数据结构邻接矩阵,邻接表,图实验报告

合集下载

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图【数据结构实验报告--图】【一、实验目的】本实验旨在掌握图的基本概念、存储结构以及相关操作,并通过实验加深对图的理解。

【二、实验环境】操作系统:Windows 10编程语言:C++开发工具:Dev-C++ 5.11【三、实验内容】1.图的定义与基本概念1.1 图的定义:有向图、无向图1.2 图的基本概念:顶点、边、路径、路径长度2.图的存储结构2.1 邻接矩阵表示法2.2 邻接表表示法3.图的操作3.1 图的创建①手动输入图的顶点和边②从文件中读取图的顶点和边3.2 图的遍历①深度优先遍历(DFS)②广度优先遍历(BFS)3.3 图的最小树① Prim算法② Kruskal算法3.4 图的最短路径① Dijkstra算法② Floyd算法4.实验结果分析4.1 图的创建结果4.2 图的遍历结果4.3 图的最小树结果4.4 图的最短路径结果【四、实验步骤】1.定义图的数据结构和相关操作的函数原型。

2.实现图的存储结构和相关操作的函数实现。

3.开发主程序,包括菜单、用户输入、调用图操作函数等。

4.运行程序,测试各个功能是否正常进行。

5.根据运行结果分析,进行必要的调试和优化。

【五、实验结果】1.图的创建结果:●手动输入图的顶点和边:●顶点数.10●边数.15●从文件中读取图的顶点和边:●顶点数.8●边数.122.图的遍历结果:●深度优先遍历:●遍历路径.1 -> 2 -> 4 -> 5 -> 3●广度优先遍历:●遍历路径.1 -> 2 -> 3 -> 4 -> 53.图的最小树结果:●Prim算法:●最小树顶点集合:{1, 2, 4, 5}●最小树边集合:{(1, 2), (2, 4), (2, 5)}●Kruskal算法:●最小树边集合:{(1, 2), (2, 4), (2, 5)}4.图的最短路径结果:●Dijkstra算法:●从顶点1到其他顶点的最短路径长度:●1 -> 2、2●1 -> 3、5●1 -> 4、4●1 -> 5、6●Floyd算法:●图的最短路径邻接矩阵:●0 2 5 4 6●2 0 3 1 3●5 3 0 5 4●4 1 5 0 2●6 3 4 2 0【附件】无【法律名词及注释】1.顶点:图中的一个节点,可以表示实体或事件。

数据结构实验---图的储存与遍历

数据结构实验---图的储存与遍历

数据结构课程实验报告一、实验目的掌握图这种复杂的非线性结构的邻接矩阵和邻接表的存储表示, 以及在此两种常用存储方式下深度优先遍历(DFS)和广度优先遍历(BFS)操作的实现。

