土壤重金属检测方法汇总
土壤重金属检测方法

土壤重金属检测方法
土壤重金属检测就像给土壤做体检一样重要!那到底咋检测呢?首先,采集土壤样本,这可不是随便挖点土就行哦!得选有代表性的地点,就像医生给病人抽血要找准血管一样。
把土装在干净的袋子里,可别弄脏了,不然检测结果就不准啦!这一步可得小心翼翼,你想想,要是样本不好,那后面不都白忙活了?
检测方法有很多种,比如原子吸收光谱法。
这就像给土壤里的重金属照X 光,能把各种重金属都找出来。
操作的时候要严格按照步骤来,仪器得调试好,不然得出的结果能靠谱吗?
检测过程安全不?那当然啦!只要按照规范操作,就不会有啥危险。
稳定性也不错,只要条件控制好,结果一般都挺可靠。
那这检测方法都用在哪呢?建筑工地、农田、公园啥的都能用上。
优势可不少呢!能早早发现土壤问题,避免造成更大的危害。
就好比身体不舒服了赶紧去医院检查,早发现早治疗嘛!
给你举个实际案例,有个农田之前一直收成不好,后来一检测,发现土壤里重金属超标。
赶紧采取措施,调整种植方式,现在收成又好起来了。
这效果,杠杠的!
土壤重金属检测真的很重要啊!能让我们更好地了解土壤状况,保护我们的环境和健康。
大家一定要重视起来!。
原子荧光光谱法测定土壤中的重金属含量

标题:原子荧光光谱法在土壤重金属含量测定中的应用一、引言原子荧光光谱法是一种高灵敏、高选择性和高准确性的分析技术,被广泛应用于土壤中重金属含量的测定。
重金属对土壤和环境具有潜在的危害,因此准确测定土壤中的重金属含量对环境保护及农业生产至关重要。
二、原子荧光光谱法的基本原理原子荧光光谱法是一种分析化学技术,利用原子吸收和发射谱线测定物质中微量元素含量。
在土壤分析中,先将土壤样品经适当的前处理后,将其溶解成适当的溶液。
然后将溶液喷入高温火焰或电弧中,将溶解态的重金属原子激发到激发态,并在返回基态时放出特定波长的荧光。
通过检测和分析这些荧光谱线,可以测定土壤中各种重金属元素的含量。
三、原子荧光光谱法在测定土壤中重金属含量的优势1. 高灵敏度:原子荧光光谱法能对土壤样品中微量级的重金属元素进行准确测定,检出限低,可满足环境监测的要求。
2. 高选择性:原子荧光光谱法能够对土壤样品中的各种重金属元素进行同时检测,具有很高的选择性。
3. 高准确性:原子荧光光谱法具有很高的分析准确性,结果可靠性高。
四、原子荧光光谱法在测定土壤中重金属含量的应用原子荧光光谱法在测定土壤中重金属含量方面具有广泛的应用。
通过对土壤样品的前处理处理和分析检测,可以快速、准确地测定土壤中各种重金属元素的含量,包括铅、镉、汞、铬等。
这为环境保护和土壤治理提供了重要的数据支持。
五、我对原子荧光光谱法在土壤重金属含量测定中的个人观点和理解在我看来,原子荧光光谱法作为一种先进的分析技术,对土壤中重金属元素的准确测定起到了重要作用。
其高灵敏度、高选择性和高准确性的特点,使其成为土壤分析的重要手段。
在环境监测、土壤修复和农业生产中,原子荧光光谱法的应用将有助于更好地保护环境和人类健康。
六、总结通过对原子荧光光谱法在土壤中重金属含量测定的介绍和分析,可以看出原子荧光光谱法在土壤重金属含量分析中具有很大的优势。
其高灵敏度、高选择性和高准确性,使其成为土壤分析的重要手段。
如何检测土壤重金属

如何检测土壤重金属
土壤中的重金属污染物主要是指含汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)、铜(Cu),镍(Ni)、钴(Co)、锡(Sn)以及类金属砷(As) 等的污染物。
具体的检测方法如下:
1.镉:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)消解后,采用萃取-火焰原子吸收法测定或者石墨记原子吸收分光光度法测定;
2.汞:土样经硝酸-硫酸-五氧化二钒或硫、硝酸锰酸钾消解后,冷原子吸收法测定;
3.砷:方法一土样经硫酸-硝酸-高氯酸消解后,二乙基二硫代氨基甲酸银分光光度法测定
,方法二土样经硝酸-盐酸-高氯酸消解后,硼氢化钾-硝酸银分光光度法测定;
4.铜:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)
