SRRs样品的几 何参数为:线宽4μm或6μm,内外环间距2μm 或3μm,外环边长分别为26μm,32μm,36μm, 晶格常数分别为36μm,44μm,50μm。 SRRs的材质为铜,厚度为3μm,其基板为 400μm微米厚的石英。
从图二可以看到:左手材料的透射功率沿 [10],[11],[01]三个方向并不完全重合,这意味着上述 LHM并不是各向同性的(isotropic)。原因在于上述 左手材料在组装时存在一些误差,而SRR的共振频 率对材料参数的微小变化极端敏感。 比较图一和图二,可以发现在频率10.3-11.1GHz之间 出现了透射功率, 且数值仿真结果和透射实验数据 吻合较好。用转移矩阵法计算得到的LHM和SRRs 透射功率如图四所示. 比较图三和图四, 可以看到:理论计算结果与实验数 据吻合较好.这4个图说明在频率10.3-11.1GHz之间, 按上述方法所制备的材料的确为左手材料(LHM).
3、左手材料纳米天线



纳米天线是由纳米金属线和圆环组成,具有等 离子体效应,能对光子进行直接操纵,引导光 无损耗的绕过拐角,由光子取代电子来完成电 子线路的基本功能。 因为纳米天线可用于制造新颖光子器件,如带 通滤波器、调制器、固态天线和体积小、速度 快的芯片和电子计算机。 红外波段磁响应的实现可应用于生物安全成像、 生物分子指纹识别、遥感、可视度极底的天气 下的导航、微型谐振腔、可调透镜、隔离器等。
所谓的Goos-Hänchen位移是指当光波在两种介质的分界面 处发生全反射时,反射光束在界面上相对于几何光学预言 的位臵有一个很小的侧向位移,且该位移沿光波传播的方 向。 光波s分量和p分量的Goos-Hänchen位移大小为

左手材料漫谈

左手材料漫谈

左手材料漫谈邓苏南李理左手材料是近年来国际物理学和电磁学的一个研究热点,是一个全新的领域。

众所周知,介质的电磁特性可以用介电常数ε和磁导率μ这两个宏观参数来描述。

对于通常介质ε>0, μ>0时,电场、磁场和波矢量之间满足右手螺旋关系,称为右手材料;而对于ε<0, μ<0 的介质,电场、磁场和波矢量之间则满足左手螺旋关系,这样的介质被称为左手介质,或左手材料。

在左手材料中能量与相位的传播方向是相反的,且左手材料还必须是色散的。

由于左手材料突破了传统电磁场理论中的一些重要概念,它表现出许多新奇的电磁特性。

本文简要分析了左手材料的一些电磁特性,并结合左手材料的研究现状,对左手材料的发展进行了介绍,并对其发展前景进行了展望。

一、左手材料的发展历程1968 年,前苏联科学家Veselago VG发现介电常数ε和磁导率μ都为负值的物质的电磁学性质与常规材料不同,还指出当平面电磁波照射在这样的媒介时,会发生反常的折射现象,不过其在自然界中并不存在,因此他的研究只是停留在理论上。

1996年Pendry提出了金属线周期结构,这种结构可使介质的介电常数为负。

1999年,Pendry等人又用电介质体设计了一种具有磁响应的周期性结构实现了介质磁导率的负值,进而展现了负折射率材料存在的可能性,人们对这种材料也投入了更多的兴趣。

2001 年,加州大学San Diego分校的Smith等物理学家根据 Pendry等人的建议,首次制造出在微波波段具有负介电常数和负磁导率的物质,证明了负折射材料的存在。