二、实验内容与实验步骤题目1: 对以邻接矩阵为存储结构的图进行DFS和BFS遍历问题描述: 以邻接矩阵为图的存储结构, 实现图的DFS和BFS遍历。

基本要求:建立一个图的邻接矩阵表示, 输出顶点的一种DFS和BFS序列。

测试数据: 如图所示题目2: 对以邻接表为存储结构的图进行DFS和BFS遍历问题描述: 以邻接表为图的存储结构, 实现图的DFS和BFS遍历。

基本要求:建立一个图的邻接表存贮, 输出顶点的一种DFS和BFS序列。

测试数据: 如图所示三、附录:在此贴上调试好的程序。

#include<stdio.h>#include<malloc.h>#include<string.h>#define M 100typedef struct node{char vex[M][2];int edge[M ][ M ];int n,e;}Graph;int visited[M];Graph *Create_Graph(){ Graph *GA;int i,j,k,w;GA=(Graph*)malloc(sizeof(Graph));printf ("请输入矩阵的顶点数和边数(用逗号隔开): \n");scanf("%d,%d",&GA->n,&GA->e);printf ("请输入矩阵顶点信息: \n");for(i = 0;i<GA->n;i++)scanf("%s",&(GA->vex[i][0]),&(GA->vex[i][1]));for (i = 0;i<GA->n;i++)for (j = 0;j<GA->n;j++)GA->edge[i][j] = 0;for (k = 0;k<GA->e;k++){ printf ("请输入第%d条边的顶点位置(i,j)和权值(用逗号隔开): ",k+1);scanf ("%d,%d,%d",&i,&j,&w);GA->edge[i][j] = w;}return(GA);}void dfs(Graph *GA, int v){ int i;printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]);visited[v]=1;for(i=0; i<GA->n; i++)if (GA->edge[v][i]==1 && visited[i]==0) dfs(GA, i);}void traver(Graph *GA){ int i;for(i=0; i<GA->n; i++)visited[i]=0;for(i=0; i<GA->n;i++)if(visited[i]==0)dfs(GA, i);}void bfs( Graph *GA, int v){ int j,k,front=-1,rear=-1;int Q[M];printf("%c%c\n",GA->vex[v][0],GA->vex[v][1]); visited[v]=1;rear=rear+1;Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];for (j=0; j<GA->n; j++)if (GA->edge[k][j]==1 && visited[j]==0){ printf("%c%c\n",GA->vex[j][0],GA->vex[j][1]);visited[j]=1;rear=rear+1;Q[rear]=j;}}}void traver1(Graph *GA){ int i;for (i=0; i<GA->n;i++)visited[i]=0;for (i=0; i<GA->n; i++)if (visited[i]==0)bfs(GA, i);}typedef struct NODE{ int adjvex;struct NODE *next;}ENode;typedef struct NODE1{ char vex[2];ENode *first;} VexNode;typedef struct FS1{VexNode GL[M];int bian,top;}FS;FS *CreateGL( ){ FS *kk=(FS *)malloc(sizeof(FS));int i,j,k;ENode *s;printf("请输入顶点数和边数(用逗号隔开): \n");scanf("%d,%d",&kk->top, &kk->bian);printf("请输入顶点信息: \n");for (i=0; i<kk->top; i++){ scanf("%s",kk->GL[i].vex);kk->GL[i].first=NULL; }printf("请输入边的信息(i,j): \n");for (k=0;k<kk->bian;k++){ scanf("\n%d,%d",&i,&j);s =(ENode*)malloc(sizeof(ENode));s->adjvex=j;s->next=kk->GL[i].first;kk->GL[i].first =s;}return kk;}void DFS(FS *kk, int v){ ENode *w; int i;printf("%s\n",kk->GL[v].vex); visited[v]=1;w=kk->GL[v].first ;while (w!=NULL){ i=w->adjvex;if (visited[i]==0)DFS(kk,i);w=w->next;}}void TRAVER(FS *kk){ int i;for(i=0; i<kk->top;i++)visited[i]=0;for(i=0; i<kk->top; i++)if(visited[i]==0)DFS(kk, i);}void BFS(FS *kk, int v){ int Q[M], front=-1,rear=-1;ENode *w;int i, k;printf("%s\n",kk->GL[v].vex);visited[v]=1;rear=rear+1; Q[rear]=v;while (front!=rear){ front=front+1;k=Q[front];w=kk->GL[k].first;while(w!=NULL){ i=w->adjvex;if( visited[i]==0){ visited[i]=1; printf("%s",kk->GL[i].vex);rear=rear+1; Q[rear]=i;}w=w->next;}}}void TRAVER1(FS *kk){ int i;for(i=0; i<kk->top;i++) visited[i]=0;for(i=0; i <kk->top;i++)if(visited[i]==0)BFS(kk,i);}int main(){int i=0;Graph *p;FS *q;while(i=1){/*建立菜单*/char jz[30]={"1.创建邻接矩阵"};char jd[30]={"2.邻接矩阵DFS遍历"};char jb[30]={"3.邻接矩阵BFS遍历"};char bg[30]={"4.创建邻接表"};char bd[30]={"5.邻接表DFS遍历"};char bb[30]={"6.邻接表BFS遍历"};char tc[30]={"7.退出"};char mn[30]={"菜单"};int l=strlen(jd);int o=strlen(mn);int m,n;printf("\n");for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("%s",mn);for(m=0;m<=(2*l-o)/2;m++)printf(" ");printf("\n");for(m=0;m<=2*l;m++)printf("*");printf("\n");printf("* %s *\n* %s*\n* %s *\n* %s *\n* %s *\n* %s *\n* %s*\n",jz,jd,jb,bg,bd,bb,tc);for(m=0;m<=2*l;m++)printf("*");printf("\n");/*选择功能*/printf("请输入所需功能序号: ");scanf("%d",&n);switch(n){case 1: p=Create_Graph();break;case 2: traver(p);break;case 3: traver1(p);break;case 4: q=CreateGL();break;case 5: TRAVER(q);break;case 6: TRAVER1(q);break;case 7: return 0;default:printf("输入功能序号有误!\n");}}return 0;}四、运行结果:在此把运行结果从屏幕上拷下来贴在此五、心得体会:测试数据要注意现实中矩阵是从1开始, 而数组里是从0开始。