消解后,火焰原子吸收分光光度法测定;
5.铅:土样经盐酸-硝酸-氢氟酸-高氯酸消解后,采用萃取-火焰原子吸收法测定或者石墨炉原子吸收分光光度法测定;
6. 铬:土样经硫酸-硝酸-氢氟酸消解后,采用高锰酸钾氧,二苯碳酰二肼光度法测定,或者加氯化铵液,火焰原子吸收分光光度法测定;
7.锌:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)消解后,火焰原子吸收分光光度法测定;
8.镍:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)肖解后,火焰原子吸收分光光度法测定。
今天。
三种土壤重金属检测仪的原理方法

三种土壤重金属检测仪的原理方法土壤重金属污染目前是我国面临非常严峻的问题,所以市场上检测土壤重金属仪器层出不穷。
测量土壤重金属目前主要是有下面几种方法:1、原子吸收光谱法这种方法是相对比较传统的测量重金属的方法,先将土壤风干,再经过消解处理、定容,之后制备标准溶液,之后上机操作测量。
测量原理是利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度;它有单光束,双光束,双波道,多波道等结构形式。
其基本结构包括光源,原子化器,光学系统和检测系统。
这种原理测出来相对精度较高,只是测量的时间上相对过长,通常整个过程需要24小时出结果。
2、伏安极谱法这种方法也是先将土壤风干,再经过消解处理,然后将浸提液放入极谱仪中,直接测量。
其原理是通过将一个变化的电压信号施加到电极上,而后测量电极的响应电流来测量重金属的含量,这种方法与原子吸收光谱法相比,测量精度更高,运行成本低,可以做形态分析等。
目前市面上这个产品做的比较好的有瑞士万通的884型的,全自动型。
3、X射线荧光光谱法X射线荧光光谱分析法利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
这种方式测量土壤重金属无需将土壤进行前处理,测量速度快,精度也能达到ppm级。
非常适合拿到野外走哪儿测哪儿,测量结果还能保存,有些还可以进行GPS定位,记录什么地方土壤测量的结果是多少。
并且测量时不存在任何耗材,无需任何使用成本。
目前做的比较好的品牌有加拿大Torontech,EXDpert XRF型,设备小巧,配有专门分析土壤模块,所以相对测量精度高。
非常适合野外快速测量土壤重金属。
以上介绍的这些测量土壤重金属的方法都是目前市场上相对成熟的测量土壤重金属的方法,也是比较常规的方法。
可以根据自己的需要选择合适的土壤重金属检测仪。
土壤重金属检测内容

土壤重金属检测是常规的环境检测项目之一,土壤与农作物的种植密切相关,一旦土壤的重金属超标,重金属会通过农作物最终流向人们的身体,重金属对人的危害极为重大。
常规土壤重金属检测指标:铜、锌、镍、铅、铬、镉、汞、铁、锰、钼、钴、砷土壤检测范围:农田重金属检测、果园或花场重金属检测、种植用地土壤重金属检测、等等污泥检测范围:河流污泥检测、工业污水污泥检测、养殖污泥检测、等等土壤重金属检测方法:X射线荧光光谱法、电感耦合等离子体发射光谱、原子荧光光谱法、激光诱导击穿光谱法、原子吸收光谱法土壤是生态环境必要组成之一,如果土壤受到污染会带来一系列的连环影响,例如:雨水会把土壤中的重金属带到河流污染渔业,污染人类的饮用水,污染农作物等等。
定期做土壤重金属检测有利用环境的可持续发展。
土壤重金属检测是土壤的常规监测项目之一。
采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。
本文围绕土壤常规重金属检测指标、土壤检测范围、污泥检测范围、土壤重金属检测方法等方面进行讲解。
许多研究表明,种植物的质量安全与产地的土壤环境关系密切。
重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属元素。
深圳市华太检测有限公司现有场所面积3000多平方米,满足开展相应检验检测工作的需要。