2002年,美国加州大学Itoh教授和加拿大多伦多大学Eleftheriades教授领导的研究组几乎同时提出一种基于周期性LC网络的实现左手材料的新方法。

目前基于LC网络的左手材料的研究在理论和实验上都有很大进展。

研究还表明LC左手材料在微波电路、天线等方面的应用中具有很大的优势。

在 2002年底,麻省理工学院孔金瓯教授也从理论上证明了“左手”材料存在的合理性,他称之为“导向介质”。

左手材料的研究概述

左手材料的研究概述

由此 可 知 ,在 左 手 介 质 中 ,波 的相 位 传 播
但是在接 下来的3 O 多 年 里 ,并 没 有 在 实 验 中观 矢 量K 、 电场 强度E * n 磁 场强度H 与 常规介 质相 察 到 理 论所 预 言 到 的现 象 ,所 以 左 手 材 料 并 没 同,也是相互 垂直的 ,可 是不同的是 ,常规介 有 得 到 深 入 地 研 究 。直 到 1 9 9 6 年 英国的皇家科 质 的E 、H  ̄ I ] K 之 间 满 足 的 是 右 手 螺 旋 关 系 , 而 左手介 质 中的E 、H 和K Z 间满 足 的 是 左 手 螺 旋 列 , 电磁波 射 入 金属 丝 阵列 得到 负 的介 电常 关系。这 也是 为什么人们把 介 电常数和 磁导率 数 。 三 年 之 后 , 他 又 利 用 开 口 的 金 属 谐 振 环 同时为 负数的介质称 为左手介 质的缘 故。 ( S R R ,S p l i t r i n g r e s o n a t o r ) ,在 特 定 入射 波 同时 ,多普勒 效应、切伦科夫辐射 、辐射 的 条 件 下又 获 得 了 负 的磁 导 率 。2 0 0 0 年 ,美 国 压 力、原子 自发辐射效率 、对倏逝波 的作用、 的科学家D . R . S m i t h 研 究小组在P e n d r y 等人研 究 光 子 隧道 效应 等 会 发 生 异常 。 的 基础 上 , 将 S R R S N R o d s 合 理 地 组 合 起 来 ,首 次 3 . 左 手 材 料 的结 构 设 计 得到 了同 时具 有 负的 介 电常数 和 磁 导率 的物 因为至今在 自然 界并没有发现左手 介质, 质 , 从 此 以 后 , 越 来 越 多 的 人 投 身 到 左 手 材 料 目前人们在实验 或者工程 中用到的左手介 质样 的研 究 热潮 中 ,左 手材 料 被 “ S c i e n c e ”杂 志 评 品都是人为设计 的,是一种 复合材料 。大 部分 为2 0 0 3 年度十大科技 突破之一 。尤其 是在最近 都 是在 微波 印刷 电路板上刻蚀 各种各样不 同的 几年来 ,左 手材料 的研 究在理论和应 用上都取 周 期性 的图案 来实现等效左 手特性 的。各个方 得 了 显 著 的 成 绩 。 并 且 逐 渐 改 变 着 我 们 的 生 面 还 远 远 没 有 能 够 达 到 人 们 对 左 手 材 料 的 期 望 活。 并且确实可 以改变人们生产 生活的程度 。在 由 2 左 手 材 料 的 基 本 原 理 结 构 决 定 材 料 性 质 方 面 ,左 手 材 料 既有 与 传 统 而 电磁 波要 在 介质 中存在 ,必须 满足 与 材料相 似 的一 面也有截然不 同的一面 。相 似之 介 质的 电磁 常数和 电磁波 参量相关联 的波动方 处 主 要 表 现 在 与 晶 体 的对 比 上 , 晶 体 是 由 规 则 程 ,H e i m h o l t z 方程: 分 布 在 空 间 中 的 原 子 或 分 子 组成 的 ,并 且 晶 体

有损耗左手材料电波传播特性的FDTD分析

有损耗左手材料电波传播特性的FDTD分析

有损耗左手材料电波传播特性的FDTD分析物理学中,介电常数ε和磁导率μ是描述介质中电磁场性质最基本的两个物理量。

在已知的物质世界中,对于普通的电介质而言,介电常数ε和磁导率μ都为正值,电场、磁场与波矢三者构成右手螺旋关系,这样的物质被称为右手材料(Right-Handed Materials,RHM)。

所谓的左手材料(Left-Handed Materials,LHM)是指介电常数ε和磁导率μ同时为负的介质材料,也常被称为双负介质(Double Negative Materials,DNG),其特点是电场、磁场与波矢三者构成左手螺旋关系。

左手材料是近年来国际物理学和电磁学的一个研究热点,其概念最初由前苏联物理学家Veselago 于1968年提出并做了大量的理论性研究,指出了左手材料具有诸如负折射效应、逆多普勒效应等许多奇异的电磁特性,但由于自然界中没能发现ε和μ同时为负数的介质材料存在,所以他的研究结果在很长一段时间一直没有得到实验验证,也没能激起人们更多的兴趣。

1999年,英国皇家学院Pendry等人相续提出了用周期性排列的金属棒和开口金属谐振环可以在微波波段分别产生等效负介电常数和等效负磁导率的思路,并提出了左手材料具有“完美透镜”特性的概念。

2021年,美国加州大学圣迭哥分校物理学家Smith教授等人首次成功地通过人工方法构造出了这种自然界中并不存在的材料,并且利用此介质进行了电波传播实验,通过实验观察到了负折射等一系列左手材料中电波传播的特殊现象。

这些研究成果在国际上引起了很大的反响,激起了更多学者对左手材料在各个领域可能产生的应用前景进行了深入的思考和研究,而电磁波在该材料中的传播特性显然是研究的重要课题。

目前,物理光学方法、矩量法、时域有限差分法(FDTD)、高低频混合方法等各种数值分析方法纷纷被用来仿真和分析左手材料中电磁波的传播特性[4-5],其中,时域有限差分法(FDTD)特别是基于Drude模型的FDTD方法是比较方便和有效的一种[3,6]。