数据结构实验报告图实验

数据结构实验报告图实验

图实验一,邻接矩阵的实现1.实验目的(1)掌握图的逻辑结构(2)掌握图的邻接矩阵的存储结构(3)验证图的邻接矩阵存储及其遍历操作的实现2.实验内容(1)建立无向图的邻接矩阵存储(2)进行深度优先遍历(3)进行广度优先遍历3.设计与编码#ifndef MGraph_H#define MGraph_Hconst int MaxSize = 10;template<class DataType>class MGraph{public:MGraph(DataType a[], int n, int e);~MGraph(){}void DFSTraverse(int v);void BFSTraverse(int v);private:DataType vertex[MaxSize];int arc[MaxSize][MaxSize];int vertexNum, arcNum;};#endif#include<iostream>using namespace std;#include ""extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e){int i, j, k;vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++)vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++)arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: ";cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0)DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v];visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0){cout << vertex[j];visited[j] = 1;Q[++rear] = j;}}}#include<iostream>using namespace std;#include ""extern int visited[MaxSize];template<class DataType>MGraph<DataType>::MGraph(DataType a[], int n, int e){int i, j, k;vertexNum = n, arcNum = e;for(i = 0; i < vertexNum; i++)vertex[i] = a[i];for(i = 0;i < vertexNum; i++)for(j = 0; j < vertexNum; j++)arc[i][j] = 0;for(k = 0; k < arcNum; k++){cout << "Please enter two vertexs number of edge: ";cin >> i >> j;arc[i][j] = 1;arc[j][i] = 1;}}template<class DataType>void MGraph<DataType>::DFSTraverse(int v){cout << vertex[v];visited[v] = 1;for(int j = 0; j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0)DFSTraverse(j);}template<class DataType>void MGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;cout << vertex[v];visited[v] = 1;Q[++rear] = v;while(front != rear){v = Q[++front];for(int j = 0;j < vertexNum; j++)if(arc[v][j] == 1 && visited[j] == 0){cout << vertex[j];visited[j] = 1;Q[++rear] = j;}}}4.运行与测试5.总结与心得通过该实验的代码编写与调试,熟悉了邻接矩阵在图结构中的应用,在调试过程中遇到很多的问题,在解决问题过程中也使我的写代码能力得到提升二,邻接表的实现1.实验目的(1)掌握图的逻辑结构(2)掌握图的邻接表存储结构(3)验证图的邻接表存储及其遍历操作的实现2.实验内容(1)建立一个有向图的邻接表存储结构(2)对建立的有向图进行深度优先遍历(3)对建立的有向图进行广度优先遍历3.设计与编码#ifndef ALGraph_H#define ALGraph_Hconst int MaxSize = 10;struct ArcNode{int adjvex;ArcNode * next;};template<class DataType>struct VertexNode{DataType vertex;ArcNode * firstedge;};template<class DataType>class ALGraph{public:ALGraph(DataType a[], int n, int e);~ALGraph();void DFSTraverse(int v);void BFSTraverse(int v);private:VertexNode<DataType> adjlist[MaxSize];int vertexNum, arcNum;};#endif#include<iostream>using namespace std;#include""extern int visited[MaxSize];template<class DataType>ALGraph<DataType>::ALGraph(DataType a[], int n, int e) {ArcNode * s;int i, j, k;vertexNum = n; arcNum = e;for(i = 0; i < vertexNum; i++){adjlist[i].vertex = a[i];adjlist[i].firstedge = NULL;}for(k = 0; k < arcNum; k++){cout << "Please enter the edge of the serial number of two vertices: ";cin >> i >> j;s = new ArcNode; s->adjvex = j;s->next = adjlist[i].firstedge;adjlist[i].firstedge = s;}}template<class DataType>ALGraph<DataType>::~ALGraph(){ArcNode * p = NULL;for(int i = 0; i < vertexNum; i++){p = adjlist[i].firstedge;while(p != NULL){adjlist[i].firstedge = p->next;delete p;p = adjlist[i].firstedge;}}}template<class DataType>void ALGraph<DataType>::DFSTraverse(int v){ArcNode * p = NULL; int j;cout << adjlist[v].vertex;visited[v] = 1;p = adjlist[v].firstedge;while(p != NULL){j = p->adjvex;if(visited[j] == 0) DFSTraverse(j);p = p->next;}}template<class DataType>void ALGraph<DataType>::BFSTraverse(int v){int Q[MaxSize];int front = -1, rear = -1;ArcNode * p = NULL;cout << adjlist[v].vertex; visited[v] = 1; Q[++rear] = v;while(front != rear){v = Q[++front];p = adjlist[v].firstedge;while(p != NULL){int j = p->adjvex;if(visited[j] == 0){cout << adjlist[j].vertex; visited[j] = 1; Q[++rear] = j;}p = p->next;}}}#include<iostream>using namespace std;#include""int visited[MaxSize] = {0};int main(){char ch[] = {'A','B','C','D','E'};int i;ALGraph<char> ALG(ch, 5, 6);for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Depth-first traverse sequence is: ";(0);cout << endl;for(i = 0; i < MaxSize; i++)visited[i] = 0;cout << "Breadth-first traverse sequence is: ";(0);cout << endl;return 0;}4.运行与调试5.总结与心得通过该实验,掌握了图的邻接表存储结构。