注册资金500万,拥有700余万元的固定资产,拥有国内先进的微机控制伺服泵源万能试验机,压力试验机,甲醛测试试件平衡预处理恒温恒湿室,甲醛释放量测试气候箱(智能式)、气相色谱质谱联用仪(GC-MS)、气相色谱仪(GC)、电感耦合等离子体发射光谱仪(ICP-OES)、原子吸收光谱仪、原子荧光光谱仪等大型仪器设备280多台,能满足现有检测项目的要求。
(完整版)土壤重金属检测

土壤重金属检测第一部分:样品的采集一个完整的环境样品的分析,包括从采样开始到出报告,样品分析流程为:采样→样品处理→分析测定→整理报告,大致可分为这四个阶段。
这四个阶段所需时间及劳动强度为:样品采集6.0%,样品处理61.0%,分析测试6.0%,数据处理及报告27.0%。
1 土壤样品的采集采集土样时务必要注意所采样品的代表性,即所采集的样品对所研究的对象应具有最大的代表性。
采样要贯彻“随机”、“等量”和“多点混合”的原则进行采样2 采样器具工具类:不锈钢土钻、铁锹或锄头、土刀、取土器、竹片以及适合特殊采样要求的工具,分样盘、塑料布或塑料盆等用于野外现场缩分样品的工具。
器材类:GPS、照相机、卷尺、铝盒、样品袋、样品箱等。
文具类:样品标签、采样记录表、现场调查表、铅笔、资料夹等;安全防护用品:雨具、工作鞋、药品箱等。
3 采样单元的划分由于土壤的不均一性,导致同一研究区域各土壤具有差异性,同一块土壤中不同点也具有差异,故在实地采样前,应先根据现场勘察和所搜集的有关资料,将研究范围划分为若干个采样单元。
采样单元的划分,采样单元以土类和成土母质类型为主,其次根据地形、地貌、土上设施状况、土壤类型、农田等级等因素确定,原则上应使所采土样能使所研究的间题在分析数据中得到全面的反应。
在一个采样单元中,如果用多个样点的样品分别进行分析,其平均值或其他统计值(如标准差或置信区间等)的可靠性,无疑要比单独取一个样品的分析结果更大,但这样做的工作量比较大。
如果把多个样点的土样等量地混合均匀,组成一个“混合样品”进行测定,工作量就可大为减少,而其测定值也可得到相近的代表性,因为混合样品的测定值,实际上相当于各个样点分别测定的平均值。
总体要遵循“同一单元内的差异性尽可能地小,不同单元之间的差异性尽可能的要大”。
4 确定采样的布点原则应根据任务的性质、复杂程度、区域规模的大小和所要求的精度统筹设计,实行科学、优化布点。
布点原则是布设采样点的依据。
土壤检测的常见营养和重金属

土壤检测的常见营养和重金属常见的土壤检测指标包括水解性氮、全氮、全磷和有效磷。
水解性氮的测定可以使用碱解-扩散法,通过L氢氧化钠处理土壤,在碱性条件下将易水解态氮转化为氨态氮,再用标准酸滴定计算碱解氮的含量。
全氮的测定则可以采用半微量凯氏法,通过硫酸铜、硫酸钾和硒粉的存在下,用浓硫酸消煮土壤中的全氮,然后用氢氧化钠碱化、加热蒸馏出氨,最后用标准酸滴定计算其含量。
全磷的测定可以使用酸溶-钼锑抗比色法,通过硫酸-高氯酸溶解土壤中的磷,再用钼锑抗比色法测定。
有效磷的测定则可以采用盐酸-硫酸浸提法或碳酸氢钠浸提法,通过浸提出土壤中的磷酸铁、铝盐,再用钼锑抗比色法测定出浸提液中的磷含量。
5.有效磷的测定方法为NY/T 149-1990《石灰性土壤有效磷测定方法》。
该方法采用碳酸氢钠浸提-钼锑抗比色法,测定值20 mg/kg P时,相对差<5 %。
该方法使用L碳酸氢钠浸提土壤有效磷。
碳酸氢钠可以抑制溶液中Ca2+离子的活度,使某些活性较大的磷酸钙盐被浸提出来;同时液可以使活性磷酸铁、铝盐水解二被浸出。
浸出液中的磷不致次生沉淀;可用钼锑抗比色法定量。
测定值与作物对磷肥的反应相关性高。
6.全钾的测定方法为LY/T 1234-1999《森林土壤全钾的测定》。
该方法采用酸溶-火焰光度法,测定值>20g/kg,绝对偏差>kg;测定值20g/kg~10g/kg,绝对偏差kg~kg;测定值<10g/kg,绝对偏差<kg。
该方法以氢氟酸-高氯酸溶解土壤中的钾,用火焰光度计法测定钾。
7.缓效钾的测定方法为LY/T1235-1999《森林土壤缓效钾的测定》。
该方法采用1mol/L硝酸煮沸浸提-火焰光度法,测定值>200mg/kg,绝对偏差>10mg/kg;测定值200mg/kg~500mg/kg,绝对偏差10mg/kg~25mg/kg;测定值<50mg/kg,绝对偏差<kg。