左手材料的奇异特性研究

左手材料的奇异特性研究

左手材料的奇异特性研究摘要:左手材料是一种介电常数ε和磁导率μ都是负的人工周期结构材料,在其中传播的电磁波的群速度与相速度方向相反,从而呈现出许多起义的特性。

本文介绍了左手材料的基本概念、原理、奇异的特性以及其潜在的应用。

关键词:左手材料;反常折射;能流的方向和波矢方向相反;消除手机辐射;隐身术;引言在谈左手材料之前,先说一下什么是右手材料。

对于一般电解质而言,介电常数ε和磁导率μ都是非负的常数,由有麦克斯韦方程可知,在ε和μ都为正值的物质中,电场、磁场和波矢之间构成右手关系,我们称这样的物质为右手性介质(RHM)。

1968年,前苏联物理学家Veselago在理论上研究了介电常数ε和磁导率μ都为负值的物质的电磁学特性,他发现与常规材料不同的是:当ε和μ都为负值时,电场、磁场和波矢之间构成左手关系,他称这种假想的物质为左手性介质(LHM)。

他还指出,左手性介质中电磁波的行为与在右手性介质中有很大的不同,比如光的负折射率、负的切连科夫效应、反多普勒效应等等。

1996年尽管左手性介质有很多新奇的特性,但在自然界中人类尚未发现真实存在的左手性物质,因此它还主要处在实验室研究阶段。

目前左手性材料的研究仍是科学的热点项目。

一、何谓左手性材料在经典电动力学中,对于无损耗、各项同性、空间介质均匀的自由空间,Maxwell方程组为:正弦时变电磁波的波动方程(Helmholtz方程)为:其中n代表折射率,c是真空中光速。

自然界中物质的ε和μ一般都与电磁波频率有关,如果不考虑任何能量的损耗,在正常的介质中,n、ε和μ在大多数情况下都为正数,此时方程(1)有波动解,电磁波能在其中传播。

对于无损耗、各项同性、空间介质均匀,有Maxwell方程组能推出平面电磁波方程为:且有可见,电磁波是横波,波的相位传播矢量K和电矢量E和磁矢量H互相垂直,并且K、E、H之间满足右手螺旋关系。

这种常规的介质就被称为“右手材料”(Right - Hand Materials)。

左手材料(Left-Handed

左手材料(Left-Handed
2
自然界中物质的μ和ε一般都与电磁波频率有关,并且在 大多数情况下都为正数,此时方程(1)有波动解,电磁波能在 其中传播。对于无损耗、各向同性、空间均匀的介质,由 右手材料 左手材料 ( < 0, < 0) Maxwell方程组能推出 ( > 0, > 0)
光刻蚀技术(photolithography) 近场光学显微仪 (near-field optical microscopy) 可选波长的滤光器 (wavelength-tunable filter) 光学显示器 (optical displays)
Fig 5. (A) A negative index metamaterial formed by SRRs and wires deposited on opposite sides lithographically on standard circuit board. The height of the structure is 1 cm. (B) The power detected as a function of angle in a Snell’s law experiment performed on a Teflon sample (blue curve) and a negative index sample (red curve). Shelby R. ,Smith D.R. ,et al ,Science ,2001,292,77
折射光仍然满足Snell定律 n1 sin 1 n 2 sin 2
E1
H1

1
( 1 >0, 1 >0 )
v k k
H2
v S S

左手材料研究进展及应用前景

左手材料研究进展及应用前景

© 1994-2009 China Academic Journal Electronic Publishing House. All rights reserved.
张世鸿 等 :左手材料研究进展及应用前景
左手特性才会出现 。目前研究的左手材料是由开环谐 振器和金属细线两种结构周期排列组成 ,在制作和使 用上都有一定的难度 ,且呈现左手材料性质的频段较 窄 ,应用受到限制 。科学家们对呈现出左手特性的其 它结构也进行了研究 ,比如美国特拉华大学的 S. T. Chui 等人[9] 提出使用金属磁性纳米颗粒复合材料制 备左手材料 ,把金属磁性纳米颗粒嵌入到绝缘基体中 , 同时控制颗粒的磁化方向以及颗粒所占的体积比 。由 于在等离子频率下金属可以呈现出负的介电常数 ,而 磁性颗粒的共振又可以使磁导率为负值 ,这就使该材 料在某些频率下呈现出介电常数和磁导率皆为负值的 左手性质 。这种材料结构均一 ,没有复杂的微结构 ,因 而使材料容易制备和使用 ,而且它呈现左手性质的频 率范围可能较大 ,可以通过调节纳米颗粒的尺寸和体 积比来调节它的应用频段 。
其中等离子体频率ωp =
N q2
mε0
≈ 56.
4
N ,m 为
总动量值 , N 为平均电荷密度 。其介电常数随频率变
化而变化 ,当工作频率低于 ωp 时 , 将εp (ω) < 0 ,此时 波矢为虚数 ,电磁波不能在等离子体内传播 。J . Pen2
dry 为左手材料的实现奠定了理论基础 ,1996 年发表
出相反性质 。
2. 3. 1 负介电常数的实现
等离子体的介电常数表示为 Drude 模型 :
εp (ω)
= ε0
1
-
ωp2 ω2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档