数据结构实验报告-图的遍历

数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。

2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。

四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。

2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。

3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。

3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。

3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。

3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。

我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。

3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。

我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。

4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。

5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。

6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。

7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。

数据结构实验报告图的应用

数据结构实验报告图的应用

实验题目:图的应用一、实验目的和任务1 掌握图的邻接表和邻接矩阵存储;2 掌握图的拓扑排序算法;二、实验内容及原理1以下两项内容选做一项。

2 请按照书中介绍的拓扑排序算法,完成P303页第5题。

3 给定某一个图,完成其深度优先搜索遍历和广度优先搜索遍历,每种遍历都必须在邻接矩阵和邻接表中完成。

四、实验数据及程序代码#include <iostream.h>#include <stdlib.h>#include <strstrea.h>#include <string.h>#include <stdio.h>const int MaxVertexNum=10;typedef int WeightType;struct edgenode{int adjvex;WeightType weight;edgenode*next;};typedef edgenode *adjlist[MaxVertexNum];void InitAdjoin(adjlist GL)//初始化{for(int i=0;i<MaxVertexNum;i++)GL[i]=NULL;}void CreatAdjoin(adjlist GL,int n,char*s,int k1,int k2)//生成邻接表{istrstream sin(s);char c1,c2,c3;WeightType w;edgenode*p;sin>>c1;if(k2==0){do{sin>>c1>>i>>c2>>j>>c3;p=new edgenode;p->adjvex=j;p->weight=1;p->next=GL[i];GL[i]=p;if(k1==0){p=new edgenode;p->adjvex=i;p->weight=1;p->next=GL[j];GL[j]=p;}sin>>c1;}while(c1==',');}else{do{sin>>c1>>i>>c2>>j>>c3>>w;p=new edgenode;p->adjvex=j;p->weight=w;p->next=GL[i];GL[i]=p;if(k1==0){p=new edgenode;p->adjvex=i;p->weight=w;p->next=GL[j];GL[j]=p;}sin>>c1;}while(c1==',');}}void PrintAdjion(adjlist GL, int n,int k1, int k2) {edgenode*p;cout<<"V={";for(i=0; i<n-1; i++) cout<<i<<',';cout<<n-1<<'}'<<endl;cout<<"E={";for(i=0;i<n;i++){if(k2==0){p=GL[i];while(p){j=p->adjvex;if(k1==0){if(i<j) cout<<'('<<i<<','<<j<<')'<<',';}elsecout<<'<'<<i<<","<<j<<'>'<<',';p=p->next;}}else{p=GL[i];while(p){j=p->adjvex;if(k1==0){if(i<j) cout<<'('<<i<<','<<j<<')'<<p->weight<<',';}elsecout<<'<'<<i<<','<<j<<'>'<<p->weight<<',';p=p->next;}}}cout<<'}'<<endl;}void Toposort(adjlist GL , int n){int i,j,k,top,m=0;edgenode*p;int*d=new int[n];for(i=0;i<n;i++) d[i]=0;for(i=0;i<n;i++){p=GL[i];while(p!=NULL){j=p->adjvex;d[i]++;p=p->next;//cout<<j;}}top=-1;for(i=0;i<n;i++)if(d[i]==0){d[i]=top; top=i;}while(top!=-1){j=top;top=d[top];cout<<j<<' ';m++;p=GL[j];while(p!=NULL){k=p->adjvex;d[k]--;if(d[k]==0){d[k]=top;top=k;}p=p->next;}}cout<<endl;cout<<top<<endl;cout<<m<<endl;cout<<n<<endl;if(m<n) cout<<"The network has a cycle!"<<endl;delete []d;}void main(){int n,k1,k2;cout<<"输入待处理图的顶点数:";cin>>n;cout<<"输入图的有无向和有无权选择(0为无,非0为有):";cin>>k1>>k2;adjlist gl;InitAdjoin(gl);cout<<"输入图的边集:";FILE *p;p=fopen("d:\\1.txt","r+");char *a=new char[100];while (!feof(p)){fscanf(p,"%s ",a);cout<<a;}cout<<endl;//cin>>a;CreatAdjoin(gl,n,a,k1,k2);Toposort(gl,n);}五、实验数据分析及处理六、实验结论与感悟(或讨论)图的邻接矩阵,邻接表和边集数组表示各有利弊,具体运用时,要根据图的稠密和稀疏程度以及算法的要求进行选择。

数据结构图实验报告

数据结构图实验报告

数据结构教程上机实验报告实验七、图算法上机实现一、实验目的:1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。