关于农田土壤中重金属检测关键技术的研究

关于农田土壤中重金属检测关键技术的研究农田土壤中重金属污染一直是农业生产中的一个重要环境问题。
重金属污染会严重影响土壤的肥力和农产品的质量安全,甚至对人体健康造成潜在威胁。
对农田土壤中重金属的检测研究愈发重要。
本文将从农田土壤中重金属的来源、检测技术和关键问题等方面展开探讨。
一、农田土壤中重金属的来源农田土壤中的重金属主要来自于工业废弃物、化肥、农药和生活垃圾等。
在工业活动中,大量的重金属会通过工业废水、废气等被释放到环境当中,最终积聚在土壤中。
化肥和农药中也含有部分重金属成分,过量施用会导致土壤中的重金属含量超标。
生活垃圾中的重金属通过填埋和堆肥的方式同样会进入土壤中。
农田土壤中重金属污染的程度一直备受关注。
1. 传统化学分析法传统的化学分析法是目前用于农田土壤重金属检测的一种较为常见的方法。
该方法通过土壤样品的采集和预处理,然后采用各种化学试剂和仪器对土壤样品中的重金属元素进行分离、测定。
这种方法简单易行,并且能够得到较为准确的检测结果。
传统的化学分析方法需要耗费大量时间和人力物力,并且对样品的破坏性较大,不适用于大规模的实地调查。
2. 光谱技术光谱技术是一种较为先进的重金属检测技术,主要包括原子吸收光谱(AAS)、原子荧光光谱(AFS)、电感耦合等离子体质谱(ICP-MS)等。
这些光谱技术在对土壤样品中的重金属进行检测时,具有自动化程度高、检测速度快、灵敏度高等优点,能够实现多种元素的同时检测。
光谱技术设备昂贵,维护成本高,且需要专业人员操作,限制了其在农田土壤重金属检测中的推广应用。
3. 生物传感技术生物传感技术是指利用生物分子的特异性识别和信号转导能力对目标物质进行检测的一种新型技术。
在农田土壤重金属检测中,可以利用改造的微生物、酶或抗体等生物分子对重金属进行快速、准确的检测。
这种技术能够在不使用化学试剂和仪器的情况下完成对土壤重金属的检测,具有成本低、便捷、环保等优势。
但是由于生物传感技术需要克服生物分子的稳定性、活性等问题,目前在农田土壤重金属检测中的应用还存在一定的局限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土壤重金属检测方法汇总摘要:土壤重金属检测是土壤的常规监测项目之一。
采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,并满足土壤的管理和决策需要。
本文介绍了几种常用的土壤重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱,在介绍各个检测方法特性的同时,就灵敏度,测试范围,精确度,测试样品的数量等优缺点进行了对比。
关键词:土壤;重金属;检测方法1. 前言许多研究表明,种植物的质量安全与产地的土壤环境关系密切。
重金属一般先进入土壤并积累,种植物通过根系从土壤中吸收,富集重金属,有时也通过叶片上的气孔从空气中吸收气态或尘态的重金属元素[1]。
近几年,种植地因农药、肥料、生长素的大量施用及工业“三废”的污染,土壤重金属含量超标较严重且普遍,这不仅毒害土壤-植物系统,降低种植物品质,而且还会通过径流和淋洗作用污染地表水,尤其重要的是通过食物链的方式进入人体内,对于重金属的富集人体难以代谢,最终直接或间接危害人体器官的健康[2]。
为此,解决这一难题,建设绿色食品和无公害食品生产基地,要求我们从土壤中的重金属检测分析抓起。
本文介绍了土壤重金属的检测方法、并且对比各种方法优缺点。
2.土壤中重金属检测方法2.1 原子荧光光谱法原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。
利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律[3],通过测定荧光的强度即可求出待测样品中该元素的含量。
原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势[4],并且克服了这2种方法在某些地方的不足。