2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接矩阵和邻接表的类型定义。

3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方法及其基本思想。

二、实验内容:1.建立无向图的邻接矩阵2.图的深度优先搜索3.图的广度优先搜索三、实验步骤及结果:1.建立无向图的邻接矩阵:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedef structchar vertex[MAXSIZE];//顶点为字符型且顶点表的长度小于MAXSIZEint edges[MAXSIZE][MAXSIZE];//边为整形且edges为邻近矩阵}MGraph;//MGraph为采用邻近矩阵存储的图类型void CreatMGraph(MGraph *g,int e,int n){//建立无向图的邻近矩阵g->egdes,n为顶点个数,e为边数int i,j,k;printf("Input data of vertexs(0~n-1):\n");for(i=0;i<n;i++)g->vertex[i]=i; //读入顶点信息for(i=0;i<n;i++)for(j=0;j<n;j++)g->edges[i][j]=0; //初始化邻接矩阵for(k=1;k<=e;k++)//输入e条边{printf("Input edges of(i,j):");scanf("%d,%d",&i,&j);g->edges[i][j]=1;g->edges[j][i]=1;}void main(){int i,j,n,e;MGraph *g; //建立指向采用邻接矩阵存储图类型指针g=(MGraph*)malloc(sizeof(MGraph));//生成采用邻接举证存储图类型的存储空间printf("Input size of MGraph:"); //输入邻接矩阵的大小scanf("%d",&n);printf("Input number of edge:"); //输入邻接矩阵的边数scanf("%d",&e);CreatMGraph(g,e,n); //生成存储图的邻接矩阵printf("Output MGraph:\n");//输出存储图的邻接矩阵for(i=0;i<n;i++){for(j=0;j<n;j++)printf("%4d",g->edges[i][j]);printf("\n");}}2)运行结果:2.图的深度优先搜索:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedef struct node//邻接表结点{int adjvex;//邻接点域struct node *next;//指向下一个邻接边结点的指针域}EdgeNode; //邻接表结点类型typedef struct vnode//顶点表结点{int vertex;//顶点域EdgeNode *firstedge; //指向邻接表第一个邻接边节点的指针域}VertexNode;//顶点表结点类型void CreatAdjlist(VertexNode g[],int e,int n){//建立无向图的邻接表,n为顶点数,e为边数,g[]存储n个顶点表结点EdgeNode *p;int i,j,k;printf("Input data of vetex(0~n-1);\n");for(i=0;i<n;i++)//建立有n个顶点的顶点表{g[i].vertex=i; //读入顶点i信息g[i].firstedge=NULL; //初始化指向顶点i的邻接表表头指针}for (k=1;k<=e;k++)//输入e条边{printf("Input edge of(i,j):");scanf("%d,%d",&i,&j);p=(EdgeNode*)malloc(sizeof(EdgeNode));p->adjvex=j; //在顶点vi的邻接表中添加邻接点为j的结点p->next=g[i].firstedge; //插入是在邻接表表头进行的g[i].firstedge=p;p=(EdgeNode*)malloc(sizeof(EdgeNode));p->adjvex=i; //在顶点vj的邻接表中添加邻接点为i的结点p->next=g[j].firstedge; //插入是在邻接表表头进行的g[j].firstedge=p;}}int visited[MAXSIZE]; //MAXSIZE为大于或等于无向图顶点个数的常量void DFS(VertexNode g[],int i){EdgeNode *p;printf("%4d",g[i].vertex); //输出顶点i信息,即访问顶点ivisited[i]=1;p=g[i].firstedge; //根据顶点i的指针firstedge查找其邻接表的第一个邻接边结点while(p!=NULL){if(!visited[p->adjvex]) //如果邻接的这个边结点未被访问过DFS(g,p->adjvex); //对这个边结点进行深度优先搜索p=p->next; //查找顶点i的下一个邻接边结点}}void DFSTraverse(VertexNode g[],int n){//深度优先搜索遍历以邻接表存储的图,其中g为顶点数,n为顶点个数int i;for(i=0;i<n;i++)visited[i]=0; //访问标志置0for(i=0;i<n;i++)//对n个顶点的图查找未访问过的顶点并由该顶点开始遍历if(!visited[i]) //当visited[i]等于0时即顶点i未访问过DFS(g,i); //从未访问过的顶点i开始遍历}void main(){int e,n;VertexNode g[MAXSIZE]; //定义顶点表结点类型数组gprintf("Input number of node:\n");//输入图中节点个数边的个数scanf("%d",&n);printf("Input number of edge:\n");//输入图中边的个数scanf("%d",&e);printf("Make adjlist:\n");CreatAdjlist(g,e,n); //建立无向图的邻接表printf("DFSTraverse:\n");DFSTraverse(g,n); //深度优先遍历以邻接表存储的无向图printf("\n");}2)运行结果:3.图的广度优先搜索:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedef struct node1//邻接表结点{int adjvex; //邻接点域struct node1 *next;//指向下一个邻接边结点的指针域}EdgeNode; //邻接表结点类型typedef struct vnode//顶点表结点{int vertex;//顶点域EdgeNode *firstedge; //指向邻接表第一个邻接边结点的指针域}VertexNode; //顶点表结点类型void CreatAdjlist(VertexNode g[],int e,int n){ //建立无向图的邻接表,n为顶点数,e为边数,g[]存储n个顶点表结点EdgeNode *p;int i,j,k;printf("Input data of vetex(0~n-1):\n");for(i=0;i<n;i++) //建立有n个顶点的顶点表{g[i].vertex=i; //读入顶点i信息g[i].firstedge=NULL; //初始化指向顶点i的邻接表表头指针}for(k=1;k<=e;k++) //输入e条边{printf("Input edge of(i,j):");scanf("%d,%d",&i,&j);p=(EdgeNode *)malloc(sizeof(EdgeNode));p->adjvex=j;//在定点vi的邻接表中添加邻接点为j的结点p->next=g[i].firstedge;//插入是在邻接表表头进行的g[i].firstedge=p;p=(EdgeNode *)malloc(sizeof(EdgeNode));p->adjvex=i; //在顶点vj的邻接表中添加邻接点为i的结点p->next=g[j].firstedge; //插入是在邻接表表头进行的g[j].firstedge=p;}}typedef struct node{int data;struct node *next;}QNode; //链队列结点的类型typedef struct{QNode *front,*rear; //将头、尾指针纳入到一个结构体的链队列}LQueue; //链队列类型void Init_LQueue(LQueue **q) //创建一个带头结点的空队列{QNode *p;*q=(LQueue *)malloc(sizeof(LQueue)); //申请带头、尾指针的链队列p=(QNode *)malloc(sizeof(QNode)); //申请链队列的头结点p->next=NULL;//头结点的next指针置为空(*q)->front=p; //队头指针指向头结点(*q)->rear=p; //队尾指针指向头结点}int Empty_LQueue(LQueue *q) //判队空{if(q->front==q->rear) //队为空return 1;elsereturn 0;}void In_LQueue(LQueue *q,int x) //入队{QNode *p;p=(QNode *)malloc(sizeof(QNode)); //申请新链队列结点p->data=x;p->next=NULL; //新结点作为队尾结点时其next 域为空q->rear->next=p; //将新结点*p链到原队尾结点之后q->rear=p; //使队尾指针指向新的队尾结点*p}void Out_LQueue(LQueue *q,int *x) //出队{QNode *p;if(Empty_LQueue(q))printf("Queue is empty!\n");//对空,出队失败else{p=q->front->next; //指针p指向链队列第一个数据结点(即对头结点)q->front->next=p->next;//头结点的next指针指向链队列第二个数据结点(即删除第一个数据结点)*x=p->data; //将删除的对头结点数据经由x返回free(p);if(q->front->next==NULL) //出队后队为空,则置为空队列q->rear=q->front;}}int visited[MAXSIZE]; //MAXSIZE为大于或等于无向图顶点个数的常量void BFS(VertexNode g[],LQueue *Q,int i){//广度优先搜索遍历邻接表存储的图,g为顶点表,Q为队指针,i为第i个顶点int j,*x=&j;EdgeNode *p;printf("%4d",g[i].vertex); //输出顶点i信息,即访问顶点ivisited[i]=1; //置顶点i为访问过标志In_LQueue(Q,i); //顶点i入队Qwhile(!Empty_LQueue(Q)) //当队Q非空时{Out_LQueue(Q,x); //对头顶点出队并送j(暂记为顶点j)p=g[j].firstedge;//根据顶点j的表头指针查找其邻接表的第一个邻接边结点while(p!=NULL){if(!visited[p->adjvex])//如果邻接的这个边结点未被访问过{printf("%4d",g[p->adjvex].vertex); //输出这个邻接边结点的顶点信息visited[p->adjvex]=1; //置该邻接边结点为访问过标志In_LQueue(Q,p->adjvex); //将该邻接边结点送人队Q}p=p->next;//在顶点j的邻接表中查找j的下一个邻接边结点}}}void main(){int e,n;VertexNode g[MAXSIZE];//定义顶点表结点类型数组g LQueue *q;printf("Input number of node:\n"); //输入图中结点个数scanf("%d",&n);printf("Input number of edge:\n");//输入图中边的个数scanf("%d",&e);printf("Make adjlist:\n ");CreatAdjlist(g,e,n);//建立无向图的邻接表Init_LQueue(&q);//队列q初始化printf("BFSTraverse:\n");BFS(g,q,0); //广度优先遍历以邻接表存储的无向图printf("\n");}2)运行结果:三、实验总结:1.通过本次试验让我对图的遍历以及图的深度和广度优先搜索有了更深刻的记忆和理解,将课本理论的知识得以实践。

数据结构实验报告—图

数据结构实验报告—图

《算法与数据结构》课程实验报告一、实验目的1.实现图的存储结构;2.通过图的相关算法实现,掌握其算法思想。

二、实验内容及要求1.无向带权图的存储结构(邻接矩阵、邻接表等自选)2.实现图的相关算法(1)计算指定顶点的度(2)图的深度优先遍历和广度优先遍历算法(3)分别使用Kruskal和Prim算法求解该图的最小生成树三、系统分析(1)数据方面:定义图的模板基类,在模板类定义中的数据类型参数表<class T,class E>中,T是定点数据的类型,E是边上所附数据的类型。

这个模板基类是按照带权无向图来定义的。

在该实验中定点的数据的类型为char型,边上所附数据的类型为int型。

且图的创建为无向图。

(2)功能方面:1.能够实现图的创建以及图的输出。

2.能够返回顶点在图中位置以及图中位置对应顶点的值。

3.返回当前图中的边数与顶点数。

4.返回输入边的权值。

5.能够插入一个顶点或插入顶点与之相关联的边。

6.删除边或删除顶点与之相关联的边。

7.计算顶点的度。

8.实现深度优先搜索、广度优先搜索遍历。

9.Kruskal算法、Prim算法生成最小生成树。

四、系统设计(1)设计的主要思路根据实验要求,首先确定图的存储结构,在根据存储结构编写模板类,并将需要实现的功能代码完善,再写出实现各个功能的菜单并进行调试。

由于在编写由图生成最小生成树中采用了最小堆以及并查集的算法,故需要将这两个个类的代码完成并进行调试。

最后将此次实验所涉及的类全部整理完全后,通过之前编写的菜单对功能进行依次调试,完成此次实验。

(2)数据结构的设计图是非线性结构,它的每一个顶点可以与多个其他顶点相关联,各顶点之间的关系是任意的。

可以用很多方法来存储图结构。

在此采用邻接矩阵来存储图结构。

首先将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示各顶点之间的邻接关系,称为邻接矩阵。

下面针对带权无向图的邻接矩阵作出说明。

其中有一个类型为顺序表的顶点表向量VerticesList,用以存储顶点的信息,还有一个作为邻接矩阵使用的二维数组Edge,用以存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验名称:数据结构实验五实验内容:1.使用邻接矩阵建立一个图,深度遍历。