该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题[5]。
该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用[6]。
突出在土壤中的应用如何,以下各方法均是这个问题,相比之下2.5写的比较好应用原子荧光光谱法测定土壤的重金属快速准确,测定周期约为2小时,具有检出限低、精密度好,干扰少和操作简单方便,值得推广应用。
2.2 原子吸收光谱法原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法[7]。
其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量[8]。
原子吸收光谱法在农业方面,主要应用与土壤、肥料及植物中的中微量元素分析、水质分析、土壤重金属环境污染分析、土壤背景值调查及农业环境评价分析等方面。
该方法的优点是:选择性强、灵敏度高、分析范围广、抗干扰能力强、精密度高[9]。
其不足之处有多元素同时测定有困难,对非金属及难熔元素的测定尚有困难,对复杂样品分析干扰也较严重,石墨炉原子吸收分析的重现性较差[10]。
2.3 电感耦合等离子体发射光谱法电感耦合等离子体发射光谱是根据被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射的存在及其强度的大小,对各元素进行定性和定量分析[11]。
电感耦合等离子体发射光谱法应用于环境水样、土壤样品中的微量元素进行分析,在元素分析测试中的应用技术具有简便、快速、分析速度快;检出限低,多数可达0.005μg/ml以下[12];测量动态线性范围宽,一般可达5~6个数量级,可同时进行高含量元素和低含量元素的分析,可达到石墨炉原子吸收光谱仪的部分检出水平;可多种元素同时分析,可定性、定量分析金属元素,也可分析部分非金属元素,提高了分析效率,基体效应小,低背景干扰、高信噪比、精密度高、准确性好等优点[13]。
2.4 激光诱导击穿光谱法激光诱导击穿光谱技术是一种最为常用的激光烧蚀光谱分析技术。
其工作原理是:激光经过会聚透镜会聚,高峰值功率密度使未知样品表面物质气化、电离,激发形成高温、高能等离子体(温度可达10 000K),等离子体辐射出来的原子光谱和离子光谱被光学系统收集,通过输入光纤耦合到光谱仪的入射狭缝中,光谱数据通过数据采集控制器传输到计算机,研究该光谱就可以分析计算出被测物质的成分与浓度[14]。
原子光谱和离子光谱的波长与特定元素是一一对应的,而且光谱信号强度与对应元素的含量具有一定的定量关系。
因此该技术可以实时、快速地现化学元素的定性和定量分析[15]。
激光诱导击穿光谱可以真正做到现场快速分析,无须进行样品预处理,分析方便,也不受研究对象的限制[16]。
但是,其测量仪器成本较高,激光脉冲能量的起伏性,样品的不均匀性,样品的特性会直接影响测量的稳定性,也就是说研究样品的特性对结果的精确性影响较大[17]。
在激光诱导击穿光谱土壤重金属污染物检测的研究中,在光源设计上采用光学反馈减少脉冲间能量波动,在数据处理上采用一系列激光能量起伏归一化校正技术,达到克服由于激光器能量起伏造成的影响;通过选择最佳的采样延迟时间,以保证所采集到信号谱的信噪比最大;选择合适的激光脉冲的峰值功率阈值,达到克服谱线饱和现象和避免自吸收效应的发生以获得多元素的同时分析;通过研究激光聚焦焦点与样品表面之间的距离与测得信号谱线的信噪比的关系,达到提高系统的信噪比。
通过以上措施克服上述不利影响,实现了利用LIBS 技术对土壤中Cd,Hg,As,Cr,Cu,Zn,Ni,Pb 等成分的同时测量。
2.5 X射线荧光光谱法X射线荧光光谱技术是一种利用样品对X射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的方法[18]。
X射线荧光光谱仪在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。