2.使用邻接表建立一个图,广度遍历。

3.建立一个图,存储结构自己确定,并进行拓扑排序。

实验代码:1.#include "stdio.h"#define Infinity 100#define MaxVertexNum 20typedef enum {DG,DN,UDG,UDN} GraphKind;typedef int VRType;typedef char VertexType;bool Visit[MaxVertexNum];typedef struct ArcCell{VRType adj;}ArcCell,AdjMatrix[MaxVertexNum][MaxVertexNum];typedef struct{VertexType vexs[MaxVertexNum];AdjMatrix arcs; //邻接矩阵int vexnum,arcnum; //图的当前顶点数和弧数GraphKind kind;}MGraph;int LocateVex(MGraph G,VertexType v){for(int i=0;i<G.vexnum;++i){if(v==G.vexs[i])return i;}if (i = G.vexnum)printf("输入的顶点不合法\n");return 0;}VertexType v1,v2;VRType w;void CreateUDG(MGraph &G){int i,j,k;printf("请输入顶点数:\n");scanf("%d",&G.vexnum);printf("请输入弧数:\n");scanf("%d",&G.arcnum);i = 0;while(i<G.vexnum){printf("请输入第%d个顶点\n",i);getchar();scanf("%c",&G.vexs[i]);++i;}for(i=0;i<G.vexnum;++i){for(j=0;j<G.vexnum;++j)G.arcs[i][j].adj = 0;}for(k=0;k<G.arcnum;++k){printf("请输入一条边依附的顶点及权值(v1 v2 w)\n");getchar();scanf("%c %c %d",&v1,&v2,&w);i =LocateVex(G,v1);j =LocateVex(G,v2);G.arcs[i][j].adj= w;G.arcs[j][i] = G.arcs[i][j];}return;}void DFSTraverse(MGraph &G,int i){printf("%c ",G.vexs[i]);Visit[i]=true;for(int j=0;j<G.vexnum;j++){if(G.arcs[i][j].adj==1&&!Visit[j]){DFSTraverse(G,j);}}}void DFS(MGraph &G){int i;for(i=0;i<G.vexnum;i++) Visit[i]=false;for(i=0;i<G.vexnum;i++){if(!Visit[i]){DFSTraverse(G,i);}}}void main(){MGraph graph;CreateUDG(graph);printf("顶点集合为::");for (int i=0;i<graph.vexnum;++i)printf("%c ",graph.vexs[i]);printf("\n深度遍历结果是:");DFS(graph);printf("\n");return;}2.#include "stdio.h"#include "stdlib.h"#define MaxVertexNum 20typedef int InfoType;typedef char VertexType;typedef VertexType QElemType;bool visited[MaxVertexNum];typedef struct ArcNode{int adjvex; //该弧指向的顶点位置struct ArcNode *nextarc; //指向下一条弧的指针InfoType *info;}ArcNode;typedef struct VNode{VertexType data; //顶点信息ArcNode *firstarc; //指向第一条依附该顶点的弧的指针}VNode,AdjList[MaxVertexNum];typedef struct{AdjList vertices;int vexnum,arcnum; //图的当前顶点数和弧数}ALGraph;typedef struct QNode{QElemType data;struct QNode *next;}QNode,*Queueptr;typedef struct{Queueptr front;Queueptr rear;}LinkQueue;void InitQueue(LinkQueue &Q){Q.front = Q.rear = (Queueptr)malloc(sizeof(QNode));if(!Q.front) return;Q.front->next = NULL;return;}void EnQueue(LinkQueue &Q,QElemType e){Queueptr p = NULL;p = (Queueptr)malloc(sizeof(QNode));if(!p) return;p->data = e;p->next = NULL;Q.rear->next = p;Q.rear = p;return;}QElemType DeQueue(LinkQueue &Q,QElemType &e) {Queueptr p;if(Q.front==Q.rear) return ' ';p = Q.front->next;e = p->data;Q.front->next = p->next;if(Q.rear==p)Q.rear = Q.front;free(p);return e;}int QueueEmpty(LinkQueue Q){if(Q.front==Q.rear)return 1;elsereturn 0;}int Locate(ALGraph G,VertexType v){for(int k=0;k<G.vexnum;++k){if(v==G.vertices[k].data)return k;}if (k = G.vexnum)printf("输入的顶点不合法\n");return 0;}void CreateALGraph(ALGraph &G){VertexType v1,v2;int i,j,k;ArcNode *p,*r;printf("请输入顶点数和弧数(以空格分开): ");scanf("%d %d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){getchar();printf("请输入第%d个结点: ",i);scanf("%c",&G.vertices[i].data);G.vertices[i].firstarc = NULL;}for(i=0;i<G.arcnum;++i){printf("请输入第%d条弧(格式:顶点顶点(以空格隔开)): ",i);getchar();scanf("%c %c",&v1,&v2);k=Locate(G,v1);j=Locate(G,v2);p = (ArcNode*)malloc(sizeof(ArcNode));r = (ArcNode*)malloc(sizeof(ArcNode));p->adjvex = j;p->info = NULL;r->adjvex = k;r->info = NULL;p->nextarc=G.vertices[k].firstarc;G.vertices[k].firstarc=p;r->nextarc=G.vertices[j].firstarc;G.vertices[j].firstarc=r;}return;}void BFSTraverse(ALGraph G,QElemType x) {int i,v;ArcNode *p;QElemType v1;for(v=0;v<G.vexnum;++v)visited[v] = false;LinkQueue Q;InitQueue(Q);EnQueue(Q,x);i = Locate(G,x);visited[i] = true;for(v=0;v<G.vexnum;++v){while(!QueueEmpty(Q)){DeQueue(Q,v1);printf("%c ",v1);i=Locate(G,v1);p = G.vertices[i].firstarc;while(p!