该X射线荧光光谱法和电感耦合等离子体质谱法、发射光谱法在元素分析结果之间的差异,结果显示它们的差异不显著。
从检出限、准确度、精密度和回收率方面均能满足实验要求[19]。
土壤重金属X射线荧光光谱非标样测试方法具有前处理简单,无需标准样品,对样品无污染、无破坏性,检测速度快、稳定性高、再现性好等优点[20]。
此方法是对土壤重金属检测和污染评价快速有效的方法。
完全能够满足土壤环境受到污染时急需的快速定性、定量排查土壤中有毒有害重金属元素的要求。
3.总结土壤重金属检测是一项长期的工作,要求各种检测手段向更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。
上述5种重金属的检测方法的优缺点如表Ⅰ。
随着各种分析方法的建立和科学技术的不断进步,分析仪器逐渐由简单化向复杂化的方向发展,可以预见,各种分析仪器会向多功能、自动化、智能化以及小型化的方向发展,并且检测精度、灵敏度得到一定的提高,使得土壤环境检测变得更加简单准确。
文献参考[1] 陈学明,朱阳春,伏小勇.天水苹果园土壤重金属富集状况评价及来源分析[J].农业环境科学学报,2011,30(5):893-894.[2] 荆旭慧,李恋卿,潘根兴.不同环境下土壤作物系统中重金属元素迁移分配特点[J].生态环境,2007,16(3):812-813.[3] 王小平,马以瑾,徐元春.原子荧光光谱法测定不同产地茶叶中As, Se, Hg和Bi 四种元素含量[J].光谱学与光谱分析,2008,28(7):1656-1658.[4] 宋国庆.原子荧光光谱法在微量元素分析中的应用[D].河南:郑州大学,2005.[5] 邬春华,吕元琦,袁倬斌.微波消解原子荧光光谱法测定生物样品中砷汞[J].理化检验-化学分册,2006,42(1):42-44.[6] 王志嘉,尤海丹,吴志刚.微波消解-原子荧光光谱法测定中药材中铅、镉、砷、汞、锑的含量[J].沈阳药科大学学报,2008,25(5):388-392.[7] 李燕群.原子吸收光谱法在重金属铅镉分析中的应用进展[J].冶金分析,2008,28(6),33-37.[8] 韩金土,刘彦明,王辉.原子吸收光谱法测定清热解毒类中草药中的11种微量元素[J].光谱学与光谱分析,2006,10(10):1932-1936.[9] 王北洪,马智宏,付伟利.密封高压消解罐消解-原子吸收光谱法测定土壤重金属[J].农业工程学报,2008,24(9):255-256.[10] 范宏..原子吸收光谱法测定食用油中金属元素的含量及营养价值分析[D].河北:河北大学,2010,5.[11] 乔爱香,曹磊等.干法灰化和微波消解-电感耦合等离子体发射光谱法测定植物样品中22个主次量元素[J].岩矿测试,2010,2:29-33.[12] 王国兴,徐玉宇等.电感耦合等离子体发射光谱法测定红土镍矿中镍钴铜[J].岩矿测试,2011,10:572-575.[13] 赵庆令,李清彩.电感耦合等离子体发射光谱发同时测定土壤样品中54种组分[J].岩矿测试,2011,2:75-78.[14] 王建伟等.LIBS技术在土壤重金属污染快速测量中的应用[J].化学进展,2008,20(7/8):1165-1171.[15] 王书言等.浅谈弄产品中重金属检测技术发展[J].河南农业,2009,(4):39-40.[16] 鲁翠萍等.土壤重金属铬元素的激光诱导击穿光谱定量分析研究[J].物理学报,2011,04(5):206.[17] Lee Y I,Sneddon J.Applications of laser -induced breakdown spectrometry[J].Appl ied Spectrosc Review,1997,32(3): 183~235.[18] 韩小元等.X射线荧光光谱法表征薄膜进展[J].光谱学与光谱分析,2006,26(1):159.[19] 梁述廷等.X射线荧光光谱法同时测定土壤样品中碳氮等多元素[J].岩矿测试,2004,23(2):102.[20] 张勤等.X射线荧光光谱法测定土壤和水系沉积物等样品中碳、氮、氟、氯、硫、溴等42种主次和痕量元素[J].分析试验室,2008,27(11):52.。