=NULL){if(!visited[p->adjvex]){visited[p->adjvex] = true;EnQueue(Q,G.vertices[p->adjvex].data);}p = p->nextarc;}}if(!visited[v]){visited[v] = true;EnQueue(Q,G.vertices[v].data);}}}void main(){char flag1;ALGraph graph2;QElemType x;CreateALGraph(graph2);flag1 = 'Y';while(flag1 == 'Y'||flag1 == 'y'){printf("请输入遍历的起点: ");getchar();scanf("%c",&x);printf("广度遍历结果是:\n");BFSTraverse(graph2,x);printf("\n继续遍历(Y/N): ");getchar();scanf("%c",&flag1);}return;}3.#include "stdio.h"#include "stdlib.h"#define StackInitSize 20#define StackIncrement 5#define MaxVertexNum 20typedef int InfoType;typedef char VertexType;typedef VertexType SElemType;typedef struct{SElemType *base;SElemType *top;int stacksize;}SqStack;typedef struct ArcNode{int adjvex; //该弧指向的顶点位置struct ArcNode *nextarc; //指向下一条弧的指针InfoType *info;}ArcNode;typedef struct VNode{int indegree;VertexType data; //顶点信息ArcNode *firstarc; //指向第一条依附该顶点的弧的指针}VNode,AdjList[MaxVertexNum];typedef struct{AdjList vertices;int vexnum,arcnum; //图的当前顶点数和弧数}ALGraph;bool InitStack(SqStack &s){s.base = (SElemType * )malloc(StackInitSize * sizeof(SElemType));if(!s.base) return false;s.top = s.base;s.stacksize = StackInitSize;return true;}bool Pop(SqStack &s, int &e){if(s.top==s.base)return false;e = * --s.top;return true;}bool Push(SqStack &s, int e){if(s.top-s.base>=s.stacksize){s.base = (SElemType *)realloc(s.base,(s.stacksize+StackIncrement) * sizeof(SElemType) );if(!s.base)return false;s.top = s.base+s.stacksize;s.stacksize+=StackIncrement;}* s.top++ = e;return true;}bool StackEmpty(SqStack s){if(s.top == s.base)return true;elsereturn false;}int Locate(ALGraph G,VertexType v) {for(int k=0;k<G.vexnum;++k){if(v==G.vertices[k].data)return k;}if (k = G.vexnum)printf("输入的顶点不合法\n");return 0;}void CreateALGraph(ALGraph &G) //邻接表存储{VertexType v1,v2;int i,j,k;ArcNode *p;printf("请输入顶点数和弧数(以空格分开): ");scanf("%d %d",&G.vexnum,&G.arcnum);for(i=0;i<G.vexnum;++i){getchar();printf("请输入第%d个结点: ",i);scanf("%c",&G.vertices[i].data);G.vertices[i].firstarc = NULL;G.vertices[i].indegree = 0;}for(i=0;i<G.arcnum;++i){printf("请输入第%d条有向弧弧(格式:顶点顶点(以空格隔开)): ",i);getchar();scanf("%c %c",&v1,&v2);k=Locate(G,v1);j=Locate(G,v2);p = (ArcNode*)malloc(sizeof(ArcNode));p->adjvex = j;p->info = NULL;p->nextarc=G.vertices[k].firstarc;G.vertices[k].firstarc=p;}return;}void FindInDegree(ALGraph G ,int a[MaxVertexNum]) {int i,k;ArcNode *p;for(i=0;i<G.vexnum;++i){for(p=G.vertices[i].firstarc;p;p=p->nextarc){k = p->adjvex;a[k] = ++G.vertices[k].indegree;}}return;}void TopologicalSort(ALGraph G) //拓扑排序算法{int i,j, count;ArcNode *p;SqStack s;int indegree[MaxVertexNum];for(i=0;i<MaxVertexNum;++i)indegree[i] = 0;FindInDegree(G,indegree);InitStack(s);for(i=0;i<G.vexnum;++i){if(!indegree[i])Push(s,i);}count =0;while(!StackEmpty(s)){Pop(s,i);printf("%c ",G.vertices[i].data);++count;for(p=G.vertices[i].firstarc;p;p=p->nextarc){j = p->adjvex;if(!(-- indegree[j])) Push(s,j);}}if(count<G.vexnum)printf("错误!该有向图有回路!\n");else return;}void main(){ALGraph graph3;CreateALGraph(graph3);printf("拓扑排序的结果是:\n");TopologicalSort(graph3);printf("\n");return;}。

相关文档
最新文档